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Retrospective auditory cues 
can improve detection of near-
threshold visual targets
Daphné Rimsky-Robert   1*, Viola Störmer2, Jérôme Sackur   3 & Claire Sergent1

Recent studies have demonstrated that visually cueing attention towards a stimulus location after 
its disappearance can facilitate visual processing of the target and increase task performance. Here, 
we tested whether such retro-cueing effects can also occur across different sensory modalities, as 
cross-modal facilitation has been shown in pre-cueing studies using auditory stimuli prior to the 
onset of a visual target. In the present study, participants detected low-contrast Gabor patches in a 
speeded response task. These patches were presented in the left or right visual periphery, preceded or 
followed by a lateralized and task-irrelevant sound at 4 stimulus-onset asynchronies (SOA; −600 ms, 
−150 ms, +150 ms, +450 ms). We found that pre-cueing at the −150 ms SOA led to a general increase 
in detection performance irrespective of the sound’s location relative to the target. On top of this 
temporal effect, sound-cues also had a spatially specific effect, with further improvement when cue 
and target originated from the same location. Critically, the temporal effect was absent, but the spatial 
effect was present in the short-SOA retro-cueing condition (+150 ms). Drift-diffusion analysis of the 
response time distributions allowed us to better characterize the evidenced effects. Overall, our results 
show that sounds can facilitate visual processing, both pre- and retro-actively, indicative of a flexible 
and multisensory attentional system that underlies our conscious visual experience.

What mechanisms lay the ground for conscious experience? As this question remains debated to this day, two 
radically different accounts aim at solving the issue. On the one hand it is argued that consciousness arises from 
local recurrent loops of information in the sensory cortices, and that top-down selection processes such as atten-
tion gate reportability of that information, rather than perceptual awareness itself1–3. On the other hand, other 
researchers argue that perceptual awareness is the result of information transfer across domains, and that a broad 
network of regions beyond the sensory cortices is involved4,5. A key difference between these two theories is that, 
in the first case, the conscious or non-conscious fate of a sensory input is decided within sensory areas before any 
involvement of supra-modal areas. This means that whether a stimulus becomes conscious or not is determined 
within the first 100–150 ms following its presentation6. In the latter case, supra-modal or other sensory cortices 
are pivotal for conscious experience, and perceptual awareness is not dependent only on local recurrent informa-
tion transfer within a single sensory modality.

Recent studies7,8 used an attentional spatial cueing paradigm9 in which a cue could appear before or after the 
appearance of a target event to test the broadcasting vs. local feedback account of conscious perception: indeed, 
if conscious perception correlates with the broadcast of sensory information via top-down attention across the 
brain, then retrospectively orienting attention towards the sensory trace of a target could potentially promote 
initially unseen stimuli into consciousness. In contrast, if conscious perception is decided during the initial sen-
sory processing steps, as assumed by the local feedback account, a retro-cue that directs attention to the target 
retroactively should not influence whether the stimulus is consciously perceived or not. Previous research tested 
these two predictions by asking participants to judge the orientation of low-contrast Gabor patches while spatial 
visual retro-cues attracted attention either to the target’s past location or to the opposite location. These studies 
showed that such retrospective cueing of exogenous spatial attention facilitated conscious perception of the past 
target – similar to previously observed pre-cueing effects where the cue is presented at the target location prior 
to its onset9. This effect was called “retro-perception”10, and highlighted the existence of temporal flexibility in 
the processes allowing for conscious access, while providing evidence for the importance of attention as a gating 
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mechanism for conscious experience. However, since these studies used spatial cues within the same modality 
as the target, it cannot be excluded that this retro-perception effect was at least partly due to a low-level, visual 
interaction between the retrospective cue and the visual trace of the target, rather than to top-down attentional 
involvement11.

In order to address this question we devised an experiment in which the target and the retrospective cues 
where presented in different sensory modalities, in order to minimize direct local interactions between exper-
imental stimuli within the sensory cortex. In particular, we used auditory cues and visual targets because they 
are initially processed in distinct cerebral regions. While there exists evidence that these could interact through 
rapid direct pathways between the sensory cortices with no involvement of supra-modal structures12, this can 
be avoided by using stimulus-onset asynchronies (SOAs) above 100 ms13. Many previous studies have shown 
that hearing a salient sound can facilitate processing of subsequently presented visual stimuli at the same loca-
tion14. These cross-modal effects of attention have been shown to not only speed response times, but also increase 
visual sensitivity15,16. For example, pre-cueing the occurrence of a visual target with a peripheral sound has been 
shown to increase participants’ detection rate of visual stimuli near the perceptual threshold15, facilitate the dis-
crimination of visual targets17, enhance perceived contrast of the target18, or accelerate the perceived timing of 
a visual event19. These behavioral effects are accompanied by an increase in early neural responses to the visual 
target over the occipital cortex contralateral to the side of presentation20. These results suggest that cross-modal 
orienting of attention can alter sensory processing in the visual cortex. However, in all these studies, the audi-
tory cue preceded the target. Here we wanted to test whether auditory retro-cues could also affect perception of 
near-threshold visual stimuli– similar to what has been shown for visual retro-cues7. While retro-cueing studies 
exist on cross-modal perception, most are focused on the effects of exogenous cues on supraliminal items held 
in working memory21,22: here, we did not aim to alter actively maintained representations, but rather determine 
whether exogenously retro-cued attention could elicit, across sensory modalities, the report of stimuli that would 
have otherwise remained unseen.

Additionally, we were interested in assessing the effect of cross-modal retrospective cues not only on per-
ceptual accuracy but also on response times. While the influence of a pre-cue on speeded responses has been 
studied extensively, showing acceleration of response times with valid pre-cueing23–30, retro-perception has not 
yet been examined in this manner. If auditory retro-cues can influence whether visual stimuli are consciously 
perceived, we expect that they will also influence how long it takes to report their presence. However, predictions 
on the direction of the effect are not entirely straightforward: if retro-cueing improves perception it might speed 
up detection response time, in accordance with the effect observed for pre-cues. But one might also predict the 
contrary: if, as suggested by previous studies, retrospective cues retrospectively promote unseen stimuli into 
awareness, then response times on those trials could be delayed since response time might be then time-locked to 
the retro-cue rather than time-locked to the target presentation itself.

We thus designed an experiment aiming to extend retro-perception to a cross-modal setting in order to gen-
eralize the phenomenon beyond the visual modality, as well as examine its effect on perceptual decision-making. 
The experiment was a variation of an original paradigm by McDonald and colleagues showing the effect of exoge-
nous auditory pre-cueing on visual perception31,32. Participants had to press a button as soon as they detected the 
presence of a visual Gabor patch to the left or to the right of fixation. We investigated how detection sensitivity 
and response time to this visual target was influenced by a salient auditory cue that could emanate from the same 
location as the target (congruent cue) or from the opposite location (incongruent cue) either before or, critically, 
after the visual stimulus. As in McDonald and colleagues’ original experiment, the location of the auditory cue 
was random relative to the target’s location, so that the cue only mobilized reflexive, exogenous attention.

While existing retro-cueing studies on working memory in cross-modal paradigms evidence strongest effects 
after 300 ms, retro-perception experiments are focused on shorter SOAs, because they are designed to affect 
perceptual processing. We thus used 4 different SOAs: −600 ms and −150 ms in pre-cueing, and +150 ms and 
+450 ms in retro-cueing. We hypothesized that at short SOAs (−150 ms and +150 ms), cue validity should 
influence performance. Whether the −600 ms SOAs should display inhibition of return or no effect at all was 
undetermined, as this effect is more context-dependent in cross-modal settings33. Finally, the original study on 
retro-perception showed that a positive cue-congruency effect was still present for retro-cues at 400 ms, although 
it was reduced compared to effects observed for retro-cues at 100 or 200 ms7,8. Including a +450 ms SOA in the 
present study allowed us to assess the time course of potential cross-modal retro-perception effects, while keeping 
a constant distance of 300 ms between SOAs of interest.

Results
D prime.  Figure 1b shows the results on detection sensitivity (d’) separately for the different types of cues as a 
function of SOA. Overall detection performance increased sharply when the sound cue occurred just before the 
visual stimulus (−150 ms SOA) compared to sounds presented earlier, i.e. 600 ms before the target, and also com-
pared to the no-cue condition. This was confirmed by a 2 (congruency) × 4 (SOAs) repeated measures ANOVA 
which revealed a significant main effect of SOA on detection sensitivity (F(1.83,34.67) = 14.03, p < 0.001, gener-
alized eta squared g-η² = 0.081). Furthermore, 10,000 bootstrapped confidence intervals of the mean difference 
between the cued conditions (either congruent or incongruent) and no-cue conditions revealed a significant 
difference in mean sensitivity for the short pre-cue SOA (−150 ms), but no other (−600 ms: CI = [−0.26 0.28], 
−150 ms: CI = [0.26 0.74], +150 ms: CI = [−0.14 0.31], +450 ms: CI = [−0.23 0.21]), suggesting that this effect 
was indeed specific for the short-SOA pre-cueing condition. This observation is in line with previous research 
showing that pre-cueing a visual stimulus with an auditory cue globally improves participants’ performance 
regardless of location, particularly in visual search34–36. Interestingly this effect was not symmetrical: it was either 
absent or reduced when the cue came after the stimulus (+150 ms SOA).
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On top of this strong modulation by SOA, spatial congruency between target and cue also affected detection 
sensitivity: visual detection sensitivity improved when the exogenous auditory cue appeared at the same side as 
the target (congruent) compared to the opposite side (incongruent) both for pre- and retro-cues at short SOAs. 
The ANOVA confirmed a significant main effect of congruency (F(1,19) = 4.53, p = 0.046, g-η² = 0.001), but no 
interaction between congruency and SOA (F(3,57) = 0.72, p = 0.5, g-η² = 0.001). Pairwise comparisons were not 
reported as the ANOVA did not reveal an interaction between factors. Overall, these data replicate what was evi-
denced in the literature, showing that cross-modal pre-cues can enhance target detection15,37. Based on d’ alone, 
the effects of spatial congruency on target detection were subtle, but present. The relatively small magnitude of 
the effects is expected, particularly in a speeded-response task, and consistent with other studies showing smaller 
effects of cross-modal relative to unimodal cues38,39.

Response time.  Response time data for Hit trials was analyzed (Fig. 1c) across participants using a gener-
alized mixed-effects model (GLMM) with an inverse Gaussian parent distribution, including SOA, congruency 
and their interaction as fixed effects and participant number as a random effect on the intercept. The profile of 
response time observed in the different conditions seemed to mirror what was found for detection sensitivity. 
Post-hoc confidence intervals of the mean difference between cued and uncued conditions revealed a signif-
icant difference in response time for the short pre- and post-cued (−150 ms and +150 ms) SOAs (−600 ms: 
CI = [−31.35–7.14], −150 ms: CI = [−77.26–−42.63], +150 ms: CI = [−25.02–0.91], +450 ms: CI = [−10.73 
12.10]). This first analysis of response time data showed that pre- and post-cueing within a short time-window, 
regardless of congruency, induced a shortening of response time.

The GLMM revealed a significant modulation of response time by SOA (χ² (3) = 381.55, p < 10−15) as well 
as a significant decrease in response time with congruency (χ²(1) = 8.19, p = 0.004), and an interaction between 
these factors (χ²(3) = 20.536, p = 0.0001). Interestingly, the effect of congruency is evidenced more clearly 
here than with d’. Still, both patterns go in the same direction, suggesting that cue location increases detection 

Figure 1.  Task design and main results. On each trial, participants had to detect a low-contrast Gabor patch that 
could appear in one of two placeholders on the screen with a probability of 2/3. The jittered delays preceding 
and following the appearance of the target were 1–1.5 s. Before or after the target, a spatially non-informative 
auditory cue could appear at one of four SOAs: −600 ms, −150 ms, +150 ms, and +450 ms. (a) Detection 
sensitivity: colored lines represent mean d’ for congruent (blue) and incongruent (red) trials at each SOA. The 
dashed line is performance in the no-cue condition. The grey line represents the time of target presentation. Error 
bars are standard errors of the mean difference across observers, except for the no-cue condition, where it is the 
standard error of the mean. (b) Response times: colored lines represent averaged median RT for congruent and 
incongruent trials at each SOA across participants. Error bars are standard errors of the mean difference across 
observers, except for the no-cue condition, where it is the standard error of the mean. (c) Inverse efficiency scores: 
colored lines represent averaged mean IES for congruent and incongruent trials at each SOA across participants. 
Error bars are standard errors of the mean difference across observers, except for the no-cue condition, where it is 
the standard error of the mean. (d) Stars represent statistical significance as indicated in the main text.
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rate and reduces response time. For each SOA we further assessed Tukey’s all-pair HSD test on the difference 
between congruent and incongruent condition, which was the contrast of interest from our initial hypotheses. 
The corresponding 95% confidence intervals of the mean RT difference between congruent and incongruent 
conditions suggest an effect of congruence both at the short pre and retro-cue SOAs, but not at the longer SOAs 
(−600 ms = [−18.07, 14.20], −150 ms = [1.33, 37.81], +150 ms = [9.38, 37.09], +450 ms = [−31.66, 2.99]).

Since the patterns of results for d’ and RTs both go in the same direction, this suggests that both reflect a gen-
eral improvement of processing efficiency with spatially congruent cues. We thus conducted a third analysis that 
combined both measures. We calculated the inverse efficiency score (IES)40,41 for each participant in all SOA and 
congruency conditions (Fig. 1d).

The GLMM revealed a significant effect of SOA (χ²(3) = 1755.44, p < 10−15) and congruency (χ²(1) = 31.17, 
p < 10−7), and an interaction between these factors (χ²(3) = 30.90, p < 10−7). 95% confidence intervals (corrected 
Tukey’s all pair HSD test) indicate a significant reduction of the IES with congruent cues at −150 ms (CI = [22.57 
57.85]) and +150 ms (CI = [42.81 91.70]), but no other SOA (−600 ms = [−25.05 16.80], +450 ms = [−53.34 5.92]).

Last, we estimated the Spearman’s correlation coefficient between effect sizes in IES for the contrast “congru-
ent vs. incongruent” between the two SOAs of interest (−150 ms and +150 ms), across participants. There was 
indeed a significant positive correlation between the size of the pre and retro-cueing effect across participants 
(R = 0.47, p = 0.04), possibly suggesting that both effects rely at least partly on similar mechanisms.

As far as congruency is concerned, the effect of cueing were primarily present at the short pre- and post-cued 
SOAs (−150 ms and +150 ms) in all our measures: d’, response time, and IES.

Model fitting diagnostics.  Because response time data are positively skewed, common summary statistics 
such as means poorly describe potential effects of an experiment on the tail of the distribution42. While GLMMs 
can prove to be very informative, more complex analyses can help provide a more refined description of the 
processes underlying the observed RT distributions. We thus fitted a shifted-Wald distribution using MLE as 
described in the Methods and illustrated in Fig. 2a. In brief the parameters of interest used in the model are γ, 
the drift rate, which is thought to reflect the quality of the information being processed, α, the decision thresh-
old, which reflects cognitive control (e.g. inhibitory control over the button press), and θ, the non-decision time, 
which is affected when motor demands for responding become increasingly difficult, or the course of perceptual 
processing or motor preparation is altered43,44.

For this planned analysis, we only included SOAs where an effect of congruency on response times and accu-
racy could be observed in our initial analysis on RTs, i.e. the two short SOAs that were the focus of our initial 
hypotheses. This left us with S = 2 SOAs, C = 2 congruence levels, P = 20 participants, leading to 2 × 2 × 20 = 80 
distributions (or experimental cells) to be fitted individually with an average number of trials of 55 ± 10, which is 
enough according to the simulations run in43.

We followed the 3-step model-fitting goodness of fit checks recommended in43. The QQ plot in the 
Supplementary Fig. 1.A shows no systematic misfit of the predicted values against the actual RT data, but high-
lights the presence of several outlying data points that have very large values. The decile residual distribution plot 
is shown in Supplementary Fig. 1.B. Because the data is positive and right-skewed, we should expect the variance 
in the residuals to increase with variance in the data and decile number. To partially account for this bias when 
performing goodness of fits checks, the residual standard deviations were standardized by the shifted-Wald stand-
ard deviation ( α γ=SD X( ) / 3). Here, the plot shows a good ordering of the deciles, apart from a few outlying 
data-points in extreme RT values. The last goodness of fit plot (Supplementary Fig. 1.C) shows the sum of stand-
ardized residuals by experimental cell Δ, and denotes the 95% quantile range of these values as well as its mean 
Δ, and standard deviation σ. The reported value ρΔσ is the Pearson correlation coefficient between Δ and SD, 
which measures how efficient SD is as a standardization statistic. Values of Δ and ρΔσ should be as close to zero as 
possible, a requirement that is reasonable here for Δ and ρΔσ. Overall, we meet the requirements for these three 
goodness of fit checks, although they reveal some data-points are outlying.

Model fitting results.  Parameters α, γ and θ were retrieved after model fitting and goodness of fit checks 
for each participant and condition (SOA, congruency). Each parameter was assessed for statistical signifi-
cance using repeated measures ANOVA across participants for all conditions and their interactions. For the 
drift rate γ (Fig. 2b), this analysis revealed a significant main effect of SOA in favor of a larger drift rate in 
pre-cueing compared to retro-cueing (F(1,19) = 9.29, p = 0.007, g-η² = 0.100) but no significant effect of con-
gruency (F(1,19) = 3.22, p = 0.09, g-η² = 0.017) or their interaction (F(1,19) = 0.65, p = 0.43, g-η² = 0.007). For 
the threshold parameter α (Fig. 2c), no predictor variable significantly affected its value (SOA F(1,19) = 1.34, 
p = 0.26, g-η² = 0.022; congruency F(1,19) = 0.26, p = 0.61, g-η² = 0.002; interaction F(1,19) = 0.03,p = 0.87, 
g-η² = 0.0003). For the non-decision time θ (Fig. 2d), a significant main effect of SOA (F(1,19) = 9.80, p = 0.006, 
g-η² = 0.104) and congruency (F(1,19) = 4.63, p = 0.045, g-η² = 0.019) were evidenced, but no interaction 
(F(1,19) = 0.61, p = 0.44, g-η² = 0.004).

Overall, these results allow us to specify the origin of the effects observed on RTs: the SOA affected both 
the drift rate and the non-decision time, whereas congruency only affected the non-decision time. The decision 
boundary was unaffected by the experimental manipulation.

Discussion
Besides improving perception of future visual events at a location, can spatialized sounds help revive past events 
that would otherwise not have been seen? In this study we tested whether exogenous cross-modal attention 
can affect perception retrospectively. To test this, we adapted an original study conducted by McDonald et al. 
which demonstrated the existence of cross-modal effects in the case of pre-cued attention31,32. The present study 
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replicated their original effect by showing that a non-informative but spatially congruent auditory pre-cue 
increases detection sensitivity to a visual stimulus. The use of several pre- and retro-cueing SOAs, as well as a 
no-cue condition, allowed us to show that there were two phenomena at play in cross-modal cueing effects. 
One was a general “arousal” effect that was independent of cue location but sensitive to the cue-target timing: 
pre-cueing shortly before the target (−150 ms) induced a general increase in perceptual sensitivity and a response 
time reduction regardless of location congruency. This effect was absent when the pre-cue was presented long 
before the target (−600 ms) and was abolished for retro-cues, irrespective of the SOA (+150 ms and +450 ms). 
This effect is thus sensitive to the temporal sequence of stimulus presentation, and in line with previous studies 
conducted in pre-cued visual search on cross-modal influences on perception34–36. Another aspect of the cue 
effect is its sensitivity to cue location: when cue and target appeared at the same location, detection sensitivity 
was increased and RTs were decreased for both short SOA conditions (−150 ms and/or +150 ms). Importantly, 
while the spatial congruency effects were only observed for short SOAs, they did not appear to be influenced by 
whether the cue appeared before or after the target. Interestingly, congruency effect sizes were correlated between 
the pre- and retro-cueing conditions when using the inverse efficiency score which accounts for both response 
time and accuracy. This provides some initial evidence suggesting that these effects may be related to a single 
underlying process. However, it should be acknowledged that the spatial effects observed in these studies were rel-
atively small, both for pre and retro-cueing conditions, compared to previously reported cross-modal pre-cueing 
effects20. This might be due to the fact that the auditory and visual stimuli did not emanate from exactly the same 
location in space (the loudspeakers were on the side of the screen). In future studies, it would be important to 
replicate these effects in conditions where cross-modal pre-cuing is known to be particularly strong, notably by 
having the visual stimuli at the exact location of the loudspeakers15.

Figure 2.  Drift-diffusion analysis of RT. The shifted-Wald distribution can be used to describe signal 
accumulating to a threshold α, at rate γ, with θ representing the time lapsed outside this decision process. 
Participant-wise distributions were fitted across all cue and target-present trials, and group-average parameters 
were retrieved (colored values). 10,000 trials were simulated using the group parameters. A subset of these trials 
is displayed, their random walk with drift is shown as signal accumulated over time. Crossing the threshold 
α results in a response, with a corresponding RT. The simulated distribution from group parameters (black 
line) is shown over real data (grey bars shown the average RT distribution across participants). (a) The mean 
difference in the drift rate γ is shown for each participant (black dots) for the contrast pre-cue minus post-cue, 
split according to congruency (Left Panel, group average in yellow) and congruent minus incongruent split 
according to SOA (Right Panel, group average in green). Significance of the two-way RM ANOVA is indicated 
at the top left with a star, or the mention ns (not significant). (b) Group analysis of the decision threshold α as 
described above. (c) Group analysis of the non-decision time θ as described above (d).
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A more fine-grained analysis that focused on the response time distributions revealed that the non-spatial 
effect of pre-cueing at the short SOA corresponded – at least in part – to an increase in the drift rate, which is 
thought to reflect an improved quality of sensory information. The effect on the drift-rate is consistent with the 
increase in perceptual sensitivity (d’) in the short pre-cueing condition seen in Fig. 1.B, and may be the result 
of a general effect of well-timed sounds on visual perception, as has been reported in several studies34–36. The 
modeling analysis additionally showed that pre-cueing reduced the non-decision time as well when compared to 
retro-cueing. Generally, it is considered that this delay is related to perceptual encoding, presumably prior to pro-
cess of evidence accumulation, as well as motor preparation and response execution time following the decision 
process. Here, since the response requirements are identical in all conditions (same button press), it seems difficult 
to attribute the effects of our experimental conditions to response execution. Rather, we think these results can 
be interpreted in terms of alertness, whereby the occurrence of a pre-cue may have given a “headstart” to motor 
preparation and/or primed the sensory system for target appearance in the near future45. Alternatively, it may 
have been the case that participants learned something about the timing of the auditory-visual sequence and build 
expectations such that the sound itself triggered an expectation of a visual stimulus to appear 150 ms afterwards 
(presumably, this would be an optimal strategy, as a failure to detect the stimulus would simply involve a switch 
to expecting the stimulus to appear 600 ms after cue-onset). However, given the various SOA conditions as well as 
a no-cue condition that were all randomly intermixed, such temporal expectation effects appear rather unlikely.

Spatial congruency of the cue affected the non-decision time alone. The model used to analyze response time 
distributions does not allow to completely disentangle motor preparation from stimulus encoding. However, 
while the presence of a cue can be expected to influence motor preparation, it is difficult to imagine how its loca-
tion with regards to a visual stimulus would have an effect purely on motor planning when the elicited response 
does not depend on the cue’s location (simple detection). According to previous literature on retro-perception, 
spatially congruent cues lower the threshold for conscious access, even retrospectively, thus triggering conscious 
access to targets that would have been unreported otherwise7,8. It is plausible in this case that congruent retro-cues 
affected the perceptual component of stimulus processing rather than motor-related components, which is gen-
erally compatible with our hypothesis that these auditory retro-cues affected the probability of conscious access. 
We had initially hypothesized that retro-perception may increase response times because conscious processing 
would be initiated at a later time. In this experiment, we found the opposite: spatially congruent cues actually 
shortened them, and in fact, this was also the case in previous studies on retro-perception7. In the context of such 
accumulator models for a detection task, triggering conscious access may correspond to the onset of evidence 
accumulation. In this case, retro-cues may boost processing in more ambiguous trials at the perceptual level and 
hasten the onset of the decision process, which is not affected in itself. These results are compatible with previous 
studies on retro-perception, which showed that retro-cueing of this kind led to an increased chance of conscious 
perception without better information about the target stimulus8.

Broadly, our results support a theory in which conscious perception is not just determined by local recurrent 
feedback within a sensory modality, but is modulated by inputs across sensory areas, possibly via a general, 
supra-modal attention system. While previous research showed that orienting spatial attention to a sound can 
improve target detection of a subsequent co-localized stimulus, we here showed that such cross-modal benefits in 
perceptual sensitivity can also operate retrospectively. What may be the mechanisms underlying these behavioral 
benefits? One possibility is that by allocating attention to the cued location after the visual stimulus disappeared 
strengthens the sensory trace of the visual target by boosting visual-cortical activity at that location thanks to 
the occurrence of the sound. This interpretation is consistent with neurophysiological findings indicating that 
a sound alone – without any visual inputs – can trigger a response in visual areas that is spatially specific. In 
particular, it has been found that a peripheral sound activates visual cortex contralateral to its location, even in 
purely auditory tasks31,32,46. Thus, the post-cue in the current study may re-activate or enhance the activity trig-
gered by the visual stimulus, ultimately pushing it into consciousness. A further line of research may investigate 
how cross-modal retro-perception affects the outcome of sensory processing besides simple detection, as there 
exists evidence that cross-modal retro-cues can alter other perceptual processes, such as time-order judgements 
for supraliminal stimuli47. The fact that such a change in target detectability occurs across modalities and across 
different time scales demonstrates how different inputs can flexibly shape our perceptual experience, ultimately 
determining our conscious visual experience.

Methods
Participants.  Based on previous experiments on retro-perception7,8, the number of participants was fixed to 
20 prior to the experiment. 26 healthy participants were recruited, out of which 6 were excluded (failure to find 
the perceptual threshold (4), performance at chance in the main task (1) or the participant left before completing 
the experiment (1)). The remaining participants (18 females) had a mean age of 25 y-o ±3.86. All participants 
gave informed consent in writing prior to participation, and the Université Paris Descartes Review Board CER-
Paris Descartes (Research Ethics Committee) approved the protocols for the study in accordance with French 
regulations and the Declaration of Helsinki. Participants received a compensation of 10€ per hour of their time.

Materials.  The experiment was a variation on an original paradigm used in several instances31,32 and con-
ducted in a dimly lit room. The background sound level in the room was 45 dB, which is expected for a quiet room 
with a running computer. Participants sat 110 cm away from an extra-large screen (OLED SAMSUNG Smart 
TV), 125 cm large by 71 cm tall. Screen resolution was 1920 × 1080 px and refresh rate was 60 Hz. Luminance 
of the screen background was at around 18.2 cd/m² on average. Loudspeakers were mounted on the sides of the 
screen, their center measured at 35° from the fixation point at the center of the screen. Stimuli were generated and 
responses recorded using the Psychophysics Toolbox for Matlab48. Eye fixation was monitored using an Eyetribe 
tracking device (The Eye Tribe, Copenhagen).
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Stimuli and procedure.  Participants were asked to fixate a small dot (black, 0.2° diameter) at the center of 
the screen (Fig. 1a). A concentric circle (black, 0.4° diameter) appeared around the dot at the beginning of a trial, 
and disappeared at the end of the trial. During each trial two placeholders were permanently present on both 
sides of the screen, indicating the two locations where a visual target could appear. These placeholders were black 
circles with an 8° diameter. Visual targets were vertical Gabor patches (placeholder external edge at 30° eccen-
tricity, center at 26°) with luminance variations of 1.5 cycle per degree modulated by a Gaussian envelop of 2.2° 
full width half maximum. These visual targets appeared randomly within either the left or right placeholder and 
lasted ~53 ms. The auditory cue was a 78 dB burst of broadband (500–15,000 Hz) pink noise differentially deliv-
ered from the two loudspeakers for a duration of 83 ms (35° from center). Because the loudspeakers were on the 
sides of the screen, and thus not exactly at the same position as the Gabor patches, cues were delivered in stereo 
from both speakers with different amplitudes in each channel so that sounds appeared to be coming exactly from 
the targets’ possible locations. Before the experiment was carried out, the audiovisual latency was measured using 
an oscilloscope. The thus measured 43 ms audio-visual offset, with no visually identifiable jitter, was taken into 
account in the stimulation program.

Participants were told that a vertical Gabor patch could appear in one of two placeholders, and they were 
requested to press a button as fast as possible when they detected its appearance in either of the placeholders. 
Participants were warned that in 1/3 of trials, no visual stimulus would appear on screen, and that auditory 
stimuli were non-predictive of target location. Auditory cues were absent in 1/5 of all trials, balanced across 
conditions. Fixation lasted for 500 ms before each trial. The trial started with the appearance of a circle around 
the fixation dot. Then a jittered amount of time would elapse (1–1.5 s) before target appearance. On 2/3rd of the 
trials a Gabor patch was presented, half of them in the left and the remaining half in the right placeholder. This 
was followed by another jittered delay (1–1.5 s), then a response window of 1.5 s, during which the experiment 
waited for the participant to respond. If the subject pressed the response button at any time during the trial, their 
response would be recorded, and the experiment would move on to the following trial. The sound cues could be 
presented during either of the jittered delays, at various SOAs from the target: −600 and −150 in the pre-cueing 
conditions, +150 and +450 in retro-cueing conditions. All trial types were randomly intermixed within each 
experimental block.

Participants were asked to maintain fixation throughout each trial, and fixation was monitored online using 
the EyeTribe tracking device: if fixation was broken by more than 3° during the course of a trial, any response 
would be discarded and the trial be queued to be played again at the end of the block.

The experiment lasted for about 2 h and was divided into three parts. The first part was a practice block with 
feedback after each trial, which amounted to 1 block of 64 trials. The second part was a psychophysical stair-
case to find the appropriate level of contrast for each participant to reach ~70% accuracy overall. This staircase 
was performed separately for both visual hemi-fields after a pilot experiment showing significant differences 
in performance depending on which side the target appeared (1.1% ± 0.3 for right-sided targets, 0.9 ± 0.3 for 
left-sided targets at the beginning of experiment). The staircase block was conducted using the Psychtoolbox-3 
Quest procedure49 on 3 blocks of 40 trials without feedback or auditory stimuli, using default parameters. This 
staircase was followed by 20 experimental blocks of 60 trials, for a total of 1,200 trials. These were evenly split 
among 5 experimental conditions: −600 ms, −150 ms, +150 ms, +450 ms and no-cue, each containing 240 trials. 
As this is a go-no-go task, 1/3 of trials in each category was “target-absent”. In each experimental condition, this 
led to 160 “target-present” trials, and 80 “target-absent” trials. However, when a cue and/or target is absent (i.e. 
less than two stimuli are presented), the notions of SOA and congruency are inapplicable because they refer to 
the relationship between two events. This eventually leads to there being 160 trials per SOA (further split between 
congruent and incongruent trials), plus a pooled number of 80 × 4 = 320 target-absent but cue-present trials, as 
well as 80 target-absent and cue-absent trials, for a total of 400 target-absent trials which belong to no SOA or 
congruency category.

Even though the staircase procedure was calibrated for a 70% performance at the beginning of the experiment, 
participants were told to aim for 75% performance, and we tried maintaining this performance level throughout 
by adjusting the Gabor patch contrast between blocks. This discrepancy was due to the fact that the staircase 
procedure was run without any auditory cues, and participants’ overall performance usually increased by about 5 
points between staircase and test session. During the course of the experiment, the target contrast was readjusted 
by 0.1% contrast (applied on both left and right targets) when global performance on the preceding block was 
either too high (more than 80% hits) or too low (less than 70% hits).

Analysis.  Trial exclusion criteria.  Trials were automatically discarded when the timings weren’t respected 
during the experiments (hardware failure). We also discarded all trials where the response time was under 150 ms 
after target onset on the assumption that these were artefactual: the minimum amount of time to produce a volun-
tary response is generally considered to be higher than this cutoff 50. This amounted to a loss of less than 3 ± 2% of 
trials on average. There was no upper RT boundary for trial exclusion because large RTs can drastically change the 
interpretation of data51,52. In particular, although distributions of RT data are positively skewed (see more details 
below), there is often significant information contained in the tail, and it is thus generally recommended not to 
truncate the tail of the distribution in order to make it resemble a normal distribution52.

Task accuracy and signal detection theory.  Task accuracy was evaluated using signal detection theory53. We com-
puted d’ (Z(hit rate) − Z(false alarm rate), the measure of unbiased sensitivity to a stimulus’ presence in all exper-
imental conditions. We then performed a classical two-way repeated measures ANOVA on the obtained values, 
with Greenhouse-Geisser correction when required. Post-hoc pairwise comparisons were Bonferroni-corrected 
10,000 bootstrapped confidence intervals of the mean difference between tested conditions.
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Response time data and IES analysis.  The analysis of response time data requires some amount of care: because 
RT values are always positive, they have a lower boundary, but no upper boundary. As such, RT distributions 
typically have a rightward skew, where the mean, mode and median differ from each other. As such, classical 
analyses are ill-fitted to analyze RT data due to the skewed nature of RT distributions42,54,55. Several alternative 
methods can be used to analyze distributions with a rightward skew. Some use appropriate parent distributions 
such as the shifted Wald43, gamma50,51, log-normal56, or ex-gaussian57 distributions, but the choice of model is 
rather arbitrary and the results should be interpreted with care42,58. We applied a generalized linear mixed-effects 
(GLMM) model59 to fit the Hit reaction time data and the inverse efficiency score (IES)40,41 as suggested in42. 
For IES analysis, each RT was divided by the average accuracy of the condition and participant it belonged to. 
The computations were performed using the lme4 library59–61 running in open-source software R62. The random 
effects of all models were not maximum63, as this led to convergence issues when running the procedure. We thus 
restricted them to a random effect of participant number on the intercept for all analyses. To define statistical sig-
nificance of fixed effects, we used a backward stepwise simplification approach which helps find a model with only 
statistically significant fixed effects: we started with a full model including all factors and meaningful interactions 
(SOA, congruency and their interaction). At each simplification step we then calculated all models that differed 
from the current one by dropping a single term among fixed effects while maintaining the same random effects 
and compared these reduced models to the original one with a likelihood-ratio test64. We then excluded the terms 
that could be dropped without a significant increase in unexplained deviance as indicated by the likelihood-ratio 
tests and fitted a new model without these terms, thus obtaining the initial model for the next step. We repeated 
the procedure until no more terms could be dropped without a significant worsening of the model fit (as indexed 
by a significant increase of the residual deviance; the likelihood ratio tests of all terms were significant). The 
statistical significance of the terms in the final model was reported via a similar procedure for each term: a full 
final model with the effect in question was tested against a reduced model without the effect in question; we 
reported the p-value of the likelihood ratio test of this comparison65. Pairwise comparisons on GLMM models 
were performed when the fitted model included an interaction term, using the multcomp package in R66 and the 
appropriate vignette as a reference67. We performed two-tailed Tukey’s all-pair HSD multiple comparisons for 
planned contrasts (here, the effect of congruency at different SOAs) with a Bonferroni-Holm correction for multi-
ple comparisons. Unplanned contrasts (the effect of SOA when compared to the no-cue condition) were assessed 
using 10,000 bootstrapped confidence intervals of the mean difference between tested conditions. These analyses 
were followed by a correlation analysis between effect sizes at the SOAs where a significant effect of congruency 
was present for the IES. The differences in IES between congruent and incongruent conditions were tested using 
Spearman’s correlation coefficient between relevant conditions.

Response time data modeling.  The use of a GLMM with a 2-parameter inverse-Gaussian parent distribution is 
more appropriate for statistical testing than a classical 2-way ANOVA. However, the resulting estimated parame-
ters are difficult to interpret in terms of cognitive processing. More complex analysis methods use models thought 
to describe the underlying process leading to the production of the timed response, by modeling signal accumula-
tion. Among the most well-known is the Drift Diffusion Model first proposed by Ratcliff et al.68,69, which assumes 
that evidence accumulates towards a response following a random walk with a drift until the amount of evidence 
accumulated crosses a decision boundary, at which point the perceptual decision is taken and the corresponding 
response is prepared and executed. It is widely used to model the process underlying 2 alternative force-choice 
tasks with speeded responses, where the drift rate can be either positive (towards response A) or negative (towards 
response B). Here, we use a variation of this framework43 that has 3 parameters of interest (Fig. 2a): information 
accumulates at a rate γ, which depends on the quality of information accumulated, until it reaches the decision 
boundary α which depends on cognitive control, and the overall time taken to produce a response includes an 
additional non-decision time θ, which corresponds to all the time processes unrelated to decision-making take.

For response time data analysis, only Hits (correct response in a target-present trial) were analyzed. False 
alarm response times were not analyzed. We then modeled response time distributions using a shifted-Wald (or 
shifted Inverse-Gaussian, with 3 parameters) distribution and a maximum-likelihood estimation procedure from 
Anders et al.43. Drift-diffusion models are generally used to describe 2-AFC tasks, where there exists two compet-
ing response options. In our case however, the task is a go/no-go task, where participants opt-out of responding 
when they feel they did not see a target. In this case, the Wiener process, which is designed to model 2-AFC tasks, 
is inappropriate for modeling. Several of its parameters are poorly or non-applicable, in particular the estimation 
of how much bias each participant has towards one possible answer, which cannot be estimated in our case: when 
participants choose to opt-out, there is no response time data to be modeled. A good substitute for go/no-go tasks 
is the shifted-Wald (SW) distribution, which has already been used to describe go/no-go drift-diffusion processes 
in several studies43,70,71. The shifted-Wald distribution, also called the shifted inverse-Gaussian is of the form:
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Anders et al.43 propose a Maximum Likelihood Estimation (MLE) fitting method fully described in their 
publication43. The basic rationale behind it is to minimize the difference between the observed RT data quan-
tiles and the model-predicted quantiles using a single parameter β. From this β, all three parameters mentioned 
above can be directly calculated by closed-form maximum-likelihood estimators72 and used to compute the 
model-predicted quantiles for comparison and minimization in regards to the observed quantiles. We used their 
methods and adapted their analysis script to fit our needs.
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In the analysis pipeline used, we fit a separate SW distribution to each experimental condition for each par-
ticipant, and considered the global RT distribution to be a mixture of these. We only modeled response time 
distributions for experimental conditions where we observed an effect of the SOA or congruence, which were 
the short pre- and post-cued SOAs (−150 ms and +150 ms). With 20 participants, this led us to fit 2 (SOAs) × 2 
(congruence) × 20 (participants) individual SW distributions, leading to as many estimations for each separate 
parameter. 2 × 2 ANOVAs and Bonferroni-corrected 10,000 bootstrapped confidence intervals of the mean dif-
ference were then conducted for significance testing.

Data availability
Data and scripts for modeling in R are available at https://github.com/DaphneRR/Retro-Pink.
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