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Abstract

Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation.
Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy
consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for
adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and
involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps
us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as
separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation
mechanisms in complex systems.
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Introduction

The ability to adapt to different environmental conditions is a

hallmark of any living organism, allowing sensory systems to adjust

their sensitivity to changes in nutrient availability, stress, and other

stimuli [1,2]. Adaptation mechanisms generally rely on biochem-

ical feedback pathways, specific for the organism and type of

stimulus [3,4]. Surprisingly, when comparing adaptation pathways

in different organisms, one cannot help noticing the wide variety of

pathway designs, ranging from remarkably simple in bacterial

chemotaxis [5] to highly complex in eukaryotes, including

Dictyostelium discoideum chemotaxis [6], olfactory-transduction

[7,8] and photo-transduction [9]. Since bacterial chemotaxis is

known to work (and adapt) exquisitely well, it is unclear why

eukaryotic organisms have such elaborated pathway designs, and

what their advantages might be.

In light of such complexity, the ‘‘physicist’s approach’’ may help

guide the identification of common principles among the different

pathways. Recently, Lan et al. [10] analyzed a core adaptation

pathway and concluded that adaptation always relies on energy

consumption by the cell. However, whether it is generally

impossible to adapt without consuming energy is still an open

question, considering how adaptation mechanisms could have

evolved in ancient protocells without sophisticated pathways. We

address this issue by first comparing the sensory pathways of small

bacterial and large eukaryotic cells, highlighting their similarities

and differences. We then investigate the possibility of achieving

adaptation with no energy consumption by means of a ‘‘protocell’’

based on equilibrium physics. The hypothesis of no cost of energy

for the cell guides us in designing minimal adaptation mechanisms.

By pondering the drawbacks of these mechanisms and the

advantages brought by energy-consuming pathways, we unravel

some of the complexity of sensory systems. These considerations

may provide a path towards a general theory of adaptation in

eukaryotic cells.

Results

Local control in bacteria, global control in eukaryotes
Constrained by their small size, bacteria are spatially highly

organized [5,11]. Consider e.g. bacterial chemotaxis in Escherichia

coli, known for amplifying weak signals by cooperative receptors

and precise adaptation (Fig. 1a). There is an apparent high level of

local control in these processes: receptors are arranged hexago-

nally in clusters [12] and the adaptation enzymes CheR and CheB

are tethered to the receptors to increase local enzyme concentra-

tion and specificity, and to reduce noise [13]. Adaptation in

bacterial chemotaxis is a robust feature of the pathway, without

‘‘fine-tuning’’ of biochemical parameters [2], achieved by integral

feedback control [3]. Integral feedback control [10,14] and the

related incoherent feedforward loop [15] are also found in

eukaryotes.

Despite these similarities, eukaryote’s most striking feature is the

staggering complexity, often relying on long, multistep signaling

cascades in parallel [16]. Consider three different pathways:

chemotaxis in Dictyostelium discoideum (Fig. 1b), and photo- (Fig. 1c)

and olfactory-transduction (Fig. 1d) in mammalian sensory

systems. Perhaps most perplexing, the key signaling component

for all of them are small, fast-diffusible second messengers, like

Ca2z for olfactory- and photo-transduction (which is even toxic

for the cell in large quantities [17,18]), and cAMP in Dictyostelium

amoeba. Relying on these small signaling molecules could
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negatively affect the precision of the response. Due to their fast

diffusion, affected targets may not only be the designated

molecules, but large parts of the cells. Moreover, all of the

eukaryotic examples mentioned rely on G-protein coupled

receptors (GPCR). The excitation of the receptor catalyzes the

production of GTP and the dissociation of the G-protein. GTP

then binds to the a subunit and the bc subunits (for Dictyostelium

[6,19]) or the a subunit (for photo- and olfactory-transduction

[7,9]) can activate the downstream processes. The activity of the

guanosine triphosphatase (GTPase) hydrolizes the GTP which

detaches from the a subunit. Subsequently, the a subunit can re-

bind the bc subunits, thus reassembling the G-protein [20].

All bacterial and eukaryotic adaptation pathways share the

consumption of energy by hydrolysis of fuel molecules, including

S-adenosyl methionine (SAM) in bacterial chemotaxis, and cyclic

adenosine and guanosine monophosphate (cAMP and cGMP) in

eukaryotes [10]. These observations led to the conclusion that

energy consumption is an essential ingredient in precise adaptation

[10] (see Fig. 1, middle panel, for a definition). However, ancient

protocells might have been able to respond and adapt to stimuli

without this requirement, with molecular components added later

by evolution, to produce the currently observed pathways. As it

turns out, our protocell models, which only rely on equilibrium

physics for the cellular components, may help unravel some of the

signaling complexity in eukaryotic cells.

Equilibrium adaptation models of protocells
Here, we present two minimal models in which a protocell

exploits the non-equilibrium aspect of the changing external

environment to respond and adapt to a stimulus without

consuming (dissipating) energy itself. The first model contains

only one component, represented by a receptor on the cellular

membrane (Fig. 2a, left). This receptor includes two sensing

regions: the first binds extracellular ligand, the second mediates

intracellular sensing and adaptation. As soon as the (extracellular)

ligand arrives at the cell surface, the receptor binds and starts

signaling. However, the stimulus molecules are also able to

permeate the cellular membrane, e.g. via passive pores, and to

consequently bind additionally to the intracellular region of the

receptor. This second binding blocks the signaling activity of the

receptor, thus precisely counteracting the activation due to the

extracellular binding.

In case the external stimulus cannot be used to mediate

adaptation, e.g. for photo-transduction, a second model with two

components is needed (Fig. 2b, left). The first represents the

receptor, which senses the extracellular stimulus and, upon

stimulation, releases two intracellular subunits, a and b. The a

subunit is smaller and can diffuse faster than the b subunit. The

second component is a membrane-bound protein, able to respond

to the binding of the a and b subunits. In particular, the binding of

a to this second protein causes an increase of its signaling activity,

while the binding of b exactly compensates for it, and hence turns

signaling off.

Precise adaptation at no cost
One-component model. Let us assume the cell is initially

equilibrated to concentration c0 and then the external concentra-

tion is suddenly changed to ce. The resulting difference in

concentration between inside and outside the cell equilibrates

following the solution of the diffusion equation with spherical

symmetry (hypothesizing that the cellular membrane is sufficiently

permeable) [21]

ci(t){ce

c0{ce

~{
2

pr

X?
m~1

({1)m

m
:sin(mpr)e

{m2p2Dt
r0

2
, ð1Þ

where ci(t) is the internal concentration at time t, c0 and ce are the

respective initial internal and external concentrations, r0 is the

radius of the cell, D the diffusion coefficient, and r~(r0{lrec)=r0

the normalized radius corresponding to the inner length of the

receptor lrec (see Fig. 3a for a schematic). We further assume that

external ligand binding favors the receptor off (inactive) state (with

ligand dissociation constants Ke
off %Ke

on) and that the internal

ligand binding favors the on (active) state (Ki
on%Ki

off ), in order to

compensate for external ligand binding during adaptation. For

simplicity, we consider Ke
off ~Ki

on~K1 and Ke
on~Ki

off ~K2.

The corresponding free-energy difference of the single receptor

and the activity associated with it become (using equilibrium

Boltzmann statistics) [13]

Df ~fon{foff ~ln
1zce(t)=K1

1zce(t)=K2

� �
zln

1zci(t)=K2

1zci(t)=K1

� �
ð2Þ

A~
1

1zeDf
ð3Þ

with energy in units of kBT .

Fig. 3b shows adaptation of the one-component model to an

extracellular concentration-step change as input, ce(t) (left). The

intracellular concentration response ci(t) due to the diffusive

process for different lengths of the inner side of the receptor

(middle) allows the activity output, A, to adapt precisely at no

cost for the cell (see Figs. S1-S4 in Text S1 for additional

results).

Two-component model. The second model also relies on

equilibration for adaptation, albeit by an all-internal mechanism

(see Fig. 3c). The external concentration ce becomes the input for

the first component - the receptor, which responds to the

transmembrane free-energy difference by changing its activity.

In particular, its free-energy difference and activity are, respec-

tively,

Df1~szln
1zce(t)=KD

off

1zce(t)=KD
on

� �
ð4Þ

Author Summary

Adaptation is a common feature in sensory systems, well
familiar to us from light and dark adaptation of our visual
system. Biological cells, ranging from bacteria to complex
eukaryotes, including single-cell organisms and human
sensory receptors, adopt different strategies to fulfill this
property. However, all of them require substantial
amounts of energy to adapt. Here, we compare the
different biological strategies and design two minimal
models which allow adaptation without requiring energy
consumption. Schemes similar to the ones we proposed in
our minimal models could have been adopted by ancient
protocells, that have evolved into the pathways we now
know and study. Analyzing our models can thus help
elucidate the advantages brought to the cells by
consumption of energy, including the bypassing of hard-
wired cell parameters such as diffusion constants with
increased control over time scales.

Unraveling Adaptation in Eukaryotic Pathways
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A1~
1

1zeDf1
: ð5Þ

Parameter sw0 represents the bias towards the off state in

absence of external stimulus, and the contribution of the binding

energy of the a and b subunits on the cytoplasmic domain of the

receptor. The concentration of a and b, released by the first

component, is set proportional to the activity A1.

The solution of the diffusion equation, Eq. (1), is then used to

represent the diffusive process of a and b molecules from the

receptor to the second component. The free-energy difference

and the activity of the second component are calculated as

Df2~ln
1z ca(t)

LD

1z
cb(t)

LD

0
@

1
A ð6Þ

A2~
1

1zeDf2
, ð7Þ

where, for simplicity, we assume K
off
Da ~Kon

Db~LD and

Kon
Da~K

off
Db ~? (see Text S1 for details).

Fig. 3d shows adaptation of the two-component model. The

outer concentration is followed by activity A1 of the first

Figure 1. Schematic description of adaptation pathways and their properties. (a) Bacterial chemotaxis. Attractant molecules bind to
chemoreceptors, which cluster due to adapter protein CheW and kinase CheA, responsible for phosphorylation of CheY and hence regulation of the
flagellar motors. CheR and CheB (activated by CheA) mediate adaptation by methylating and demethylating receptors, respectively [43]. (b)
Dictyostelium chemotaxis, as related to the production and sensing of cAMP. After the binding of cAMP to the receptor, the G-protein complex
dissociates [6] and RasG protein is activated [15,44]. The adenylyl cyclase (AC), possibly through the PI(3,4,5)P3 pathway [6,45], is activated, and
produces cAMP, secreted for cell aggregation. The concentration of cAMP is also increased through ERK2, which inhibits the phosphodiesterase (PDE)
RegA, in turn hydrolyzing cAMP. This pathway is inhibited by PKA, activated by cAMP [19,45,46]. (c) Photo-transduction. Light activates rhodopsin
(Rh�) and, following a G-protein cascade, phosphodiesterase hydrolyzes cGMP. At low PDE levels (in the dark), cGMP allows the influx of Ca2z

through cyclic nucleotide-gated channels (CNGC). Adaptation is mediated via Ca2z-dependent feedback loops: inhibition of GC, phosphorylation of
Rh� , and CNGC [9]. (d) Olfactory-transduction. Odorant binds to the G-protein coupled olfactory receptor, activating AC to produce cAMP, causing
the opening of CNGC. The influx of Ca2z opens chloride channels to amplify signal. Several Ca2z-dependent feedback mechanisms mediate
adaptation: inhibition of AC, CNGC and cAMP [7,8]. (central panel) Response of an adaptive system to a step stimulus, and characteristic features
considered here, with I~ ((y2{y1)=y1)j j and S~ ((ymin{y1)=y1)=((u2{u1)=u1)j j [47].
doi:10.1371/journal.pcbi.1003300.g001

Unraveling Adaptation in Eukaryotic Pathways

PLOS Computational Biology | www.ploscompbiol.org 3 October 2013 | Volume 9 | Issue 10 | e1003300



component, which does not adapt (left). However, the ratio in the

concentrations of a and b, as sensed by the second component

after diffusion (middle), allows the activity A2 to adapt precisely

(right). Hence, similar to the one-component model, also the two-

component model achieves precise adaptation, just relying on

diffusion of the a and b subunits at no energy cost (see Figs. S8-S11

in Text S1 for additional results).

Energy dissipation. Our models do not require energy

consumption, but achieve adaptation by means of the external

energy provided by the stimulus. Fig. 4a shows the resulting

energy-dissipation rate of the one-component model, which

confirms that most energy is dissipated right after the step change

with the rate decreasing to zero during equilibration. In contrast, a

biologically regulated system constantly dissipates internal energy.

To illustrate this, we consider the linear bacterial chemotaxis

model introduced in [22]

dm

dt
~gR(1{A){gBA ð8Þ

with m the receptor-methylation level, gR and gB the methylation

and demethylation rate constants depending on enzymes CheR

and CheB, and A the receptor activity. To obtain a precisely

adapting non-equilibrium process, we add reverse reactions to Eq.

(8). To compare this with an imprecisely adapting equilibrium

process we use a similar equation, which, however, now depends

on m instead of A (see Methods for a detailed description of this

model). From Fig. 4b it emerges clearly that in bacterial

chemotaxis there is a trade-off between energy consumption and

precision in adaptation, i.e. energy consumption is required to

achieve a high degree of precision [10].

Fig. 5 illustrates the sources of energy dissipation. In bacterial

chemotaxis (Fig. 5a), receptors are constantly being modified, even

in the adapted steady state. At a given ligand concentration,

demethylated receptors tend to be inactive. Once inactive,

receptors become methylated by the action of CheR. Once

methylated, receptors tend to be active, and subsequently become

demethylated by CheB. The whole process represents a futile

cycle, driven by the (nearly) irreversible methylation and

demethylation reactions, which do not satisfy detailed balance.

In stark contrast, in our one-component model depicted in Fig. 5b,

all reactions are equilibrated when adapted (and similarly in our

two-component model). Specifically, inactive receptors are ‘‘mod-

ified’’ by the influx of ligand, which after binding to the receptors

establishes an equilibrium between active and inactive states. The

influx is, however, counterbalanced by the efflux (and thus the

unbinding) of ligand, which again is accompanied by equilibration

of the receptors. Only when the external ligand concentration

changes, detailed balance is temporally broken. When the external

concentration of ligand is increased, the activity drops, followed by

an influx of the ligand through the membrane. This is followed by

ligand binding on the intracellular site of the receptor, which then

restores the equilibrium activity state (orange dashed line). If the

extracellular concentration is subsequently decreased back to the

initial level, the activity increases, followed by an efflux of the

ligand and restoration of the equilibrium activity state (yellow

dashed line). Any energy dissipation is paid for by the environ-

ment, not by the cell.

Adaptation time and fold-change detection
How do these minimal models compare with data from actual

adaptation mechanisms? The adaptation time, a measure of the

speed of adaptation, can be defined as the time required for the

response to return back to half of the displacement from the

prestimulus value (see Fig. 1 for a graphical explanation).

Experimentally measured adaptation times vary from seconds to

minutes: adaptation in bacterial chemotaxis by receptor methyl-

ation can take up to hundreds of seconds for very large stimuli

[23,24] and similarly for cell-internal adenylyl cyclase ACA in

Dictyostelium chemotaxis [25] (although cGMP and activated RasG

can be significantly faster [15,26]). In contrast, adaptation of the

transmembrane currents in the olfactory- [27] and photo-

transduction [28] pathways is faster (a few seconds).

Another important feature of adapting systems is fold-change

detection (FCD), which allows cells to interpret chemical gradients

irrespective of scale [29]. Specifically, when applied to a step

change in concentration, the output response should only depend

on the fold change in the input; if the input is rescaled by a

multiplicative factor, the output should remain exactly the same

for every time point considered. This feature entails both exact

adaptation (that the system returns exactly to the prestimulus

value) and Weber’s law (that the smallest detectable stimulus is

proportional to the background stimulus), but it is not implied by

either or both of them. Bacterial chemotaxis, despite considerable

energy consumption, indeed exhibits fold-change detection [30].

Olfactory- and photo-transduction do not adapt perfectly, and

thus do not satisfy FCD.

Fig. 6 shows the results for the adaptation time and FCD for the

one-component system (see also Figs. S5-S7 in Text S1; the two-

component behaves very similarly, see Figs. S12, S13 in Text S1).

The adaptation time in response to a positive step decreases with

increasing size (Fig. 6a), while the response to a negative step has

the opposite behavior (Fig. 6b). This can be explained within our

Figure 2. Minimal adaptation models. (a) One-component model.
(left) The receptor on the cell membrane has two ligand-binding sites,
one extra- and one intracellular. Upon extracellular ligand binding, the
receptor signals, but stops when ligand has permeated the membrane
and binds intracellularly to the receptor. (right) Schematic diagram of
corresponding incoherent feedforward loop with ci the slow interme-
diate species mediating adaptation. (b) Two-component model. (left)
The first component is a receptor, comprising an extracellular binding
site for ligand, and an intracellular domain to which two subunits, a and
b, are bound. The second component is responsible for downstream
signaling. When the receptor is stimulated (e.g. by ligand or light) the a
and b subunits are released and diffuse towards the second
component. Since diffusion of a is faster than that of b, a binds first
to the second component, which starts signaling until b binds. (right)
Schematic diagram of corresponding incoherent feedforward loop with
two intermediate species a and b. Species b diffuses more slowly than a
and mediates adaptation.
doi:10.1371/journal.pcbi.1003300.g002

Unraveling Adaptation in Eukaryotic Pathways
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intuitive, minimal model: since Koff
e %Kon

e for extracellular

binding (and vice versa for the intracellular), in response to a

positive step, ligand strongly binds to the off-state and weakly to

the on-state of the extracellular domain of the receptor. As a result,

the state of the receptor switches from on to off. When the ligand

enters the cell, even a small concentration is enough to bind

intracellularly the receptor in the on-state, turning it on. Therefore

adaptation is fast, and the adaptation time decreases with

increasing input steps due to the increased ligand gradient and

flux. On the contrary, after a negative step, the state of the

receptor is on with a high intracellular concentration of ligand, and

thus for the receptor to switch off, the intracellular concentration

has to decrease below the (small) intracellular Kon. In this case, the

larger the initial intracellular concentration the greater the time

required to reach a small intracellular ligand concentration; the

adaptation time consequently increases.

The experimental adaptation times behave very differently (see

insets of Fig. 6a,b for a comparison with the slowest adaptation

time course of the one-component model). In particular, in most of

the experimental data, the adaptation time in response to a

positive step tends to increase with increasing step size (although

activated RasG in Dictyostelium chemotaxis has the opposite trend

[15]). In bacterial chemotaxis, this trend can be traced back to a

maximal, saturated rate of receptor modification during adapta-

tion [13,24]. Interestingly, the bacterial chemotaxis data we

considered in response to a negative step exhibit a ‘‘stereotypical

Figure 4. Comparison of energy-dissipation rates. (a) One-
component model in response to the step stimulus depicted in inset,
with a concentration-step change from 1 to 1.5 mM. (b) Steady-state
value for the bacterial chemotaxis (BC) model described in Methods and
corresponding activity profiles (inset). Equilibrium fraction (parameter w
in inset) represents ratio of equilibrium and non-equilibrium contribu-
tions (see Methods).
doi:10.1371/journal.pcbi.1003300.g004

Figure 3. Implementation of the minimal models in protocells. (a) One-component model, with ce and ci the extracellular and intracellular
concentrations, r0 the radius of the cell, and lrec the length of the receptor. (b) Simulation results for the one-component model showing time courses
of stimulus ce (left), inner concentrations ci (middle), and activity (right) for different relative receptor lengths r~(r0{lrec)=r0 , with r0~5mm,
D~3mm2=s, K1~0:02mM and K2~0:5mM. (c) Two-component model, with lrec the length of the second component. (d) Simulation results for the
two-component model. Shown are outer concentration ce (left axis) and activity of the first receptor (right axis) (left), a and b concentration ratio as
bound to the second component (middle), and activity of the second component (right) for different relative receptor lengths r, with r0~5mm,

Da~300mm2=s and Db~8mm2=s, Kon
D ~0:02mM, K

off
D ~0:5mM, and LD~0:02mM.

doi:10.1371/journal.pcbi.1003300.g003

Unraveling Adaptation in Eukaryotic Pathways
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Figure 5. Equilibrium vs. non-equilibrium processes in adaptation. (a) Bacterial chemotaxis model with two activity states (A~0 and 1). For
simplicity only one methyl-group (green diamond) is shown, added by CheR and removed by CheB. The red arrow represent the futile cycle
undertaken when adapted. (b) One-component model with different receptor states. Influx and efflux describe the continuous entering and leaving of
ligand, and the green disc represents internally bound ligand (external ligand is not shown). When adapted all individual reactions are equilibrated
and satisfy detailed balance. Dashed arrows represent the breaking of detailed balance in response to an increase (orange arrow) or a decrease
(yellow arrow) of external ligand concentration.
doi:10.1371/journal.pcbi.1003300.g005

Figure 6. Adaptation time and fold-change detection. (a) Adaptation time of the one-component model in response to a positive step of
increasing size for different relative receptor lengths (from 0 mM to 0.1, 0.5, 1, 2, 3, 5 mM). (inset) Experimental adaptation-time data from bacterial
chemotaxis (BC, tumble bias from Fig. 2 of [31]), Dictyostelium (DC, adenylyl cyclase ACA from Fig. 4C of [25]), photo-transduction (PT, transmembrane
current from Fig. 6B of [48]), olfactory-transduction (OT, transmembrane current from Fig. 1a of [27]). (b) Adaptation time of the one-component
model in response to a negative step of increasing step size (same concentrations as in (a)). (inset) Comparison with the experimental BC data. (c–d)
Input concentration (c) and activity (d) for a step from 0.1 to 0.5 mM (gray line) and a step from 0.2 to 1 mM (black dashed line). Although the input
concentration is doubled, the two activity profiles superimpose almost exactly.
doi:10.1371/journal.pcbi.1003300.g006

Unraveling Adaptation in Eukaryotic Pathways
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response’’, with an adaptation time independent of the amplitude

of the stimulus, reflecting a more complicated and highly activated

demethylation reaction [22,31]. Finally, Fig. 6c,d shows that fold-

change detection is almost perfectly satisfied by our minimal

model, demonstrating that even a simple model is capable of

producing sophisticated sensory features.

Precision, sensitivity and response time
To further compare our minimal adaptation models with data,

we consider three additional characteristics of adaptation. Sensitivity

represents the relative change of the output response with respect

to a change in input stimulus (see Fig. 1). Both our one- and two-

component models display small sensitivity values and dynamic

ranges when compared with the experimental data available for

bacterial chemotaxis and photo-transduction (see Fig. 7a). This

discrepancy can be understood considering that chemoreceptors in

bacteria are known to cluster to increase their sensitivity.

Additionally, receptor types with different ligand-binding strengths

are known to extend the dynamic range of sensing [13,24]. These

strategies could also be exploited in our equilibrium-physics

models, but making clusters of different receptor types would

nonetheless cost energy for the cell, even if this is paid for during

cell growth and thus is not directly connected with sensing.

The response time is the time interval between the onset of the

stimulus step and the peak amplitude of the response (see Fig. 1).

Fig. 7b shows that the response of the one-component model is

instantaneous, and is therefore similar to the fast bacterial

chemotaxis response, while the two-component model resembles

the slower eukaryotic responses. Both in our one-component

model and bacterial chemotaxis, the response is mainly deter-

mined by a ‘‘conformational’’ change in the receptor, which is

very fast (ns-ms) [32]. In contrast, eukaryotic responses involve long

cascades based on diffusion. Consistently, in both our simulations

and the experimental data, the response time does not depend on

the background stimulus, as this time is determined by the speed of

cellular components.

Considering the steady state after adaptation to a step change,

we can distinguish the level of precision of adaptation. In

particular, if we define the imprecision as presented in Fig. 1, we

notice that both our one- and two-component models are perfectly

precise, i.e. the steady state of the system is independent of the

stimulus strength, even for large stimuli (Fig. 7c). This does not

occur for bacterial chemotaxis, which is perfectly adapting for

small background stimuli but loses precision with increasing

stimulus strength. While our minimal models are precisely adapted

when fully equilibrated, precision in bacterial chemotaxis is

regulated by a non-equilibrium pathway with constraints, e.g.

from the finite number of methylation sites. The same trend of

imprecision is present in photo-transduction, which is not even

fully precise at small background stimuli. This may be explained

considering that the photo- and olfactory-transduction pathways

(see Fig. 1 of [27]) represents only the first stage of a complex

response, and consequently the output signal of these pathways

undergoes further processing and error corrections. The Dictyos-

telium adenylyl cyclase activity shows a constant 33% imprecision

independent of stimulus strengths (Fig. 7c). Note however that

cGMP (Fig. 2A of [26]) and activated RasG (Fig. 2A of [15])

exhibit near perfect adaptation (data not shown in Fig. 7c).

Spatial gradient sensing
When considering adaptation in Dictyostelium chemotaxis, it is

worth noting that cells do not respond to step changes but to

spatial gradients. In particular, even if the models we are

considering do not include cell motility, we can nevertheless study

the response to those stimuli: approximating the cell by a round

circle in a 2D plane with an initial homogeneous internal ligand

concentration, we simulated the response of the one-component

model when the external ligand concentration changes linearly in

space across the cell length. Fig. 8a shows the spatial distribution of

the attractant at different times due to slow diffusion across the

membrane. The internal concentration and receptor-activity time

courses at the cell rear (minimal external concentration) and at the

cell front (maximal external concentration) for different receptor

lengths are depicted in Fig. 8b and d, respectively. Also in spatial

sensing the activity of the receptors adapts perfectly along the cell

circumference.

To quantify directional sensing we consider the dipole moment

m of the receptor activity, defined as the sum of the activity on the

cell circumference weighted by the normalized x position along

the gradient:

m~

þ
x

r0
½A(t){Ass�, ð9Þ

where Ass represents the adapted steady-state activity. The initial

response of m is strong but then vanishes completely with

Figure 7. Sensitivity, response time and imprecision. (a) Sensitivity, as defined in Fig. 1, for the one-component (light blue) and two-
component (dark blue) models in response to a step increase of 50% in concentration, with prestimulus values from 0.01 to 100 mM. Bacterial
chemotaxis (BC) and photo-transduction (PT) data of, respectively, receptor activity from in vivo FRET and transmembrane current are taken from
Fig. 3B of [49] (20% step change) and Fig. 6B of [48]. (b) Response time, as defined in Fig. 1, and its dependence on the background stimulus. Shown
are the one-component model (dashed line), two-component model (dark blue), as well as Dictyostelium data (DC) of ACA calculated from Fig. 4C of
[25], olfactory-transduction transmembrane current data (OT) from Fig. 1a of [27], and photo-transduction transmembrane current data (PT) from
Fig. 6B of [48]. (c) Imprecision, as defined in Fig. 1, for the one- and two-component model, BC data in response to MeAsp from Fig. 2c of [50],
Dictyostelium data (DC) of ACA from Fig. 4C of [25] and transmembrane current PT data from Fig. 6B of [48].
doi:10.1371/journal.pcbi.1003300.g007
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adaptation of the receptors (see Fig. 8c, top). Although the

response ceases, the internal gradient remains, thus representing

the cell’s degree of polarization (Fig. 8c, bottom). The results of the

two-component model are shown in Text S1.

Discussion

In this work we analyzed and compared adaptation pathways

from very different organisms, ranging from bacteria to eukary-

otes. All these pathways require energy in order to adapt [10].

Here, we showed that it is possible to build minimal adaptation

mechanisms without the need of energy consumption by the cell,

as possibly relevant for ancient protocells. Despite their extreme

simplicity, our two minimal models can help elucidate some

aspects of complex signaling pathways.

Known transmembrane receptors in eukaryotes are grouped

into ionotropic and metabotropic receptor types. Ionotropic

receptors are characterized by a direct response, much as an

ionic channel changing its conformation (such as opening or

closing) in response to an extracellular stimulus. A direct activation

of this kind is similar to the conformational change-based

mechanism in the bacterial chemotaxis pathway. In contrast,

metabotropic receptors are more sophisticated: triggering of the

receptor activates a cascade, usually a G-protein, leading to a

change of second messenger concentration. This often involves

complex feedback mechanisms [6]. The influx/efflux of these

second messengers, together with the current flowing through any

ion channel activated by them, produce a change in membrane

potential, which usually represents the output of the pathway. All

the eukaryotic examples presented in this work fall into this

category (Fig. 1b–d).

Our two minimal models directly relate to metabotropic

signaling pathways. The one-component model functions by

means of a small diffusible ligand, which can permeate through

the membrane. This is somewhat comparable to the presence of

cAMP both inside and outside starving Dictyostelium cells and to the

inflow of Ca2z in photo- and olfactory-transduction. In addition,

in both our one-component model and the Dictyostelium pathway

this ligand is responsible for both sensing and adaptation. cAMP is

not only outside and inside the cell, but also follows the external

stimulus (Fig. 5B of [25]) and thus can be considered mediating

adaptation of the adenylyl cyclase ACA (Fig. 4C in [25]). In

contrast, the two-component model involves the detaching of the

two subunits, a and b, from the receptor after its activation,

precisely resembling the dissociation of the a and the bc subunits

Figure 8. Gradient sensing in the one-component model. (a) Intracellular (ci) and extracellular (ce) ligand concentration in the x{y plane for
different times. Initially, the concentrations are homogeneously 0.5 mM. When the linear gradient is applied, this is changed to 0 mM at the cell rear
at ({5mm,0) and 1 mM at the cell front at (5mm,0). (b) Internal concentration (top) and activity (bottom) time courses for different receptor lengths at
the cell rear. (c) Directional sensing (top), as defined in Eq. (9), and polarization (bottom) for different receptor lengths. Polarization is defined as the
difference between internal concentrations at positions ({5mmzlrec,0) and (5mm{lrec,0), normalized by the concentration at (0,0). (d) Internal
concentration and activity time courses for different receptor lengths at the cell front. See Methods for a more detailed description.
doi:10.1371/journal.pcbi.1003300.g008
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in Dictyostelium, photo- and olfactory-transduction pathways.

Similar to the cAR1 receptor and G-protein in Dictyostelium [20],

the first component of the two-component model does not adapt,

leaving the adapting response to the second component, the latter

resembling the time course of adenylyl cyclase ACA. The network

motif effectively implemented in both minimal models is the

incoherent feedforward loop (see Fig. 2, right panels), which is

encountered in the Dictyostelium pathway as well [15]. This design

principle can easily be identified through the presence of a slow

inhibitory process, which is the transmembrane diffusion of the

ligand in the one-component model and the diffusion of the b

subunit in the two-component model.

An important difference between the biological signaling

pathways and our minimal models is the source of energy

dissipation. Unlike our minimal models, cells have to pay for their

significant energy costs. Hence, what are the advantages which

may have led to the evolution of biological non-equilibrium

pathways? A first drawback of our models is that they exhibit a low

sensitivity and dynamic range (Fig. 7a). However, as already

mentioned, this could be amended by introducing receptor

complexes of different receptor types [24]. A more serious

constraint of our equilibrium models is that the response and

adaptation times are determined by diffusion constants which

cannot easily be adjusted by the cell. Furthermore, the one-

component model requires the external stimulus to enter the cell,

while modern energy-consuming pathways generally separate

external sensing from internal signaling, thus avoiding that toxic

chemicals enter the cell to mediate adaptation.

Why do G-protein cascades employ small fast diffusible

molecules with little spatial control to mediate adaptation? A

possibility is stimulus amplification since active G-protein subunits

can further activate many downstream signaling molecules

[33,34]. In addition, eukaryotic cells are often highly specialized,

as in the case of olfactory receptor neurons and photoreceptors,

and thus the low specificity of these small molecules is

compensated by the high specificity of the cell types. Alterations

in transmembrane potential also permits fast and reliable electrical

transmission through excitation, typical of neurons.

Some molecular species of our minimal models may represent

‘‘fossils’’, remnants of ancient protocells in current adaptation

pathways. For instance, the role of the ‘‘non activating’’ G-protein

subunit remains unclear in eukaryotic signaling [19]. Others may

have taken on new roles: GTP binding and hydrolysis may have

introduced a ‘‘timer’’ into the pathways, promoting the reassoci-

ation of the G-protein complex and thus the termination of the

downstream activation. The consequence may be a bursty,

frequency modulated signaling, with the advantage of being more

accurate for both sensing and encoding [35–37].

In conclusion, our simple schemes for perfect adaptation are

energy efficient, but evolution may have replaced them by energy-

consuming pathways to increase adjustability and control of the

response and adaptation times for the cells’ changing needs.

Similar to kinetic proofreading, in which the probability of a

correct output is increased through repeated cycles [38–40],

adaptation pathways could represent schemes in which cells

improve the control and robustness of the response by exploiting

energy expenditure for enhanced fitness.

Methods

Energy dissipation of one-component model
For a process described by forward (rz) and reverse (r{) rates,

the entropy production rate is given by [41]

dS

dt
~(rz{r{)ln

rz

r{

� �
§0, ð10Þ

with entropy in units of the Boltzmann constant kB. For our one-

component model, following Fick’s first law, rz~Dce(t)=hm and

r{~Dci(t)=hm, with D~3mm2=s the diffusion constant of the

ligand, and hm~10nm the membrane thickness, leading for the

total cell of radius r0 to

dS

dt
~4pr2

0D
ce(t){ci(t)

hm

� �
ln

ce(t)

ci(t)

� �
, ð11Þ

which is equal to 0 at steady state (i.e. when ce~ci), and w0 only

when a concentration gradient across the membrane is present.

The energy dissipation rate corresponds to Eq. (11) multiplied by

the temperature T of the system.

Energy dissipation vs precision in bacterial chemotaxis
Equation (8) for precise adaptation [22] can be generalized to

include both the forward and reverse reactions

dm

dt

����
nonequ

~gR(1{A){g{RA{½gBA{g{B(1{A)�, ð12Þ

where the first two terms represent the contribution of CheR, and the

last two the contribution of CheB. The reverse rate constants, g{R and

g{B, can be adjusted to keep the net fluxes gR(1{A)
{g{RA&0 and gBA{g{B(1{A)&0 at steady state, such that

the net actions of CheR and CheB are methylation and demethylation,

respectively. We used parameters gR~0:0069s{1 [22], g{R~

0:1:gR, gB~0:11s{1 [22], g{B~0:1:gB. To describe imprecise

adaptation in response to a stimulus of concentration c, we consider

dm

dt

����
equ

~lRc(mmax{m){l{Rcm{½lBm{l{B(mmax{m)�, ð13Þ

which does not dissipate energy when rate constants lR, l{R, lB, l{B

fulfill equilibration conditions lR(mmax{m){l{Rm~0 and

lBm{l{B(mmax{m)~0. Here, we chose lR~l{R~0:1M{1s{1

and lB~l{B~0:001s{1 (this leads to equilibrium for m~mmax=2).

Since the dynamics of the methylation level does not depend on the

activity, Eq. (13) leads to imprecise adaptation. Equations (12) and (13)

can be considered two components of the same system. By combining

them through a parameter w, we can describe their relative

contributions

dm

dt
~(1{w)

dm

dt

����
nonequ

zw
dm

dt

����
equ

: ð14Þ

Following Eq. (10), summing over the different reactions and neglecting

the contributions of phosphorylation of CheB and CheY, the

corresponding entropy-production rate is given by

dS

dt
~Nrec (1{w)

dS

dt

����
nonequ

zw
dS

dt

����
equ

" #
, ð15Þ

with Nrec~15,000 the approximate number of receptors in a

bacterium [42]. By moving w from 0 to 1, this system becomes

gradually imprecise and approaches equilibrium (see Fig. 4b).
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Gradient sensing simulations
To simulate the response of the one- and two-component

models we considered a two-dimensional cell and numerically

solved the diffusion equation where the boundary conditions at a

distance r0 from the center are given by a gradient in the x
direction, with 0 mM corresponding to the minimal concentration

at x~{5mm and 1 mM corresponding to the maximal concen-

tration at x~5mm. Both the creation of the mesh and the solution

of the equation were obtained by means of the Partial Differential

Equation Toolbox of MATLAB (The MathWorks, Inc., Natick,

Massachusetts, United States).

Supporting Information

Text S1 Supporting information including analytical derivations,

additional figures for the two minimal models, fold-change

detection, and gradient sensing for the two-component model.

(PDF)
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