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Automatization and technological advances have led to a larger number of methods
and systems to monitor and measure locomotor activity and more specific behavior
of a wide variety of animal species in various environmental conditions in laboratory
settings. In rodents, the majority of these systems require the animals to be temporarily
taken away from their home-cage into separate observation cage environments which
requires manual handling and consequently evokes distress for the animal and may
alter behavioral responses. An automated high-throughput approach can overcome this
problem. Therefore, this review describes existing automated methods and technologies
which enable the measurement of locomotor activity and behavioral aspects of rodents
in their most meaningful and stress-free laboratory environment: the home-cage. In
line with the Directive 2010/63/EU and the 3R principles (replacement, reduction,
refinement), this review furthermore assesses their suitability and potential for group-
housed conditions as a refinement strategy, highlighting their current technological and
practical limitations. It covers electrical capacitance technology and radio-frequency
identification (RFID), which focus mainly on voluntary locomotor activity in both single
and multiple rodents, respectively. Infrared beams and force plates expand the detection
beyond locomotor activity toward basic behavioral traits but discover their full potential
in individually housed rodents only. Despite the great premises of these approaches
in terms of behavioral pattern recognition, more sophisticated methods, such as (RFID-
assisted) video tracking technology need to be applied to enable the automated analysis
of advanced behavioral aspects of individual animals in social housing conditions.

Keywords: locomotor activity, behavior, home-cage, rodents, 3Rs, phenotyping, animal tracking

INTRODUCTION

Historically, animals’ behavior was monitored, assessed and quantified manually by an experienced
human observer in real-time (Altmann, 1974). This process is very time- and labor-intensive,
prevents large-scale and high-throughput studies, is mostly restricted to daytime scoring, subjective
to the human observer and thus prone to (human) bias (Levitis et al., 2009). This required
the development of alternative, automated methods to make (behavioral) phenotyping more
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rapid, objective, and consistent within and across laboratories,
aiming to increase reproducibility and replicability of research
outcomes (Kafkafi et al., 2018). Automatization will also help to
standardize experiments, which are impacted by heterogeneity
between laboratories (Crabbe et al., 1999; Crawley, 1999; Muller
et al., 2016) and personnel (Kennard et al., 2021). Automatization
is especially relevant during social animal experimentations,
which stimulate very complex and rich behavioral profiles
challenging to the human eye. One well-established way to
increase standardization and reduce (bias from) animal handling
is to study animals in their “living room”: the home-cage.
So far, the introduction of automatization as well as of
computational ethology has led to an enormous number of
different methods to study behavioral and physiological traits
in various animals and experimental set-ups (Anderson and
Perona, 2014; Dell et al., 2014; Voikar and Gaburro, 2020). This
review focusses on rodents and aims to give an overview of
current technologies and methods which enable researchers to
automatically study rodents’ locomotor activity and behavioral
traits, highlighting their individual strengths and limitations.
It includes electrical capacitance, radio-frequency identification
(RFID), infrared (IR) beams, force plates, and (RFID-assisted)
video tracking technology. Since the Directive 2010/63/EU
recommends the housing of social animals in social conditions
during experimentation for animal welfare reasons, this review
furthermore evaluates the suitability and limitations of the
described technologies to study socially housed rodents either
in their home-cage or in a social arena. For the purpose of
this review, any cage environment in which multiple (at least
2) rodents can be housed under minimally stressed conditions
for a long duration (several weeks to months) with appropriate
bedding and nesting material as well as access to feed and drink
is taken as the home cage or social arena. At the end, this
review will also provide insights into current developments in
the field of multiple animal tracking as well as possible future
directions in the field.

MEASURING VOLUNTARY LOCOMOTOR
ACTIVITY

Electrical Capacitance
Measuring an animal’s activity can be done by electrical
capacitance technology. This technology comprises several
electrodes embedded in an electronic sensing board (Figure 1),
which is installed underneath the home-cage. The animal’s
presence changes the electromagnetic field emitted by these
electrodes. Thereby, the exact position (with spatial resolution
of 1 mm) and trajectory can be identified based on capacity
variation [with temporal resolution of 4 hertz (Hz)]. The sensing
board sends its raw data to an associated software and computer
infrastructure, which enables the researcher to additionally
analyze distance traveled, average speed, position distribution,
and activity density of the animal. The activity metrics show
comparable results when benchmarked against video-recording
technology (Iannello, 2019). This board was developed as
part of the Digital Ventilated Cage (DVC) monitoring system

(Tecniplast, Buguggiate, Italy), allowing fully automated, 24/7,
non-invasive, real-time activity monitoring and traceability of
individually housed mice. It requires only modest computational
power resulting in a small data footprint per unit. It is
highly scalable, allowing arbitrary numbers of home-cages to be
monitored simultaneously. DVC-derived datasets can be used
subsequently for a deeper analysis of several activity metrics in
individual-housed mice (Shenk et al., 2020). However, this system
does not support the analysis of ethologically relevant behavioral
patterns (grooming, rearing, climbing etc.) which makes it less
suitable for phenotyping and behavioral studies. It is currently
also designed for the use of mice only. Whereas multiple animals
can be housed in one home-cage to monitor group activity
(Pernold et al., 2019), the full potential of the technology relies on
individually housed conditions. This makes this system currently
unable to study social interaction and behavior. Since it was
originally developed as a component of the DVC system, it cannot
be integrated in automated monitoring systems of other vendors.
In conclusion, the sensor plate is a useful module within the
DVC system aiming to improve animals’ health monitoring and
facility management. It allows monitoring of overall activity, but
the limited behavioral pattern recognition makes this system
less suitable for more sophisticated phenotyping and behavioral
studies, especially in group-housed settings.

Radio-Frequency Identification
Locomotion activity can also be measured using radio-frequency
identification (RFID) technology. RFID uses radio-waves to
wirelessly identify and track specific tags, which can be attached
to or inserted into objects and animals. The technology consists
of four elements: tags, readers, antennas, and a computer
network for data handling. Passive RFID tags do not require
an internal power supply (battery)—in contrast to active
tags—since they are powered via the radio waves emitted by
the antennas. This reduces the overall size of the RFID tag,
which makes passive tags more suitable for implantation in
small laboratory animals. The RFID tag is activated once it is
in the range of an RFID antenna and thereby sends its unique
ID code to the RFID reader. Depending on the type of tag,
additional information (strain, age, etc.) can be stored and
conveyed. It allows also for physiological characteristics (i.e.,
peripheral body temperature) to be measured additionally
(Unified Information Devices Inc., Lake Villa, United States)
(Winn et al., 2021). When implanted into the animals, individual
animals are tracked and identified within the home-cage or any
other experimental unit. The benefits of RFID technology have
inspired researchers to develop the IntelliCage (TSE Systems,
Berlin, Germany) which enables the study of complex behaviors
in socially interacting mice and rats living in a stress-free cage
environment without human interference (Lipp et al., 2005;
Kiryk et al., 2020). The IntelliCage consists of four operant
conditioning corners and allows for several, longitudinal (social)
behavioral and cognitive test batteries in a meaningful and
social living environment. Furthermore, it can serve as a core
component of a new automated multi-dimensional phenotyping
paradigm: the PhenoWorld (TSE Systems). The PhenoWorld
supports behavioral, cognitive, metabolic, and physiological
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FIGURE 1 | DVC sensor plate of Tecniplast. (A) Graphical illustration of electrical board containing 12 electrodes. (B) Side-view of three adjacent electrodes and the
corresponding electromagnetic (EM) field lines. (C) Effect of animal’s presence on the EM field lines. (D) Impact of animal’s presence on electrode signal output
(Iannello, 2019).

FIGURE 2 | The TraffiCage (TSE Systems) uses a RFID matrix underneath the home-cage to track multiple animals in the home-cage.

measurements in an ethological meaningful multi-component
living environment stimulating rodents to display their species-
specific natural social behavior (Castelhano-Carlos et al., 2014,
2017). Others applied a similar approach to study groups of
rodents in a semi-naturalistic environment by installing RFID
antennas at strategically relevant locations within multiple living
quarters (Lewejohann et al., 2009; Howerton et al., 2012; Puścian
et al., 2016; Linnenbrink and von Merten, 2017; Habedank
et al., 2021). However, since RFID antennas are usually not
distributed equally within those (multi-) cage environments,
but rather at strategically interesting locations, only cross

trajectories and cross activity of individual animals can be
measured. To circumvent this and to get a more accurate
picture of the activity and trajectories of individual rodents,
a non-commercial passive RFID system based on ultra-high
frequency was developed suitable for standard home-cage
applications in rodents (Catarinucci et al., 2014). In vivo
validation against IR-beams (see “Infrared Beams”) and a well-
established video-tracking system showed a strong correlation
regarding positional data and total activity (Catarinucci et al.,
2014; Macrì et al., 2015). This design has been adopted by the
industry resulting in commercially available systems consisting
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TABLE 1 | Commercially available all-in-one RFID systems for home-cage application.

Company Product name Strengths Limitation Website References

PhenoSys MultimouseMonitor Multiple animals, small footprint1 Limited spatial accuracy, 2
standard sizes available

https://www.phenosys.com/
products/multi-mouse-monitor/

Frahm et al., 2018;
Alonso et al., 2020

TSE
Systems

IntelliCage Multiple animals (16 mice or 8 rats),
small footprint1, HCMS containing

4 operant conditioning corners,
wide range of cognitive and

behavioral tests

Fixed size/dimension, only
gross trajectories of

individuals

https://www.tse-systems.com/
service/intellicage/

Voikar et al., 2018;
Kiryk et al., 2020

TSE
Systems

TraffiCage Multiple animals, several sizes
available, small footprint1

Limited spatial accuracy https://www.tse-systems.com/
service/trafficage/

Dudek et al., 2015;
Kotańska et al.,

2019

Unified
Information
Devices

Mouse Matrix Multiple animals, customizable
size/dimension, small footprint1,
body temperature measurement

available

Mice only, not validated yet
due to recent market

launch

https://www.uidevices.com/
home-cage-monitoring/

−

1Footprint refers to how much space the system occupies in addition to the home-cage.
Small: Marginal impact on overall space; large: Significant increase of footprint relative to home-cage.

of a RFID antenna matrix underneath the home-cage, in
which each antenna emits a confined electromagnetic field
(Figure 2). In general, the RFID technology enables long-term,
24/7, real-time identification, tracking and general activity
measurement of a large number of various animals within a
given experimental area (Dudek et al., 2015; Frahm et al., 2018).
Its major advantage is the correct long-term identification
preservation and traceability of multiple animals in relative
complex social housing conditions (Lewejohann et al., 2009;
Howerton et al., 2012; Catarinucci et al., 2014; Puścian et al.,
2016; Castelhano-Carlos et al., 2017). It can be fully automated
to monitor animal’s locomotion activity without human
interference, it requires only condensed data storage, and it
can easily be integrated with automated monitoring home-cage
systems (Catarinucci et al., 2014; Frahm et al., 2018). Since RFID
is a detection and tracking technology, its major limitation in
the field of animal behavior is the inability to provide detailed
information on behavioral traits (grooming, rearing, climbing,
etc.). This restricts its application to the sole purpose of animal
identification and tracking functionality, which still offers
the opportunity to analyze some aspects of social behavior
(Puścian et al., 2016; Torquet et al., 2018). Combining RFID
with video tracking technology largely extends the possibilities
to study social behavior in more detail (see “RFID-Assisted
Video Tracking”). Another important technological limitation
is the challenge of the RFID antennas to simultaneously detect
multiple tags and therefore animals. When multiple animals
are located within the reading range of the same RFID antenna,
simultaneous signal transmission can interfere with each other,
often leading to missed readings and thus data loss. By nature,
RFID technology comprises a trade-off between sensitivity
(reading range) and accuracy (spatial resolution) since both
depend on the dimension of each of the RFID antenna, which
is usually the size of the animal in question. The smaller the
RFID antenna, the more antennas can be integrated in the
RFID antenna matrix underneath the home-cage increasing
the positioning and tracking accuracy of the systems and
reducing the possibility of signal interference of different RFID

tags. On the other hand, small RFID antennas have a shorter
reading range. This might result in temporary detection loss
in case of vertical movements (i.e., rearing and climbing). This
sensitivity-accuracy trade-off needs to be considered when
choosing an appropriate RFID hardware set-up and a suitable
location of the RFID tag within the animal’s body. Furthermore,
RFID is minimally invasive and inserting the tag requires
anesthetics. It also bears minor risks of affecting animals’ health
condition during long-term application (Albrecht, 2014) or of
losing its functionality.

In summary, RFID technology is a great way to identify,
track and therefore measure locomotor activity of individual
animals in a social context. Its lack of measuring behavioral traits
requires the combination with another technology, for example
with video tracking.

While there are many companies which provide RFID
components, only a few offer an all-in-one and stand-alone
apparatus for rodent home-cage application enabling individual
voluntary locomotor activity measurements in group-housed
settings (Table 1).

MEASURING BEHAVIORAL TRAITS

Infrared Beams
One of the most traditional and simplest principles to
continuously monitor voluntary locomotor activity of rodents
in the home-cage environment is through infra-red (IR) beam
breaks. It uses specially designed frames that surround the
home-cage (Figure 3), which emit an array of IR beams
invisible to the rodents. Beam interruptions, or breaks, due to
the movement of the animal are registered in the horizontal
plane (x- and y-axis) allowing locomotor activity to be reliably
detected with a high spatial and temporal resolution. Expanding
such systems with an additional frame covering the vertical
plane (z-axis), furthermore enables the detection and analysis
of basic behavioral patterns, such as rearing and climbing.
The obtained spatial and temporal information can further
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FIGURE 3 | Large infrared beam frame ActiMot3 (TSE Systems) to measure
locomotor activity in rodents.

be utilized to analyze a variety of other behavioral events,
such as feeding and drinking activities (Goulding et al., 2008).
Nowadays, associated software packages can fine-tune the
raw data to extract a more comprehensive picture of the
animal’s behavior, including, but not limited to distance traveled,
position distribution, zone entries and trajectory within a given
time-period. The use of beam frames is easily applicable, non-
invasive, and comes with the freedom to adjust the position
of the z-frames depending on the desired rodent species
and research questions. Since it is independent of lighting
conditions, a 24/7 analysis is possible. Numerous home-cages
can be simultaneously monitored by the software infrastructure,
which generates a clear and small set of raw data without the
need of extensive data processing. In general, it can also be
easily implemented in automated home-cage monitoring systems
(HCMS) to combine behavioral with physiological and metabolic
studies (e.g., CLAMS, Columbus Instruments International;
Promethion, Sable Systems International; PhenoMaster, TSE
Systems). However, a sophisticated behavioral analysis based
solely on beam interruptions is difficult due to its limited
capability to recognize the rich repertoire of behavioral features
that rodents display. Furthermore, to discover the full potential
of these beam frames, animals need to be housed individually,
otherwise only average group activity can be measured with
underestimated activity levels due to blocked beams by the other
animals in the same cage. This limits its application for social
interaction and behavior studies. Potential occlusion/breaking of
the beams by nesting, cage enrichment, or bedding material is
another common constraint.

There are several commercially available IR-beam break
systems suitable for home-cage application, which mainly differ
in accuracy and size (Table 2).

Force Plates
Automated recognition of rodents’ (mice, rats) behavior can
also be done by turning mechanical force into electrical
signals. Specially designed force plates rest underneath the
home-cage and are equipped with sensors that translate the
animal’s movement force into electrical signals (Schlingmann
et al., 1998; Van de Weerd et al., 2001). Several behavioral
attributes can be classified based on their own unique electrical
signature characteristics which each of the behavioral traits are
generating. The force plates generally enable the quantification
of basic behavioral patterns similar to the IR technology,
such as resting, rearing, climbing and general locomotion.
They also identify the exact position (X,Y) of the animal
with high spatiotemporal resolution, providing detailed tracking
information, such as trajectories, distance traveled, velocity and
position distribution. Probably the most sophisticated force
plate system is the Laboratory Animal Behavior Observation
Registration and Analysis System (LABORAS; Metris b.v.,
Hoofddorp, Netherlands). It is a specially designed triangular
shaped measurement platform (Figure 4). It showed similar
results regarding acute locomotor activity compared to IR beam
technology (Lynch et al., 2011). Importantly, since the platform
recognizes muscle contractions of different body parts (jaws,
head, paws, limbs, etc.) more subtle behavioral patterns can
also be analyzed (grooming, scratching, seizures, freezing, head
shakes, startle response, etc.) which makes this system therefore
superior to the IR beam break technology in terms of behavioral
profiling. Still, a full sophisticated behavioral analysis is difficult
due to the limited discrimination of behavioral patterns in terms
of their electrical signatures.

Like the IR beam method, electrical capacitive and RFID
technology, force plates can be run fully automated (without
human interference/handling), are easily and long-term
applicable in mice and rats, non-invasive, independent of
lighting conditions, and require relative low handling time. The
hardware and software infrastructure enables real-time analysis
of multiple platforms at the same time, each generating a small
set of raw data. It relies on single housing environments to
measure the full set of behavioral patterns thereby limiting its
use for social housing conditions. Interestingly, since some social
behavioral attributes also generate unique electrical signals, such
as for mating or fighting, force plates, in theory, do enable the
study of some basic social behavior in pair of rodents. However,
force plates are unable to discriminate between conspecifics
making it impracticable to attribute these social traits to the
individual level.

While the IR beam technology and the force plates generally
share many commonalities (similar behavioral parameters)
and limitations (most importantly single housing), the
LABORAS system identifies a broader range of behavioral
patterns, can be used interchangeably for mice and rats, and
makes this system thus more versatile in its application.
This comes with the limitation of tracking the animal
accurately only in a two-dimensional plane (compared
to IR frames) as well as of occupying a larger floor space
(footprint) due to the wider and more complex construction
of the platform.
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TABLE 2 | Frequently applied commercially available IR beam frames for home-cage application.

Company Product name Strengths Limitations Website References

AfaSci SmartCage (basic
platform module)

Small footprint1, extendable
with modular add-ons

Animal observation only from top
view, resolution unknown

https://www.afasci.com/index.php/
instruments/smartcage

Khroyan et al., 2012

Columbus
Instruments

Animal Activity
Meter: Opto-M4

High flexibility to re-arrange
sensors, in-house HCMS

component

Large footprint1, large spatial
resolution (3.12 mm for mice,

6.4 mm for rats), medium temporal
resolution (160 Hz)

https://www.colinst.com/products/
animal-activity-meter-opto-m

Dorigatti et al., 2021

Kinder
Scientific

SmartFrame Extendable with additional
modules, fits several different

home-cages

Large footprint1, no HCMS
component, resolution unknown

http://kinderscientific.com/products/
motor-activity-2/cage-rack-2/

Ingram et al., 2013

Omnitech Custom Home
Cage Frame

Interchangeable size for
mice/rats, small footprint1,

max. 60 cages per PC

Max. 2 sensor-axis per cage,
resolution unknown, limited

scientific validation

https://omnitech-usa.com/product/
home-cage/

Reitz et al., 2021

Sable
Systems

BXYZ Beam Break
Activity Monitor

In-house HCMS component,
high spatial (2.5 mm) and

temporal (450 Hz) resolution,
small footprint1

− https://www.sablesys.com/products/
promethion-core-line/promethion-

core-cages-and-monitoring/

Woodie et al., 2020

San Diego
Instruments

Photobeam Activity
System

Small footprint1 One size, no HCMS component,
low spatial resolution (1.2 cm)

https://sandiegoinstruments.com/
product/pas-homecage/

Liu et al., 2021

TSE
Systems

ActiMot3 In-house HCMS component, 3
standard sizes (incl.

interchangeable for mice/rats),
extra high spatial resolution
(1.25 mm), small footprint1

Medium temporal resolution
(100 Hz)

https://www.tse-systems.com/service/
actimot3-locomotor-activity/

Neess et al., 2021

1Footprint refers to how much space the system occupies in addition to the home-cage.
Small: Marginal impact on overall space; large: Significant increase of footprint relative to home-cage.

Currently, there are only a few commercial systems available
suitable for home-cage application or already incorporated into a
HCMS. These systems mainly differ in the spectrum of behavioral
pattern recognition (Table 3).

Others have integrated piezoelectric sensors into force plates
which are able to detect micromovements (Flores et al., 2007).

FIGURE 4 | The measurement platform LABORAS turns animal’s movement
into electrical signals to analyze an extended set of rodent behavioral patterns
(Metris b.v.).

These sensors are generally used to distinguish between sleep and
wake phases, serve as an alternative to invasive techniques such as
electroencephalograms and electromyograms, and are frequently
applied in sleep research (Signal Solutions LLC, Lexington,
United States). Piezoelectric sensor technology has introduced
new opportunities in behavioral phenotyping and thus gained
popularity in the field of animal research. Internal movements
such as individual heart beats or breathing cycles are hardly
detectable by other phenotyping techniques (including IR-beams
or video recording) and the use of piezoelectric sensor plates
can thus contribute to establish a more sophisticated rodent
ethogram (Carreño-Muñoz et al., 2022).

Video Tracking
Advances in computational and imaging performance and
efficiency have led to new image-based video tracking systems
in the field of animal ecology [reviewed by Dell et al.
(2014)], which replaces the human observer by a computer
to monitor and assess animals’ behavior. Conventionally, these
systems consist of hardware and software equipment which
undertake a three-way process (Dell et al., 2014). First, the
hardware component (one or multiple cameras) digitally records
the animals in a given environment and produces a consecutive
set of image sequences. Second, the software uses computer
vision algorithms to highlight the individual animal from the
static background (usually by background subtraction) on each
image and propagates its position and thus trajectory across the
whole set of images. In group-housed settings, the software must
additionally distinguish and separate each individuum from the
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TABLE 3 | Available force plates for home-cage applications.

Company Product name Strengths Limitations Website References

AfaSci SmartCage
(Vibration sensor

module)

Small footprint1, extendable
with modular add-ons

No stand-alone module, few
behavioral parameters (increasable
when combined with IR module)

https://www.afasci.com/index.php/
instruments/smartcage

Khroyan et al.,
2012; Xie et al.,

2012

Bioseb Activmeter Small footprint1, combination
with HCMS, rearing/climbing

detection optional (mice),
numerous behavioral

parameters

Few behavioral parameters https://www.bioseb.com/en/
activity-motor-control-coordination/

898-activmeter.html

Morgan et al., 2018

Metris LABORAS Rich behavioral pattern
recognition

Large footprint1 https://www.metris.nl/laboras/
laboras.htm

Quinn et al., 2003;
Castagne et al.,

2012

Sable Systems ADX- Activity
Detector

Small footprint1, combination
with in-house HCMS

Limited behavioral parameters
(focus on total activity)

https://www.sablesys.com/
products/classic-line/adx-classic-

activity-detector/

Fiedler and Careau,
2021

Home Cage Activity
Counter

Adaptable and modifiable
do-it-yourself (DIY) system

Limited behavioral parameters
(focus on total activity), large

footprint1

– Ganea et al., 2007

1Footprint refers to how much space the system occupies in addition to the home-cage.
Small: Marginal impact on overall space; large: Significant increase of footprint relative to home-cage.

conspecific (usually creating a pixel blob for each individual)
(Giancardo et al., 2013). Individual differences in natural
appearance (color, fur pattern, size, contour) serve the software
to easier discriminate between individual animals and maintain
their identity throughout the video (Hong et al., 2015). Third,
the software classifies and quantifies behavioral events based
on pre-defined mathematical assumptions established by human
expertise (Giancardo et al., 2013). In general, video tracking
systems ensure long-term, non-invasive, and real-time tracking
of single and multiple animals (Jhuang et al., 2010; Giancardo
et al., 2013). By combining optical with IR video, 24/7 tracking is
maintained. Video tracking systems enable the analysis of a wide
set of behavioral traits with high spatiotemporal resolution and
perform well in individual housed rodents (Jhuang et al., 2010).
However, two conditions affect the performance and results
of such video tracking systems: The complexity of the cage
environment and the number of individuals therein, since both
result in animals’ (temporal) occlusion from video camera
capture. Such occlusion events or animal crossings challenge
the software algorithm to preserve the correct animal identity
once the individual animal is in sight again or has been
separated from its conspecific (Yamanaka and Takeuchi, 2018).
This commonly leads to miss identification and/or loss of track,
which often propagates throughout the remaining sequence if no
appropriate measures are undertaken, i.e., automatic or manual
correction (de Chaumont et al., 2012; Giancardo et al., 2013;
Yamanaka and Takeuchi, 2018). Marking the animal’s fur with
(fluorescent) hair dye or bleach addresses this specific problem
(Ohayon et al., 2013; Shemesh et al., 2013), but introduces
other drawbacks. Applying artificial markers is time-consuming
(needs re-application after some time), requires an invasive
procedure (bleaching is done in unconscious animals), and
might affect animals’ (social) behavior (Lacey et al., 2007; Dennis
et al., 2008). Therefore, different marker-less approaches have
been developed aiming to robustly identify and track multiple

individuals, such as 3D imaging via multiple camera views
(Matsumoto et al., 2013), using differences in animals’ body
shape/contour (Giancardo et al., 2013), size, color (Noldus et al.,
2001; Ohayon et al., 2013; Hong et al., 2015), heat signature
(Giancardo et al., 2013), or individual “fingerprints” (Perez-
Escudero et al., 2014). Still, accurate and robust maintenance of
individual identities within a group remains a major challenge
of automated video tracking systems, especially if inbred mice
are used which are (almost) indistinguishable by size, color,
fur pattern, and likely body shape/contour. The increasing
interest in multiple animal tracking with correct identification
preservation associated with group-housed conditions has led
to a very large number of different video tracking systems
and algorithms being available or under development, for a
large variety of species and experimental environments [freely
available animal tracking software was recently reviewed by
Panadeiro et al. (2021)]. Several video tracking systems have
already been successfully applied in socially housed rodents,
either in an observation cage or open-field arena, usually
lacking the supply of drink, feed, and shelter. Examples are
idTracker (Perez-Escudero et al., 2014), idtracker.ai (Romero-
Ferrero et al., 2019), ToxTrac/ToxId (Rodriguez et al., 2017,
2018), MiceProfiler (de Chaumont et al., 2012), Multi-Animal
Tracker (Itskovits et al., 2017) and 3DTracker (Matsumoto
et al., 2013, 2017). In principle, these systems are suitable
for home-cage or social arena applications but require further
scientific validation.

Currently, there are only a few systems available or described
which are specifically designed for or already validated in rodents
socially housed in the home-cage or in a social arena as defined
by this review (Table 4). Each of them comes with the strength
of analyzing a wide variety of behavioral traits on the individual
level within a social context, but also with several different
limitations, including, but not limited to, incorrect or loss of
identification through animal crossing or visual obstruction
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(which requires human intervention), low spatial accuracy,
limited scientific validation data, facilitating only pairs or small
groups, applying artificial markers, or limited data on (social)
behavioral parameters.

Recently, artificial intelligence has become very prominent
on different aspects of computer vision technology and enabled
such systems to learn from existing data (Rousseau et al.,
2000). Nowadays, most of the computer vision systems have
incorporated at least some elements of artificial intelligence,
starting from animal detection toward the automated analysis
of behavioral traits. In general, machine learning approaches are
applied in a supervised fashion, meaning that the existing training
video sequences were first labeled and then classified into specific
behavioral traits by human experts. This required the systems
to be programmed by humans in order to set robust rules for
identifying specific behavioral attributes.

A new promising approach within the field of machine
learning is inspired by human joint localization (Toshev and
Szegedy, 2014), which enables the tracking of joints or body
parts and thereby measures different postures. This approach
is rapidly finding its way into laboratory settings using the
tracking of multiple body parts to establish postures. Indeed,
posture estimation algorithms have been developed tailoring
the “human approach” to laboratory animals. For example,
DeepLabCut (Mathis et al., 2018; Nath et al., 2019) and LEAP
Estimates Animal Pose (LEAP) (Pereira et al., 2019) are based
on algorithms previously applied in humans (Insafutdinov et al.,
2016). In general, these algorithms use a three-step process: First,
specific body parts (joints or key points) of interest are manually
labeled on selected video images. Second, the pose estimation
model is trained to recognize the corresponding body parts.
Third, the trained algorithm is applied to the full video sequence
for automatic prediction of body part location and thus pose
estimation (Figure 5).

In contrast to conventional machine learning technology
which often focusses on tracking only the centroid of each
animal, these new algorithms provide tracking of multiple
body parts. Therefore, the main advantage of these body-part-
algorithms is the analysis of a tremendous variety of behavioral
patterns, postures and orientation in various animals based on
a limited training period. No visual marking of the animal is
required, it is non-invasive, freely available, open-source and
thus gives the researcher the freedom to adjust the algorithm
to the particular needs. Furthermore, analyzing the raw data
set once the experiment (or video) is completed, offers post hoc
analysis of specific scientific questions. The commonly observed
speed-accuracy trade-off generally experienced in the field of
machine learning, has been solved recently (Graving et al.,
2019). A drawback may be that specific postures (based on
user-defined body parts) need to be predefined before applying
the algorithm, which may induce laboratory or investigator
specific variation. Also, training the algorithm requires manual
annotation, which is, even on a small set of video images,
labor intensive. The need to train the algorithm on individual
animals often prevents real-time analysis. Interestingly, recent
developments in the field provide real-time approaches based
on already trained data sets (Kane et al., 2020). LEAP requires

the least amount of training images and—like DeepLabCut—
has currently been optimized for group-housed conditions
in order to identify individual animals in a social group,
resulting in Social LEAP Estimates Animal Pose (SLEAP) (Pereira
et al., 2020; Lauer et al., 2021). However, analysis of multiple
animals is prone to visual occlusion and can be very laborious
(requires annotation of every individual per image), especially
when analysis of complex postures is desired. Nevertheless,
DeepLabCut has been shown to outperform commercially
available systems regarding animal tracking and is able to
compete with human scoring of relevant behavioral patterns
(Sturman et al., 2020).

In summary, the use of such algorithms is representative
of a new generation of video tracking systems within the
rapidly evolving field of behavioral animal research. Current
algorithm development focusses on pose-estimation and body
part classification of unmarked animals enabling the analysis
of various predefined body postures and behavioral patterns.
On the other hand, the open-source, publicly accessible
software/algorithm needs to be combined with (commercially
available) hardware infrastructure to conduct video tracking. For
each experiment, manual labeling of predefined images is still
required which can be prone to subjectivity. It can also be a
laborious process, especially during social experiments.

RFID-Assisted Video Tracking
The biggest challenge of applying video tracking technology is
maintaining the correct identification and thus position and
direction of multiple interacting animals. To solve this problem
to the best, the strength of the RFID technology (consistent
identification of almost unlimited numbers of animals even in
diverse complex living environments) has been combined with
the strengths of video tracking (high spatiotemporal analysis
of complex (social) behavioral events) resulting in a synergistic
hybrid tracking technology (Weissbrod et al., 2013; Dandan and
Lin, 2016).

The Home Cage Analyser (Actual Analytics Ltd., Edinburgh,
United Kingdom) (Figure 6; Bains et al., 2016; Redfern
et al., 2017) and the RFID-Assisted SocialScan (CleverSys Inc.,
Reston, United States) (Peleh et al., 2019) are commercially
available systems that integrate RFID tracking with 2D IR
video capturing. By synchronizing the RFID readings with
the video tracking, possible identity swaps are automatically
corrected by the software without human intervention. The
Live Mouse Tracker is similar to the aforementioned systems
but uses a depth-sensing camera for three-dimensional activity
and behavior monitoring of multiple mice in a social arena
(de Chaumont et al., 2019). Its main advantage is a very rich
repertoire of 35 behavioral patterns that can be recognized—
again, without the need of human intervention. The analysis
ranges from simple locomotor activity of individual mice toward
more sophisticated social behavior between multiple (n = 4)
conspecifics. Furthermore, it is a comprehensive, do-it-yourself,
and end-to-end solution based on open-source frameworks.
At present, the Live Mouse Tracker sets a new standard in
multiple animal phenotyping, since it offers an open-source end-
to-end solution, is easy to apply for an ordinary researcher,
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TABLE 4 | Overview of image-based video-tracking systems to track and analyze behavioral events in multiple rodents simultaneously in a single home-cage/arena.

Company/
Institution/
University

Name Type1 Availability Limitations Behavioral data
output2

Max.
animals3

Identification of
unmarked animals

Website References

California Institute
of Technology

Motr Algorithm Open source Invasive, manual
correction required,
limited behavioral

pattern recognition

Social 6 No (bleaching) https://motr.janelia.org/ Ohayon et al.,
2013

California Institute
of Technology

– All-in-one DIY Different fur color
required

Social 2 Yes (different fur color
required)

– Hong et al.,
2015

CleverSys GroupHousedScan Software4 Commercial Not validated yet Individual + social –/4 – http://cleversysinc.com/CleverSysInc/
csi_products/grouphousedscan/

–

Hiroshima
University

UMATracker Software Open Source Manual correction
required after identity

swap

Social 4 Yes https://ymnk13.github.io/UMATracker/ Yamanaka and
Takeuchi, 2018

Loligo Systems LoliTrack 5 Software Commercial Not validated in rodents
yet

Individual + limited
social

Yes https://loligosystems.com/lolitrack-
version-5-video-tracking-and-

behavior-analysis-software

–

National Institute of
Health

SCORHE All-in-one Open source
(software)

Individual identities not
maintained, mice only

Individual (grouped) 25 Yes https://spis.cit.nih.gov/node/30 Salem et al.,
2015

Noldus EthoVision/
PhenoTyper

All-in-one Commercial Marking required Individual + social 5/16 No (color marking) https://www.noldus.com/ethovision-xt/
https://www.noldus.com/phenotyper

Noldus et al.,
2001; de Visser

et al., 2006

University of
California, San
Diego

Smart Vivarium Algorithm DIY Poor identity
maintenance after

occlusion

Individual 35 Yes http://smartvivarium.calit2.net/ Branson and
Belongie, 2005

Weizmann Institute
of Science

– All-in-one DIY Color marking Social 4/ > 10 No (color marking) – Shemesh et al.,
2013

1All-in-one: one apparatus consisting of complete hardware and software infrastructure without the need of additional equipment to be purchased.
–Software: software package with a graphical user interface.
–Algorithm: source codes which can be implemented in software solutions or require external programming and analyzing platforms, such as MATLAB or Icy.
2 Individual: measurement of individual behavioral traits.
–Social: measurement of social interaction.
3Maximum number of rodents which has been scientifically validated in the mentioned reference(s)/officially communicated by the developer of the system.
4Associated hardware equipment available from same vendor.
The full power of the system (tracking + behavioral phenotyping) requires solitary housing.
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FIGURE 5 | Machine learning approach of pose estimation (von Ziegler et al., 2021).

FIGURE 6 | The Home Cage Analyser (Actual Analytics) combines RFID
technology with video recording to study behavioral traits in socially interacting
rodents (Bains et al., 2016).

and—importantly—enables the analysis of a considerable set of
behavioral patterns supported by machine learning, however,
currently in mice only.

In conclusion, RFID-assisted video tracking systems combine
the strengths of video tracking and RFID technology to
create a synergistic effect. These systems overcome major
limitations of the previous listed technologies making it
possible to continuously track many individual rodents including

monitoring and quantifying individual as well as social
behavioral traits in a complex environment. Since these systems
have become available to the market rather recently, further
developments on hardware and especially software solutions
(machine learning) will certainly enhance the performance and
wider applications of these hybrid tracking systems (Table 5).

SUMMARY

There are a fair number of different systems available for
behavioral phenotyping of rodents living in home-cages or
social arenas (Figure 7 and Table 6). These range from
targeting voluntary locomotor activity measurements toward
more advanced methods which expand the analysis of the
behavioral repertoire beyond basic locomotor activity metrics.
These methods often comprise a trade-off between group housing
and extended behavioral pattern recognition. A well-established
and prominent method of behavior analysis is the use of
video tracking systems, especially in combination with recent
advances in machine learning technology. Unfortunately, until
now only a minority of such systems have been validated
in a social context and in meaningful and heterogeneous
environments, such as the home-cage, consisting of appropriate
refinement material. The latter challenges the performance of
dedicated tracking and behavioral phenotyping systems. Latest
developments in multiple pose estimation hold great promise

TABLE 5 | Available RFID-assisted video tracking technology.

Company/
Institute

Product name Environment Characteristics Website References

Actual Analytics Home Cage
Analyser

Home Cage Side-view camera (prone to occlusion),
all-in-one apparatus, mice and rats,

individual and social parameters, relatively
small footprint1

https://www.actualanalytics.com/products Bains et al., 2016;
Redfern et al.,
2017; Hobson

et al., 2020

Clever Sys Inc. RFID-Assisted
SocialScan

Social arena Top-view camera, all-in-one apparatus,
mice and rats, rodents need to be

distinguishable by color/size, Focus on
social behavior parameters, small footprint1

http://cleversysinc.com/CleverSysInc/rfid-
assisted-socialscan/

Peleh et al., 2019;
Peleh et al., 2020

Institute
Pasteur

Live Mouse Tracker Social arena Top-view camera, DIY, mice only, individual
and rich social behavioral parameters, small

footprint1, end user can add new
behavioral parameters of interest

https://livemousetracker.org/ Ey et al., 2018; de
Chaumont et al.,

2019

1Footprint refers to how much space the system occupies in addition to the home-cage/social arena.
Small: Marginal impact on overall space; large: Significant increase of footprint relative to cage environment.
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FIGURE 7 | Overview of different technologies to measure locomotor activity
and advanced behavioral traits in individually and group-housed rodents.

in further enhancing the performance of such video tracking
systems. Importantly, a common technical limitation of video-
tracking systems is the correct identification preservation, which
is compromised by animal crossing or camera occlusion.
Prevention requires human intervention and thus prohibits
large-scale, high-throughput studies. Combining the strengths of
video tracking and RFID technology opens the door to a much
more complex analysis of locomotor activity and behavioral
traits of socially interacting animals. At the same time, it
addresses the identification preservation challenge. Therefore,
such RFID-assisted video tracking solutions seem to be the
most comprehensive systems currently available and hold great
promise for further development.

FUTURE PERSPECTIVE

Recent developments in computer vision have resulted in
several freely available open-source software and algorithm

solutions that can be shared among the scientific community
for user-defined application and further development. The use
and development of open-source software is encouraged by
the European Commission to foster innovation by sharing
knowledge and expertise (European Commission, 2020). It also
allows insight into how data are processed by the software
and consequences of changes can be better understood. The
ambition to improve animal tracking is further enhanced by
current trends in the field of machine learning, which is rapidly
gaining ground in animal research (von Ziegler et al., 2021).
This development will continue to increase the supply of new
software solutions freely available for the research community
(Nilsson et al., 2020; Hsu and Yttri, 2021), providing alternatives
to costly and commercially available tracking software packages.
Importantly, machine learning algorithms have already proven
to outperform commercially available systems regarding animal
tracking, highlighting their promising capability for future
applications (Sturman et al., 2020).

Most of these machine learning algorithms still require
individually housed animals (Wiltschko et al., 2015; Geuther
et al., 2019; Pennington et al., 2019). DeepLabCut and SLEAP
act as forerunner to more complex situations, inspiring others
to follow (Mathis et al., 2018; Pereira et al., 2020). Despite
their reliance on training the algorithm by human annotations,
machine learning algorithms have drastically reduced the need
and time of human labeling compared to manual scoring (either
real-time or post video tracking) (Jhuang et al., 2010; van Dam
et al., 2013). Once trained by an individual or a group of experts,
the algorithm replicates the human input on any new data
sets. Thereby the inter-observer variability is diminished within
and across laboratories, which contributes to objectivity and
consistency and thus reproducibility and replicability of scientific
data (Levitis et al., 2009). At present, human annotations
set the benchmark for such automated systems to be able
to recognize, classify and thus quantify specific behavioral
events. To overcome the human factor and to push machine
learning into a new direction, there are recent ambitious efforts

TABLE 6 | Overview of strengths and limitations of current technology used to measure rodents’ locomotor activity and more advanced behavioral aspects
in the home-cage.

Technology Housing Advanced
behavioral traits1

Strengths Limitation

Electrical
capacitance

Individual2 No High spatial accuracy, small (data)
footprint

Single housing, no behavioral parameters (only
locomotor activity), no stand-alone method, mice only

RFID Individual/Group No Social housing, reliable animal
identification and tracking even with

high animal density, small (data)
footprint

Low spatial resolution, no behavioral parameters (only
locomotor activity), possible data loss due to animal

interferences

Infrared beam Individual2 Few High spatiotemporal accuracy, small
(data) footprint

Single housing, few behavioral parameters

Force plate Individual2 Few Small (data) footprint Single housing, few behavioral parameters

Video tracking Individual/Group Many Social housing, rich (social) behavioral
pattern recognition

Frequent identity swaps require corrections, high
processing power, large data footprint

RFID-assisted
video tracking

Individual/Group Many Social housing, rich (social) behavioral
pattern recognition, large animal density

High processing power, large (data) footprint

1Behavioral traits which go beyond basic locomotor activity metrics.
2Group-housing possible, but would limit the full scope of the technology.
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to optimize unsupervised machine learning methods (Todd et al.,
2017). Such algorithms ensure behavioral classification in an
unsupervised manner which makes the need of annotation of
several example images by a human expert redundant. One
such promising new algorithm is AlphaTracker. It achieves
behavioral classification of individual as well as social behavioral
motifs of identical and unmarked mice with high accuracy
aiming to overcome the commonly identification preservation
challenge in socially housed animals (Chen et al., 2020). The
wide application of those type of algorithms might revolutionize
our current understanding of (rodent) animal behavior, since
very subtle and unexpected behavioral events (“syllables”) can be
analyzed and studied in more detail, which are unrecognizable
for the human eye (Wiltschko et al., 2015; Markowitz et al.,
2018). Such potential new behavioral traits need to be classified
in a way which reaches consensus among the behavioral
scientific community supporting the interpretation as well as the
reproducibility and replicability of research data. Interestingly,
unsupervised algorithms are currently under development,
tailored to combine behavioral analysis and electrophysiological
recordings. The algorithm’s properties are fine-tuned to meet
the specific requirements (i.e., high temporal resolution) for
analyzing electrophysiological characteristics during behavioral
studies (Hsu and Yttri, 2021).

One of the drawbacks associated with the general use
of open-source machine learning technology is the necessity
for the user to have at least some basic, if not substantial,
computational expertise. This can serve as a high entry barrier
for research laboratories to implement and further develop such
methods, especially for non-behavioral research groups aiming

for interdisciplinary breakthroughs. Associated video equipment
is often less flexible to be incorporated into HCMS. These issues
have already been addressed by some developers and need to
be taken into account to make an innovative technology user-
friendly and thus widely applicable in practice (Mathis et al.,
2018; Singh et al., 2019; Nilsson et al., 2020). Commercially
available all-in-one solutions come with a higher financial burden
but are generally more user-friendly and thus lower such entry
barrier significantly. They also include customer support to
assist laboratories to conduct their research in a technologically
sound way. In the end, the regular user will decide whether
to rely on more financially demanding, but sophisticated and
technically mature all-in-one solutions or to step toward more
flexible, but computational resource-depending open-software
and -hardware applications.
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Puścian, A., Łęski, S., Kasprowicz, G., Winiarski, M., Borowska, J., Nikolaev, T.,
et al. (2016). Eco-HAB as a fully automated and ecologically relevant assessment
of social impairments in mouse models of autism. Elife 5:e19532. doi: 10.7554/
eLife.19532

Quinn, L. P., Stean, T. O., Trail, B., Duxon, M. S., Stratton, S. C., Billinton, A., et al.
(2003). LABORASTM: initial pharmacological validation of a system allowing
continuous monitoring of laboratory rodent behaviour. J. Neurosci. Methods
130, 83–92. doi: 10.1016/S0165-0270(03)00227-9

Redfern, W. S., Tse, K., Grant, C., Keerie, A., Simpson, D. J., Pedersen, J. C.,
et al. (2017). Automated recording of home cage activity and temperature of
individual rats housed in social groups: The Rodent Big Brother project. PLoS
One 12:e0181068. doi: 10.1371/journal.pone.0181068

Reitz, S. L., Wasilczuk, A. Z., Beh, G. H., Proekt, A., and Kelz, M. B. (2021).
Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over
Sleep and Volatile Anesthetic-Induced Unconsciousness. Curr. Biol. 31, 394–
405e394. doi: 10.1016/j.cub.2020.10.050

Rodriguez, A., Zhang, H., Klaminder, J., Brodin, T., and Andersson, M. (2017).
ToxId: an efficient algorithm to solve occlusions when tracking multiple
animals. Sci. Rep. 7, 1–8. doi: 10.1038/srep42201

Rodriguez, A., Zhang, H., Klaminder, J., Brodin, T., Andersson, P. L.,
and Andersson, M. (2018). ToxTrac: a fast and robust software for
tracking organisms. Methods Ecol. Evol. 9, 460–464. doi: 10.1111/2041-210X.
12874

Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J., and de Polavieja,
G. G. (2019). Idtracker. ai: tracking all individuals in small or large collectives
of unmarked animals. Nat. Methods 16, 179–182. doi: 10.1038/s41592-018-0
295-5

Rousseau, J. B., Van Lochem, P. B., Gispen, W. H., and Spruijt, B. M. (2000).
Classification of rat behavior with an image-processing method and a neural
network. Behav. Res. Methods Instrum. Comput. 32, 63–71. doi: 10.3758/
bf03200789

Salem, G. H., Dennis, J. U., Krynitsky, J., Garmendia-Cedillos, M., Swaroop, K.,
Malley, J. D., et al. (2015). SCORHE: a novel and practical approach to video
monitoring of laboratory mice housed in vivarium cage racks. Behav. Res.
Methods 47, 235–250. doi: 10.3758/s13428-014-0451-5

Schlingmann, F., Van de Weerd, H., Baumans, V., Remie, R., and Van Zutphen, L.
(1998). A balance device for the analysis of behavioural patterns of the mouse.
Anim. Wel. 7, 177–188.

Shemesh, Y., Sztainberg, Y., Forkosh, O., Shlapobersky, T., Chen, A., and
Schneidman, E. (2013). High-order social interactions in groups of mice. Elife
2:e00759. doi: 10.7554/eLife.00759

Shenk, J., Lohkamp, K. J., Wiesmann, M., and Kiliaan, A. J. (2020). Automated
Analysis of Stroke Mouse Trajectory Data With Traja. Front. Neurosci. 14:518.
doi: 10.3389/fnins.2020.00518

Singh, S., Bermudez-Contreras, E., Nazari, M., Sutherland, R. J., and Mohajerani,
M. H. (2019). Low-cost solution for rodent home-cage behaviour monitoring.
PLoS One 14:e0220751. doi: 10.1371/journal.pone.0220751

Sturman, O., von Ziegler, L., Schläppi, C., Akyol, F., Privitera, M., Slominski,
D., et al. (2020). Deep learning-based behavioral analysis reaches
human accuracy and is capable of outperforming commercial solutions.
Neuropsychopharmacology 45, 1942–1952. doi: 10.1038/s41386-020-0776-y

Todd, J. G., Kain, J. S., and de Bivort, B. L. (2017). Systematic exploration of
unsupervised methods for mapping behavior. Phys. Biol. 14:015002. doi: 10.
1088/1478-3975/14/1/015002

Torquet, N., Marti, F., Campart, C., Tolu, S., Nguyen, C., Oberto, V., et al. (2018).
Social interactions impact on the dopaminergic system and drive individuality.
Nat. Commun. 9, 1–11. doi: 10.1038/s41467-018-05526-5

Toshev, A., and Szegedy, C. (2014). “Deeppose: Human pose estimation via deep
neural networks,” in Proceedings of the IEEE conference on computer vision and

Frontiers in Behavioral Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 877323

https://doi.org/10.1016/j.vascn.2011.03.003
https://doi.org/10.1016/j.vascn.2011.03.003
https://doi.org/10.1109/EMBC.2015.7319501s
https://doi.org/10.1016/j.cell.2018.04.019
https://doi.org/10.1016/j.cell.2018.04.019
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1007/978-1-4939-6490-1_5
https://doi.org/10.1371/journal.pone.0078460
https://doi.org/10.1038/s41467-018-06057-9
https://doi.org/10.1002/mnfr.201500775
https://doi.org/10.1038/s41596-019-0176-0
https://doi.org/10.1016/j.molmet.2020.101144
https://doi.org/10.1101/2020.04.19.049452
https://doi.org/10.3758/bf03195394
https://doi.org/10.1016/j.jneumeth.2013.05.013
https://doi.org/10.1016/j.jneumeth.2013.05.013
https://doi.org/10.1038/s41684-021-00811-1
https://doi.org/10.1016/j.jneumeth.2019.108323
https://doi.org/10.1016/j.neuroscience.2020.04.045
https://doi.org/10.1016/j.neuroscience.2020.04.045
https://doi.org/10.1038/s41598-019-56408-9
https://doi.org/10.1038/s41598-019-56408-9
https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1101/2020.08.31.276246
https://doi.org/10.1101/2020.08.31.276246
https://doi.org/10.1038/nmeth.2994
https://doi.org/10.1038/nmeth.2994
https://doi.org/10.1371/journal.pone.0211063
https://doi.org/10.1371/journal.pone.0211063
https://doi.org/10.7554/eLife.19532
https://doi.org/10.7554/eLife.19532
https://doi.org/10.1016/S0165-0270(03)00227-9
https://doi.org/10.1371/journal.pone.0181068
https://doi.org/10.1016/j.cub.2020.10.050
https://doi.org/10.1038/srep42201
https://doi.org/10.1111/2041-210X.12874
https://doi.org/10.1111/2041-210X.12874
https://doi.org/10.1038/s41592-018-0295-5
https://doi.org/10.1038/s41592-018-0295-5
https://doi.org/10.3758/bf03200789
https://doi.org/10.3758/bf03200789
https://doi.org/10.3758/s13428-014-0451-5
https://doi.org/10.7554/eLife.00759
https://doi.org/10.3389/fnins.2020.00518
https://doi.org/10.1371/journal.pone.0220751
https://doi.org/10.1038/s41386-020-0776-y
https://doi.org/10.1088/1478-3975/14/1/015002
https://doi.org/10.1088/1478-3975/14/1/015002
https://doi.org/10.1038/s41467-018-05526-5
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-877323 June 16, 2022 Time: 7:42 # 15

Klein et al. Measuring Rodent Behavior in Home-Cage

pattern recognition (Columbus, OH: IEEE), 1653–1660. doi: 10.1109/CVPR.
2014.214

van Dam, E. A., van der Harst, J. E., ter Braak, C. J., Tegelenbosch, R. A., Spruijt,
B. M., and Noldus, L. P. (2013). An automated system for the recognition of
various specific rat behaviours. J. Neurosci. Methods 218, 214–224. doi: 10.1016/
j.jneumeth.2013.05.012

Van de Weerd, H. A., Bulthuis, R. J., Bergman, A. F., Schlingmann, F., Tolboom,
J., Van Loo, P. L., et al. (2001). Validation of a new system for the automatic
registration of behaviour in mice and rats. Behav. Process. 53, 11–20. doi: 10.
1016/s0376-6357(00)00135-2

Voikar, V., and Gaburro, S. (2020). Three pillars of automated home-cage
phenotyping of mice: novel findings, refinement, and reproducibility based on
literature and experience. Front. Behav. Neurosci. 2020:193. doi: 10.3389/fnbeh.
2020.575434

Voikar, V., Krackow, S., Lipp, H.-P., Rau, A., Colacicco, G., and Wolfer,
D. P. (2018). Automated dissection of permanent effects of hippocampal or
prefrontal lesions on performance at spatial, working memory and circadian
timing tasks of C57BL/6 mice in IntelliCage. Behav. Brain Res. 352, 8–22.
doi: 10.1016/j.bbr.2017.08.048

von Ziegler, L., Sturman, O., and Bohacek, J. (2021). Big behavior:
challenges and opportunities in a new era of deep behavior profiling.
Neuropsychopharmacology 46, 33–44. doi: 10.1038/s41386-020-0751-7

Weissbrod, A., Shapiro, A., Vasserman, G., Edry, L., Dayan, M., Yitzhaky, A., et al.
(2013). Automated long-term tracking and social behavioural phenotyping of
animal colonies within a semi-natural environment. Nat. Commun. 4, 1–10.
doi: 10.1038/ncomms3018

Wiltschko, A. B., Johnson, M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski,
S. L., et al. (2015). Mapping Sub-Second Structure in Mouse Behavior. Neuron
88, 1121–1135. doi: 10.1016/j.neuron.2015.11.031

Winn, C. B., Hwang, S.-K., Morin, J., Bluette, C. T., Manickam, B., Jiang, Z. K., et al.
(2021). Automated monitoring of respiratory rate as a novel humane endpoint:
a refinement in mouse metastatic lung cancer models. PLoS One 16:e0257694.
doi: 10.1371/journal.pone.0257694

Woodie, L. N., Johnson, R. M., Ahmed, B., Fowler, S., Haynes, W., Carmona,
B., et al. (2020). Western diet-induced obesity disrupts the diurnal
rhythmicity of hippocampal core clock gene expression in a mouse
model. Brain. Behav. Immun. 88, 815–825. doi: 10.1016/j.bbi.2020.
05.053

Xie, X. S., Zhang, J., Zou, B., Xie, J., Fang, J., Zaveri, N. T., et al. (2012). “Rodent
Behavioral Assessment in the Home Cage Using the SmartCageTM System,”
in Animal Models of Acute Neurological Injuries II, eds J. Chen, X. Xu, Z. Xu,
and J. Zhang (Totowa: Humana Press), 205–222. doi: 10.1007/978-1-61779-57
6-3_13

Yamanaka, O., and Takeuchi, R. (2018). UMATracker: an intuitive image-
based tracking platform. J. Exp. Biol. 221:jeb182469. doi: 10.1242/jeb.18
2469

Conflict of Interest: CK, TB, and DV were employed by TSE Systems GmbH.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Klein, Budiman, Homberg, Verma, Keijer and van Schothorst.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 877323

https://doi.org/10.1109/CVPR.2014.214
https://doi.org/10.1109/CVPR.2014.214
https://doi.org/10.1016/j.jneumeth.2013.05.012
https://doi.org/10.1016/j.jneumeth.2013.05.012
https://doi.org/10.1016/s0376-6357(00)00135-2
https://doi.org/10.1016/s0376-6357(00)00135-2
https://doi.org/10.3389/fnbeh.2020.575434
https://doi.org/10.3389/fnbeh.2020.575434
https://doi.org/10.1016/j.bbr.2017.08.048
https://doi.org/10.1038/s41386-020-0751-7
https://doi.org/10.1038/ncomms3018
https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1371/journal.pone.0257694
https://doi.org/10.1016/j.bbi.2020.05.053
https://doi.org/10.1016/j.bbi.2020.05.053
https://doi.org/10.1007/978-1-61779-576-3_13
https://doi.org/10.1007/978-1-61779-576-3_13
https://doi.org/10.1242/jeb.182469
https://doi.org/10.1242/jeb.182469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Measuring Locomotor Activity and Behavioral Aspects of Rodents Living in the Home-Cage
	Introduction
	Measuring Voluntary Locomotor Activity
	Electrical Capacitance
	Radio-Frequency Identification

	Measuring Behavioral Traits
	Infrared Beams
	Force Plates
	Video Tracking
	RFID-Assisted Video Tracking

	Summary
	Future Perspective
	Author Contributions
	Funding
	References


