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Abstract: Macrophages are activated during the early phase of paracetamol-induced liver injury (PLI).
[18F]GE180 is a radiolabeled ligand that recognizes the macrophage translocator protein (TSPO). In
this study, we evaluated the feasibility of a TSPO-specific radiotracer in a rat model of PLI. A rat model
of liver injury was induced by intraperitoneal administration of paracetamol. [18F]GE180 positron
emission tomography (PET) images were obtained after 24 h. The maximal and mean standardized
uptake values (SUVmax and SUVav) of the liver and serum biomarker levels were examined. The TSPO
expression level was examined using real-time polymerase chain reaction and Western blot analysis.
[18F]GE180 hepatic uptake in the PLI group was significantly higher than that in the control group
(SUVmax p = 0.001; SUVav p = 0.005). Both mRNA and protein TSPO expression levels were higher in
the PLI group. The mRNA expression level of TSPO was significantly correlated with [18F]GE180
hepatic uptake in both groups (SUVmax p = 0.019; SUVav p = 0.007). [18F]GE180 hepatic uptake in
the PLI group showed a significant positive correlation with ALT24 and ALT48 (ALT24 p = 0.016;
ALT48 p = 0.002). [18F]GE180 enabled visualization of PLI through TSPO overexpression. Our results
support the potential utility of hepatic uptake by TSPO-PET as a non-invasive imaging biomarker for
the early phase of PLI.

Keywords: paracetamol-induced liver injury; [18F]GE180; TSPO; positron emission tomography

1. Introduction

Drug-induced liver injury (DLI) is a common adverse event encountered in clinical
practice. Paracetamol, also known as acetaminophen, is one of the most widely used
analgesics in Western societies and overdosing of paracetamol remains the primary cause
of DLI [1,2]. A sterile inflammatory response is known to be the main mechanism of
paracetamol-induced liver injury (PLI). The majority of paracetamol is metabolized by
the cytochrome P450 enzyme to the reactive metabolite N-acetyl-p-benzoquinone imine
(NAPQI), which is highly reactive, but mostly captured by glutathione (GSH). Once the
GSH capturing system is saturated by paracetamol overdosing, subsequent accumulation of
the reactive NAPQI triggers mitochondrial dysfunction and DNA fragmentation, resulting
in hepatocyte necrosis [3]. As necrotic cell death is widespread, fulminant hepatic failure
can occur, requiring liver transplantation and resulting in poor quality of life. Timely
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detection and therapeutic intervention at the early stages of liver injury are required to
inhibit such deterioration.

Serum levels of liver-associated enzymes, such as alanine aminotransferase (ALT) and
aspartate aminotransferase (AST), are currently used biomarkers of liver injury; however,
they have limited value in providing a complete reflection of liver injury [4]. In particular,
discriminating patients who may progress to liver failure remains a clinical challenge [5,6].
Owing to the limitations of currently available noninvasive imaging modalities, tomo-
graphic molecular imaging techniques that specifically target the discrete aspects of liver
function may provide direct and quantitative visualization of cellular processes prior to
irreversible deterioration [7,8].

The liver is a versatile organ with a large endogenous macrophage population, known
as Kupffer cells. Activated macrophages are central effectors of sterile inflammation in the
initial phase of DLI and release proinflammatory cytokines and mediators [3]. Therefore,
targeting and visualization of macrophages in patients with paracetamol-overdosing may
enable early detection of liver injury, as well as prediction of liver failure.

The translocator protein (TSPO), an 18 kDa protein with five transmembrane domains
primarily localized in the outer membrane of mitochondria, is overexpressed in activated
macrophages and can serve as an attractive surrogate marker for Alzheimer’s disease,
multiple sclerosis, Huntington’s disease, various cancers, ischemic brain injury, myocarditis,
DLI and rheumatoid arthritis [7–16]. From this, various TSPO-specific and -selective
radiotracers have been developed to visualize by tracing microglia activation. Among
them, (4S)-N,N-Diethyl-9-[2-[18F]fluoroethyl]-5-methoxy-2,3,4,9-tetrahydro-1H-carbazole-
4-carboxamide ([18F]GE180, Flutriciclamide) is a third-generation radioligand recognizing
TSPO with high affinity and specific binding [16]. The aim of this study, therefore, was to
investigate the feasibility of the TSPO-specific radiotracer [18F]GE180 to visualize PLI using
positron emission tomography (PET) by targeting activated macrophages. The relationships
between [18F]GE180 hepatic uptake by PET imaging and ex vivo TSPO expression and
serum markers of liver injury were analyzed.

2. Materials and Methods

2.1. Synthesis of [18F]GE180

The TSPO-specific targeting radiotracer, [18F]GE180, was synthesized from the me-
sylate precursor ((S)-2-(4-(diethylcarbamoyl)-5-methoxy-3,4-dihydro-1H-carbazol-9(2H)-
yl)ethyl methanesulfonate) by kryptofix-mediated nucleophilic aliphatic substitution with
fluorine-18, as previously described [17] (Figures S1–S3). The isolated product with non-
decay corrected radiochemical yield, calculated from trapped radioactivity on a QMA
cartridge, was 36.2 ± 4.3% (n = 19), with over 99% of radiochemical purity. The molar
activity (Am) was 186 ± 56 GBq/µmol in approximately 99% of radiochemical purity as
determined by analytical HPLC, using UV-254 nm absorption at the end of the synthesis
(Figure S4).

2.2. Induction of Paracetamol-Induced Liver Injury (PLI)

All animals were maintained in accordance with the National Research Council guide-
lines for the care and use of laboratory animals (revised in 1996). The study protocols
were approved by the Institutional Animal Care and Use Committee of the Catholic Uni-
versity Medical College. All specific pathogen-free male Sprague Dawley rats (weight
417.9 ± 10.6 g, 13-week-old) were purchased from Orient Bio Inc. (Seongnam, Korea).
Rats were acclimated in an animal room under controlled temperature (21 ◦C) and a 12 h
light–dark cycle. The rat model of PLI was induced as described previously [18]. Twenty-
five rats were subjected to fasting for 15 h, followed by intraperitoneal administration of
propacetamol hydrochloride (Denogan®, Yungjin Pharm. Co, Ltd., Seoul, Korea) at a dose
of 3 g/kg body weight to induce liver injury. Eight rats served as controls.
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2.3. In Vivo [18F]GE180 PET Imaging

[18F]GE180 PET/CT was performed on the control (n = 8) and 24 h after the parac-
etamol injection (n = 21). In the induction group, four rats could not complete PET
imaging because of intravenous injection failure or other issues. A dedicated small ani-
mal PET/CT scanner (NanoPET/CT, Mediso Medical Imaging Systems, Budapest, Hun-
gary) with an 8.0 cm axial field-of-view (FOV) and a 10.0 cm transaxial FOV was used
for in vivo [18F]GE180 PET imaging. Rats were anesthetized with 1.5% isoflurane and
24.0 ± 4.6 MBq/0.5 mL of [18F]GE180 was intravenously injected. PET scans were started
1 h after injection for 20 min and CT scans were used for anatomical localization of PET
signals. Images were reconstructed using a three-dimensional ordered-subset expectation
maximization (3D OSEM) algorithm. CT-based attenuation correction was performed.

2.4. PET Image Analysis

For quantitative analysis, all PET and CT images were converted into the DICOM
format and analyzed using the PMOD 4.1 software (PMOD Technologies Ltd., Zurich,
Switzerland). Guided by maximum intensity projection images (MIP), the SUVmax and
SUVav were measured by placing a 3D volume of interest (VOI) on the liver parenchyma by
an experienced nuclear medicine physician. Image-derived blood [18F]GE180 levels were
measured from the left ventricle. The SUV was calculated in pixels as (tissue radioactivity
concentration)/[(injected dose)/(body weight)].

2.5. Serum Biochemistry Analysis

Whole blood samples were collected from the tail vein before, after 24 h and after 48 h
of hepatic injury (baseline, 24 h and 48 h). The serum fraction was separated by centrifuga-
tion at 3000 rpm for 15 min. The serum levels of ALT, AST and T-Bil were measured using
a fully automated spectrophotometric technique using an AU480 Chemistry Analyzer
(Beckman Coulter, Inc., Fullerton, CA) using commercial kits (Chema, Italy).

2.6. Ex Vivo Real-Time Polymerase Chain Reaction (PCR) Analysis and Western Blot Analysis

Rats were sacrificed via CO2 inhalation 48 h after the hepatic injury. Real-time PCR
was performed to measure the gene expression levels of TSPO and CD68 for identifying
macrophages in the liver [19]. Total RNA was extracted from liver tissue using the RNeasy
Plus Mini Kit (Qiagen, Hilden, Germany) and 400 ng of RNA was converted into comple-
mentary DNA using the Superscript® III First-strand Synthesis System (Invitrogen Corp.,
Carlsbad, CA). Real-time PCR was performed using the Powerup SYBR Green master
mix (ABI, Thermo Fisher Scientific, Waltham, MA) with 1 µL of complementary DNA and
0.2 µM primers on a QuantStudio 3 Real-Time PCR System (Applied Biosystems, Waltham,
MA) with the following parameters: 95 ◦C for 2 min, 40 cycles of 95 ◦C for 1 s and 60 ◦C for
30 s. Relative expression levels were normalized to 18s ribosomal RNA expression. Primer
sequences used for analysis are shown in Table S1 (see Supplementary Materials).

Western blotting was performed to measure the protein expression levels of TSPO and
CD68. Total protein was isolated using radioimmunoprecipitation assay buffer (Thermo
Fisher Scientific). The lysates of the samples were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluo-
ride (PVDF) membranes (Bio-Rad Laboratories, Hercules, CA, USA). The membranes were
subsequently blocked with 3% BSA for 1 h at room temperature and incubated overnight
at 4 ◦C with primary antibodies targeting TSPO (#92291, Abcam; Cambridge, UK; di-
luted 1:10,000), CD68 (#31630, Abcam, diluted 1:100) and β-actin (#8227, Abcam; diluted
1:3000). Membranes were then probed with horseradish peroxidase (HRP)-conjugated
anti-rabbit (#7074, Cell Signaling Technology, Danvers, MA) or anti-mouse IgG (#7076, Cell
Signaling Technology). Signal intensities were measured using a ChemiDoc MP system
(Bio-Rad Laboratories).
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2.7. Immunohistochemistry

Tissue sections from rat liver were fixed with 4% paraformaldehyde for one day and
then washed with water. Non-specific antibody binding was blocked with 5% normal gout
serum in Tris Buffered Saline (TBS). Sections were incubated with an anti-PBR antibody
(#109497, Abcam) for the TSPO receptor and anti-CD68 antibody (#31630, Abcam) for
macrophage at 4 ◦C overnight, respectively, then with a secondary HRP-conjugated goat
anti-rabbit antibody (#7074, Cell Signaling Technology) at room temperature for 1 h. The
activity of HRP was detected with SignalStain® Boost IHC Detection Reagent (Cell signaling
Technology). Sections were counterstained using Mayer’s hematoxylin and dehydrated
with ethanol, incubated with xylene and slides were mounted in Permanent mounting
media (H-5000, Vector Laboratories, Burlingame, CA) with a coverslip. Sections were
visualized under an inverted Olympus BX53 microscope (Olympus, Tokyo, Japan) and
captured with a Q-imaging camera and ImagePro 5.1 program.

2.8. Statistics

All statistical analyses were performed using the MedCalc software package, version
12 (MedCalc Software, Ostend, Belgium). Independent t-tests were used to analyze the
differences between the control and PLI groups. Paired t-tests were used to analyze
the differences before, after 24 h and after 48 h of hepatic injury within the PLI group.
Pearson’s correlation coefficient was used to evaluate the relationships between the markers.
Statistical significance was set at p < 0.05.

3. Results

3.1. [18F]GE180 PET Findings as an Imaging Biomarker of Macrophage Activation in PLI

On [18F]GE180 PET, both hepatic maximal and mean standardized uptake values
(SUVmax and SUVav) in the PLI group were significantly higher than those in the control
group (p = 0.001 for SUVmax, p = 0.005 for SUVav; Figure 1B,C). However, the blood uptake
showed no significant difference between the control and PLI group (p = 0.117; Figure 1D).
The liver-to-blood ratio in the PLI group was significantly higher than in the control group
(p = 0.009; Figure 1E). The results of real-time polymerase chain reaction (PCR) showed
an approximately 1.5-fold increase in TSPO and CD68 gene expression in the liver of PLI
compared to the control group (Figure 2A,B). Western blot results showed a 2.0-fold increase
in TSPO and a 1.4-fold increase in CD68 protein expression in the PLI group, compared with
the control group (Figure 2C–E; Figures S5–S7). Correlation analysis results between TSPO
mRNA expression and [18F]GE180 hepatic uptake are provided as supplementary data
(p = 0.019 for SUVmax, p = 0.007 for SUVav; Figure S8). No correlation was noted between
the hepatic SUVmax and SUVav and the gene expression level of CD68 (p = 0.729 for SUVmax;
p = 0.468 for SUVav). In immunohistochemistry, higher TSPO and CD68 protein expression
was observed in the PLI liver than in those in the control (Figures 3 and 4). Interestingly,
TSPO expressions were noted not only in macrophages but also in hepatocytes of zone 3.

3.2. [18F]GE180 PET Findings as an Imaging Biomarker of Liver Injury in PLI

Serum biomarker levels for hepatocellular injuries, such as AST and ALT, increased
abruptly after 24 h of paracetamol administration (all p < 0.001; Figure 5A,B). After 48 h of
hepatic injury, serum AST and ALT levels declined, but were still significantly higher than
baseline (all p < 0.001). The level of total bilirubin (T-Bil) increased significantly after 24
and 48 h of paracetamol administration (Figure 5C).
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difference between the control (mean ± SD = 1.69 ± 0.12) and PLI group (mean ± SD = 1.61 ± 0.14). (E) The liver-to-blood 
ratio was significantly higher in the PLI (mean ± SD = 2.06 ± 0.57) than in the control group (mean ± SD = 1.49 ± 0.12). Data 
are expressed as mean ± SD, *p < 0.05, ** p < 0.01, *** p < 0.001 by independent t-test. 
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Figure 5. Serum levels of (A) alanine aminotransferase (ALT), (B) aspartate aminotransferase (AST) and (C) total bilirubin
(T-Bil) were measured before, after 24 h and after 48 h of hepatic injury (baseline, 24 h and 48 h). Data are expressed as
mean ± standard deviation (n = 8 for control and n = 21 for PLI), * p < 0.05, ** p < 0.01, *** p < 0.001, independent t-test for
control vs. baseline, paired t-test for baseline vs. 24 h and baseline vs. 48 h.

The hepatic SUVav in the PLI group showed a significant positive correlation with
ALT24 and ALT48 (p = 0.016 for ALT24 and p = 0.002 for ALT48). The hepatic SUVmax in the
PLI group showed a significant positive correlation with ALT48 (p = 0.066 for ALT24 and
p = 0.012 for ALT48). For AST, the hepatic SUVav in the PLI group showed a significant
positive correlation with AST24 (p = 0.016). However, no significant correlations were noted
between hepatic SUVav and AST48 (p=0.155), hepatic SUVmax and ALT24 (p = 0.071) and
ALT48. (p = 0.214). The hepatic SUVmax and SUVav showed no significant correlations with
either T-Bil24 or T-Bil48 (all p > 0.05). All scatter plots are shown in Figure 6.
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4. Discussion

In this study, PET noninvasively visualized liver injury using the TSPO-specific ra-
diotracer [18F]GE180. After the induction of PLI, a significant increase in the in vivo
[18F]GE180 hepatic uptake corresponded to ex vivo TSPO expression. The increase in
the in vivo [18F]GE180 hepatic uptake correlated significantly with an increase in liver
enzymes, which is the current standard of monitoring liver injury.

PLI is estimated to account for approximately 50% of acute liver failure and approx-
imately 30,000 patients are admitted to hospitals every year in the United States [20].
Paracetamol overdose can occur with or without awareness and there is no known dif-
ference in susceptibility to acute liver failure and liver transplantation between the two
groups [21]. The most important determinant of paracetamol-induced hepatotoxicity is the
ingested dose of analgesics, but, in most cases, medical staff estimate the dose based on the
history provided by the patients or guardians; thus, it is difficult to accurately determine
the actual dose taken.

Biochemical approaches have been used to monitor liver injury in patients with parac-
etamol overdose. However, serum markers can be diluted across the entire blood volume
and confounded during the course of PLI in cases where various processes occur simultane-
ously [22]. Moreover, predicting subjects that may progress to liver failure remains a clinical
challenge [5,6]. Liver biopsy is considered the gold standard for identifying drug-induced
hepatotoxicity, but this invasive procedure is not routinely used in clinical practice [23].
Since the volume of tissue obtained from biopsy covers only a small part of the entire
liver, the sampling error is inevitably high when the disease manifests heterogeneously in
PLI, despite its invasiveness [24]. Therefore, noninvasive PET imaging has the advantage
of providing a view of the entire liver in vivo and eliminating sampling errors. In this
study, we applied activated macrophage-targeted TSPO PET imaging for the first time to
evaluate PLI.

The role of macrophages in the pathogenesis of PLI remains controversial. Activated
macrophages mediate the production of proinflammatory cytokines, thus contributing
to paracetamol-induced hepatotoxicity [25]. However, other studies have suggested the
protective role of hepatic macrophages by reducing inflammation and promoting hepatic
regeneration [26]. Michael et al. reported that the resolution of hepatic damage from
paracetamol-induced hepatotoxicity was delayed by the depletion of paracetamol-induced
macrophages [27]. Cynthia et al. also reported the protective role of Kupffer cells by
identifying a significant decrease in the mRNA expression levels of interleukin (IL)-6,
IL-10 and IL-18 hepato-regulatory cytokines after Kupffer cell depletion [26]. On the other
hand, Laskin et al. found blockage of hepatic tissue injury by the inhibition of hepatic
macrophages and suggested that macrophages directly contribute to PLI [28]. Mossanen
et al. demonstrated massive recruitment of monocytes into the paracetamol-poisoned liver.
They suggested that monocyte-derived macrophages (MoMFs) exacerbate inflammation
and injury during the early phase of PLI, although MoMFs can express both proinflamma-
tory and tissue-repair genetic profiles [29]. This controversy may be due to the plasticity
of macrophages and the difficulty in distinguishing subpopulations of macrophages. A
recent study by Tsuji et al. analyzed paracetamol-induced hepatotoxicity according to
M1/M2-macrophage subtypes and reported that proinflammatory M1-macrophages in-
creased significantly on days 1 and 2, whereas tissue-repairing M2-macrophages appeared
later, on days 2 and 3 [18]. The imbalance between the expression of the two macrophage
subtypes may contribute to the progression of PLI.

In addition, identifying macrophage phenotypes is important, in that TSPO expression
can be differ by phenotype. In vitro studies on murine macrophages reported a significant
increase in TSPO expression after M1 activation, or no significant phenotype-dependent
differences [15,30]. Meanwhile, Narayan et al. investigated TSPO expression in human
macrophages and found a significant difference in TSPO expression between M1 and M2
phenotypes [31]. In this study, we showed that the expression of CD68, which is widely
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used as a pan-macrophage marker, is increased in the liver of the PLI group. Further study
is required at the phenotype level.

Immunohistochemistry revealed higher TSPO and CD68 protein expressions in the
PLI liver than those in the control (Figures 3 and 4). Interestingly, TSPO expressions were
observed in hepatocytes of zone 3, as well as macrophages. Necrosis of hepatocytes starting
in zone 3 is a histopathological indicator of PLI. TSPO is ubiquitously expressed and also
found at low levels in hepatocytes but is elevated upon liver injuries [32]. Though TSPO
is mainly found in macrophages, considering hepatocytes occupy more than 70% of the
liver, the increase in TSPO expression in non-macrophages (e.g., hepatocytes) suggests
the potential of [18F]GE180 PET as an imaging technique that can more sensitively reflect
paracetamol-induced liver injury. In addition, the larger gap between the control and PLI
in TSPO than CD68 from the PCR and Western blot analysis is interpreted to be due to
TSPO expression in injured hepatocytes. Further studies are needed on the role of TSPO
expression in hepatocytes in paracetamol-induced hepatotoxicity.

In this study, we found an increase in [18F]GE180 hepatic uptake after 24 h of paracetamol-
overdosing and the increase was correlated significantly with the increase in AST and ALT
levels. Between AST and ALT, [18F]GE180 hepatic uptake showed better correlations with
ALT than AST. Because elevated AST levels indicate nonspecific tissue injury rather than
liver-specific tissue damage, AST levels can be affected by stressful procedures (e.g., blood
sampling), whereas any increase in ALT level is a direct indicator of liver injury.

Studies regarding the development of non-invasive molecular imaging techniques
for PLI evaluation have been conducted by several researchers. However, most of the
studies are preclinical studies using fluorescence probes targeting DLI-relevant enzymes;
therefore, their clinical application is limited [33]. Unlike fluorescence imaging, PET can be
applied clinically, but only a small number of studies exist. Recently, Salas et al. developed
a 2-deoxy-2-[18F]fluoroarabinose ([18F]DFA) PET radiotracer to measure ribose salvage
activity, which is the most active pathway in the liver [8]. They identified a decrease in
hepatic [18F]DFA uptake after paracetamol overdose. In addition, they suggested that
hepatic [18F]DFA uptake could distinguish between patients with PLI who were about to
die and those who would survive. Discriminating between patients who may progress
to liver failure is a clinical issue of great interest. Future investigations evaluating the
prognostic value of [18F]GE180 hepatic uptake are promising.

The TSPO polymorphism is one of the major concerns hindering its rapid clinical
translation. Since the development of the next-generation TSPO ligand due to the high
signal-to-noise ratio of the first-generation TSPO ligand [11C]PK11195, the variable binding
affinity caused by a single-nucleotide polymorphism of the TSPO gene has been raised as
another problem for the second-generation TSPO ligand. Therefore, efforts have been made
to develop third-generation TSPO ligands that are insensitive to polymorphisms. Feeny
et al. investigated the radiotracer characteristics of [18F]GE180 in the brains of healthy
human subjects and found no genotype-related effects on [18F]GE180 high-affinity and
mixed-affinity binders [34]. Meanwhile, Fan et al. suggested two-fold higher specific
binding for high-affinity binders than for mixed-affinity binders [16]. Differences in allelic
status can be masked by the large effects of inflammatory activity on TSPO expression.
However, the correlations between [18F]GE180 uptake of the target organ (in this study,
liver) and histological quantification of TSPO expression in genotyped individuals should
be elucidated for [18F]GE180 application in future clinical studies.

Furthermore, there are main limitations to our study. First, we did not perform
metabolite analysis. Since [18F]GE180 is metabolized and about 21% of the parent present
at 60 min after injection [35], the possibility that some metabolites may also contribute
to the hepatic uptake on [18F]GE180 PET cannot be excluded. Second, the use of static
protocol has to be verified through full dynamic acquisition of [18F]GE180 PET, because the
pharmacokinetics might be different between control and PLI group. However, the time
activity curves of [18F]GE180 in the liver of normal rat has already been investigated [36].
According to the study, the time activity curve of liver changes rapidly up to 30 min after
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injection and remains stable thereafter. Therefore, to simply evaluate the uptake difference
between control and disease group, a static acquisition for a certain period of time of at
least 30 min after injection might be sufficient. Third, a direct linear relationship between
the expression level of the TSPO protein and [18F]GE180 hepatic uptake was not identified
in this study. Although we found a trend of linear correlation between [18F]GE180 hepatic
uptake and TSPO expression at the mRNA level, this should be verified at the protein level
due to insufficient correlations between mRNA and protein expression levels.

5. Conclusions

[18F]GE180 hepatic uptake correlated well with TSPO overexpression and serum
markers for liver injury, enabling visualization of PLI. The present findings support the
potential utility of [18F]GE180-PET, which appears to be a promising tool for detecting the
early stages of PLI.
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