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Abstract: Membrane distillation (MD) is a promising desalination technology for the treatment of
high salinity water. Here, we investigated the fouling characteristics of produced water obtained
from hydraulic fracturing by implementing a carbon nanotube immobilized membrane (CNIM)
via direct contact membrane distillation. The CNIM exhibited enhanced water vapor flux and
antifouling characteristics compared to the pristine membrane. The normalized flux decline with the
polytetrafluoroethylene (PTFE) membrane after 7 h of operation was found to be 18.2% more than
the CNIM. The addition of 1-Hydroxy Ethylidene-1, 1-Diphosphonic acid (HEDP) antiscalant was
found to be effective in reducing the membrane fouling. The salt deposition on the membrane surface
was 77% less in the CNIM, which was further reduced with the addition of HEDP in the feed by up
to 135.4% in comparison with the PTFE membrane. The presence of carbon nanotubes (CNTs) on
the membrane surface also facilitated the regenerability of the membrane. The results indicated that
the CNIM regained 90.9% of its initial water flux after washing, whereas the unmodified PTFE only
regained 81.1% of its initial flux after five days of operation.

Keywords: produced water; membrane fouling; membrane distillation; carbon nanotube;
antiscalants; desalination

1. Introduction

Hydraulic fracturing or fracking employs horizontal drilling techniques to release oil and
hydrocarbon by injecting high pressure water containing particulates and chemical additives. A major
problem with fracking is the large volume of wastewater it generates, both initially as “frac” flow
back, and over time as produced water. The U.S. alone generates approximately 25 billion barrels
per year from oil and gas activities [1]. This amount is increasing as fracking activities expand.
At the same time, options for waste water disposal are narrowing, putting oil and gas operations
in jeopardy. Water pollutants in frack and produced water include dissolved solids, oil and grease,
suspended solids, volatile organics, heavy metals, dissolved gases, chemical additives such as scale
and corrosion inhibitors, guar gum and emulsion/reverse-emulsion breakers [2,3]. After the recovery
of some of the additives, desalination and total dissolved solids (TDS) removal remain the major
challenge, especially as the concentration can be as high as 350,000 mg/L, that is, ten times higher than
sea water [4].

The two major approaches to desalination (or desalting) are thermal distillation and membrane
separation. In the former, the saline water is boiled using thermal energy and re-condensed.
Commercial thermal distillation methods such as multistage flash (MSF), multi-effect (ME) distillation
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and mechanical vapor compression (MVC) have relatively large footprints and require significantly
higher investments. On the other hand, membrane processes have lower capital and operating costs
and the most common desalination technique is reverse osmosis (RO) [5]. Some of the limitations
of RO result from the increase in osmotic pressure at high salt concentrations, which often makes it
ineffective for treating highly saline water (concentrations above 70,000 ppm). Moreover, the dense
hydrophilic membranes used in RO tend to foul easily, which leads to low water production and
reduced membrane life. Therefore, RO often requires extensive pretreatment such as water softening,
which increases both capital and operational expenses. Therefore, there is an urgent need to develop
new membrane-based techniques for treating oil and gas industry produced water [6,7].

At this point, the two most viable techniques for treating high salinity water appear to be
forward osmosis (FO) [8,9] and membrane distillation (MD) [10,11]. Although, FO exhibits promising
results, the regeneration of draw solution and recovery of pure water requires additional separation
processes [12,13]. On the other hand, MD is a thermally driven desalination technology that has already
shown steady improvement in the design of membranes and in its technical performance [14,15].
Previous studies have shown that MD has the potential to achieve a salt rejection rate of up to
99.9% [16,17] and to remove 99.5% of the organic materials [18]. Moreover, the low operating
temperature (from 60 to 90 ◦C) of MD also makes it ideally suited for integration with renewable energy
sources such as solar or low grade industrial waste heat sources [19,20] such as flare gas at oil fields [6].

Recently, polymeric membrane modification through the incorporation of nanomaterials (NMs)
has led to improved water permeability and removal efficiency. These NM-enabled membranes
are able to address some common limitations of conventional membranes, such as low flux and
fouling [21,22]. Robust, free standing porous TiO2 nanowire membranes employed in water treatment
applications have shown improved photocatalytic degradation of environmental pollutants [23] and
Fe-based polymer nanocomposite membranes have been successfully fabricated via electrospinning to
remove Cd2+ ions from water [24]. Carbon nanotube (CNT)-based composite membranes have shown
exceptional separation performance due to the unique properties of CNTs, such as the high aspect
ratio, atomic scale smoothness and chemical inertness and sorption properties that play critical role in
the transport of water molecules [25]. Our group has fabricated carbon nanotube-based membranes
using the simple approach of immobilizing the nanotubes on porous supports, and have reported their
application in a variety of separations ranging from pervaporation, extraction to nanofiltration [26–29].
The physicochemical interaction between the water molecules and the membrane can be dramatically
altered by immobilizing CNTs on the membrane surface [30–32]. First, CNTs are excellent sorbents
that have surface areas between 100 and 1000 m2/g [33]. Many factors, such as the presence of
defects, capillary forces in nanotubes, the polarizability of the honeycomb graphene structure lead
to strong H2O vapor/CNT interactions; and the absence of a porous structure leads to high specific
capacity while facilitating fast desorption of large molecules. It is anticipated that the carbon nanotube
immobilized membrane (CNIM) will provide higher flux in the treatment of produced water [34,35].
A major obstacle in the widespread use of membrane technologies during the treatment of high salinity
water is membrane fouling [36,37] due to the deposition of suspended or dissolved substances on the
membrane surface and/or within its pores [38,39]. This is particularly true for produced water that
contains high levels of salts, ions and metals. With a high concentration of CaCO3 and different cations
at near saturation level, any membrane process including MD is expected to foul rapidly. Recently,
we reported that CNIM shows relatively lower fouling as the CNTs act as nano-brushes that prevent the
salt crystals from depositing on the surface [40]. The CNIM has shown high salt tolerance compared to
pure polymeric membranes and has been used to treat water with TDS as high as 230,000 mg/L [41].

The use of antiscalant has also been reported to be beneficial in RO and other processes by
reducing scaling of different salts [42,43]. Various types of antiscalants including acids, bases, enzymes,
surfactants, disinfectants and combined cleaning materials has been employed in membrane separation
processes [44,45]. The choice of antiscalants depends on the nature of treated water. During oil and gas
extraction, a large volume of waste water referred to as “produced water” is generated as a byproduct
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of the drilling operation, which needs to be treated to minimize the environmental damage. The quality
of the produced water varies depending upon the geographical location, and the total dissolved solids
concentration can reach as high as 300,000 mg/L, which poses a significant challenge. Therefore, there is
growing interest in possible options for treatment or reuse of this water. Produced water contains
iron-based components that deposit on the membrane surface even with relatively low concentrations
of iron in the feed side. 1-Hydroxy Ethylidene-1, 1-Diphosphonic acid (HEDP) is a threshold inhibitor
based on phosphonic acids (or their salts), which have the added advantage of sequestering iron in
a stoichiometric reaction [46–48]. This is important in membrane applications as any soluble iron
will cause rapid fouling as it oxidizes and becomes insoluble. HEDP has the potential to dissolve the
oxidized materials on the surface of these metal [49]. The objective of this paper was to investigate
the enhancement in water vapor flux and the antifouling characteristics of CNIM in the treatment of
high salinity, fouling-prone produced water via direct contact MD (DCMD). Yet another objective is to
study the effect of antiscalant HEDP in reducing fouling.

2. Materials and Methods

2.1. Chemicals and Materials

Produced water used in this experiment was collected from Chemtreat Company (Philadelphia,
PA, USA). Deionized water (Barnstead 5023, Dubuque, IA, USA) was used in all experiments.
Filter papers (Whatman 1441-150, size 41 with a diameter of 150 mm) came from Cole-Parmer
(Vernon Hills, IL, USA). Multi-walled CNTs (MWCNTs) were purchased from Cheap Tubes Inc.,
Brattleboro, VT, USA. The average diameters of the CNTs were ~30 nm and the length ranged up to
15 µm. 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid (HEDP) antiscalant was purchased from Fisher
Scientific Company (Hanover Park, IL, USA).

2.2. Water Sample Composition

The composition of the produced water samples used for the experiments is shown in Table 1.
The pH and the conductivity of the sample used in this study was 2.19 and 239,651 µmho, respectively.

Table 1. Analysis of the original produced water sample and after filtration.

Parameters/Dissolved Solids (mg/L) Produced Water After Filtration

Calcium 119,500 1455
Magnesium 12,590 52

Barium 856 289
Iron 90 1.4

Copper <1.0 0.014
Zinc 2.4 0.025

Sodium 71,820 154
Potassium 1780 13
Chloride 118 -
Sulfate 130 -
Nitrate <100 -

Ortho–Phosphate <500 -
Silica 41 -

2.3. Water Sample and Pretreatment Methods

The water sample was first filtered with Whatman-41 filter paper to remove the large solid particles.
The antiscalant HEDP (50 mg/L) was added to the filtered water prior to the DCMD experiment.
The results of the inductively coupled plasma-mass spectrometry (ICP-MS) analysis of the filtered
produced water is shown in Table 1. It is clear from Table 1 that the filtration process removed a
significant amount of salts that were present as suspension. Figure 1 shows the produced water sample
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before, after filtration, and with HEDP antiscalant. As can be seen, the addition of HEDP to the filtered
solution also changed the color of the solution, mainly due to the sequestration of iron.
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Figure 1. Images of the produced water sample: (A) before filtration, (B) after filtration, and (C) with
HEDP after filtration.

2.4. CNIM Fabrication

Effective dispersal of CNTs and immobilization on the membrane surface was an essential step in
CNIM fabrication. The CNIM was prepared using a polytetrafluoroethylene (PTFE) laminate supported
on polypropylene composite membrane (Advantec, 0.2 µm poresize, 74% porosity, Dublin, CA, USA).
The dispersion of the CNTs was carried out as follows: 1.5 mg of CNTs were dispersed in a solution
containing 8 g of acetone and sonicated for four hours. A total of 0.2 mg of polyvinylidene di fluoride
(PVDF), which acted as a binder during immobilization of the CNTs was dissolved in 2 g of acetone and
mixed with CNTs dispersion as mentioned in our previous papers [32]. PVDF-nanotube dispersion was
thereafter applied uniformly with a dropper over the membrane held on a flat surface to form the CNIM.
The wet CNIM was kept under the hood for overnight drying. The CNIM was characterized using
scanning electron microscopy (SEM) Leo 1530 VP, Carl Zeiss SMT AG Company, Oberkochen, Germany.

2.5. Experimental Procedure

MD experiments were conducted in the DCMD configuration. Figure 2 shows the schematic
diagram of the MD system used in the laboratory. The membrane module used for DCMD was
a cylindrical module utilizing a flat membrane with a gasket diameter of 3.9 cm and an effective
membrane area of 11.94 cm2. The preheated hot produced water was passed through a heat exchanger,
which was used to maintain the desired temperature throughout the experiment. The hot feed was
recycled to the feed tank and permeate was collected in the distillate tank. DI water was used
as cold distillate. Both hot and cold sides were circulated through the module using peristaltic
pumps (Cole Parmer, model 7518-60, Vernon Hills, IL, USA). Inlet and outlet temperatures of the
feed and distillate were monitored continuously throughout the experiment. Viton and PFA tubing
and connectors (Cole Parmer) were used to make connections in the experimental set up. The ionic
strength of the original feed solution and permeate were measured using an electrode conductivity
meter (Jenway4310). The hydrophobic/hydrophilic characteristic of the membrane was evaluated
using contact angle measurements. Distilled water and filtered produced water samples were used for
this experiment. A micro syringe (Hamilton 0−100 µL) was used to create 2 µL droplets (as described
in our previous paper [50].



Membranes 2020, 10, 325 5 of 15

Membranes 2020, 10, x FOR PEER REVIEW 5 of 16 

 

for this experiment. A micro syringe (Hamilton 0−100 μL) was used to create 2 μL droplets (as 

described in our previous paper [50]. 

Permeate 

Reservoir 

Feed 

Reservoir 

C
C

CHC
C

Pum
p

Pump

T
herm

om
eter

T
herm

om
eter

Flow
 m

eter

Flow
 m

eter

Flow
 m

eter

Flow
 m

eter

T
herm

om
eter

C
hiller

Distillate Outlet

 

Figure 2. Schematic representation of the experimental setup. 

2.6. DCMD Performance Using CNIM and PTFE Membrane 

The MD performances of the PTFE and CNIM was studied as a function of time, temperature, 

and feed flow rate. The water vapor flux, Jw was measured as: 

𝐽𝑤 =
𝑊𝑝

𝑡 × 𝐴
⁄  (1) 

where Wp is the mass of permeated water in time t through surface area A. 

To compare the fouling on both membranes, the flux measured over time and the normalized 

flux decline, FDn was measured as: 

𝐹𝐷𝑛(%) = (1 −
𝐽𝑓

𝐽0
⁄ ) × 100 (2) 

where, Jf and J0 are the final permeate flux and initial flux, respectively. 

3. Results and Discussions 

3.1. Membrane Characterization 

The SEM images of the CNIM and the PTFE membranes are shown in Figure 3a,b. The SEM 

images show the porous structure of the pristine PTFE membrane and presence of CNTs on the CNIM 

surface. The distribution of CNTs is relatively uniform over the entire membrane surface. AFM 

images from our previous studies have shown that the incorporation of CNTs on the membrane 

surface also increases the surface roughness [51]. The gas permeation test of the membranes 

demonstrated no significant change in the effective surface porosity over the effective pore length of 

the membranes, as only a small quantity of CNTs was immobilized on the membrane surface [50]. 

AFM images and the gas permeation test data are not presented here for brevity. The 

thermogravimetric analysis (TGA) curves of PTFE and CNIM membranes are shown in Figure 3c. It 

is clear from the figure that the membranes are quite stable within the experimental temperature 

ranges. The initial weight loss of the membrane, in the range of 250 °C to 350 °C, is mainly due to the 

degradation of the support polypropylene (PP) layer followed by the degradation of the active PTFE 

layer at 530 °C. Since, the support layer thickness (or amount) was higher than the active PTFE layer, 

Figure 2. Schematic representation of the experimental setup.

2.6. DCMD Performance Using CNIM and PTFE Membrane

The MD performances of the PTFE and CNIM was studied as a function of time, temperature,
and feed flow rate. The water vapor flux, Jw was measured as:

Jw = Wp/t×A (1)

where Wp is the mass of permeated water in time t through surface area A.
To compare the fouling on both membranes, the flux measured over time and the normalized flux

decline, FDn was measured as:
FDn(%) = (1− J f/J0) × 100 (2)

where, Jf and J0 are the final permeate flux and initial flux, respectively.

3. Results and Discussions

3.1. Membrane Characterization

The SEM images of the CNIM and the PTFE membranes are shown in Figure 3a,b. The SEM images
show the porous structure of the pristine PTFE membrane and presence of CNTs on the CNIM surface.
The distribution of CNTs is relatively uniform over the entire membrane surface. AFM images from our
previous studies have shown that the incorporation of CNTs on the membrane surface also increases
the surface roughness [51]. The gas permeation test of the membranes demonstrated no significant
change in the effective surface porosity over the effective pore length of the membranes, as only a
small quantity of CNTs was immobilized on the membrane surface [50]. AFM images and the gas
permeation test data are not presented here for brevity. The thermogravimetric analysis (TGA) curves
of PTFE and CNIM membranes are shown in Figure 3c. It is clear from the figure that the membranes
are quite stable within the experimental temperature ranges. The initial weight loss of the membrane,
in the range of 250 ◦C to 350 ◦C, is mainly due to the degradation of the support polypropylene (PP)
layer followed by the degradation of the active PTFE layer at 530 ◦C. Since, the support layer thickness
(or amount) was higher than the active PTFE layer, the first degradation was observed to be higher.
The TGA curve for CNIM shifted slightly upward, which showed the enhanced thermal stability of the
CNIM due to the presence of CNTs [52].
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Figure 3. (a) SEM image of PTFE membrane, (b) CNIM, and (c) The TGA curves of PTFE membrane
and CNIM.

The photographs of the contact angles of the PTFE and CNIM for pure water and the salt solution
are shown in Figure 4. A droplet size of 4 mm was used to measure the contact angles. The presence of
CNTs dramatically altered the contact angle. With 100% water in the feed (Figure 4a,b), the contact
angle for CNIM was higher (123◦) than the PTFE membrane (117◦). In the presence of different
foulants, such as dispersed oil, organic acids, polycyclic aromatic hydrocarbons (PAHs), and phenols,
the contact angle decreased slightly (Figure 4c,d). The liquid entry pressure (LEP) was measured
using a method described before [40]. The LEP of the pure water solution was found to be 75 and
71 psig, which changed to 69 and 65 psig with the produced water solution for unmodified PTFE and
CNIM, respectively. The lower LEP for CNIM may be due to the presence of organic moieties in the
produced water.
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3.2. Effect of Temperature and Feed Flow Rate on Water Vapor Flux

The effect of temperature on permeate flux for both membranes is illustrated in Figure 5a at a feed
flow rate of 200 mL/min and distillate flow rate of 200 mL/min1. It is clear from the figure that the
water vapor flux increased with an increase in temperature as higher feed temperature generates a
high vapor pressure gradient. The CNIM demonstrates higher flux compared to the PTFE membrane
at all temperatures. The flux enhancement in CNIM was mainly due to the fact that the CNTs
serves as effective sorbent sites for water vapor transport while repelling the liquid water. This was
followed by activated diffusion on the smooth CNTs surfaces, which was in line with our previously
reported data [30,34,40,51]. Further, the addition of HEDP on the feed side led to an enhanced MD
performance for both membranes. At a temperature of 70 ◦C, the water vapor flux increased from 30.9
to 35.2 kg/m2

·h for PTFE and 46.1 to 51.6 kg/m2
·h with CNIM with the use of HEDP with the same

experimental conditions.Membranes 2020, 10, x FOR PEER REVIEW 8 of 16 
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Figure 5. (a) Effect of temperature on permeate flux of produced water solution at 200 mL/min flow
rate. (b) Effect of flow rate on permeate flux of produced water solution at 70 ◦C temperature and
200 mL/min flow rate.
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The results of increasing feed flow rate at a constant temperature of 70 ◦C and 200 mL/min
permeate flow rate is shown in Figure 5b. It was observed that the permeate flux increased with
an increase in feed flow rate for all membranes and the CNIM had higher water vapor flux when
compared to PTFE. The increased feed flow rate reduced the fouling by increasing the turbulence,
which in turn reduced the boundary layer effect at the membrane-feed solution interface [53]. As can
be seen from Figure 5b, at a feed flow rate of 150 mL/min and with the use of HEDP, the water vapor
flux increased from 25.1 to 29.3 kg/m2

·h for PTFE and from 30.9 to 41.9 kg/m2
·h with CNIM, which was

a 17% and 36% improvement, respectively.

3.3. Fouling Behavior of Produced Water

The fouling behavior of the produced water was studied on the PTFE membrane and CNIM using
HEDP antiscalant and was characterized by the reduction in the permeated water flux as a function of
time. Figure 6 shows that the water vapor flux decreased significantly with time for all membranes as
an outcome of scaling. It is clear from the figure that the CNIM exhibited higher antifouling properties
in comparison with the PTFE membrane. This may be due to the additional screening effect of CNTs,
which reduce pore blocking from salt deposition on membrane pores. For the produced water solution,
the flux declined to 10.9 from 30.9 kg/m2

·h for PTFE and to 19.3 from 46.1 kg/m2
·h for the CNIM after

7 h of operation. The results show that by using CNIM, the water vapor flux after 7 h was still 77%
higher than that of the PTFE membrane. The use of HEDP in the feed solution further improved
the antifouling behavior of both membranes and the water vapor flux after 7 h of operation was
35.2 kg/m2

·h and 51.6 kg/m2
·h for the PTFE membrane and CNIM respectively, which were 32.4% and

74% higher compared to the system without HEDP. This may be due to the fact that the antiscalant
delayed the clustering process and prevented the precipitation of salt on the membrane surface [54].
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Figure 6. Water vapor flux in PTFE and CNIM membranes for produced water solution with and
without using HEDP (antiscalant).
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The normalize flux decline (FDn) for all membranes after 7 h of operation with produced water are
shown in Table 2. It is clear from the table that the reduction in flux was lower in CNIM compared to
the PTFE membrane, which indicates a lower fouling tendency. The use of HEDP further improved the
antifouling property of both membranes. Under similar conditions, the CNIM with HEDP exhibited
an improvement of 41% in FDn compared to the pristine PTFE membrane.

Table 2. Normalized flux decline (FDn) for the produced water solution.

Solution
FDn (%) of Produced Water Solution

PTFE CNIM PTFE-HEDP CNIM-HEDP

Produced Water 64.8 58.2 59.5 35.1

3.4. Deposition of Foulants on the Membrane Surface

The deposition of the foulants on the membrane surface was evaluated by measuring the membrane
weight before and after the experiment. The weight measurements were done with precision by drying
the membrane overnight in the oven at 70 ◦C to avoid any loss of deposited foulants from the surface.

From Table 3 it is clear that less salt was deposited on the membrane surface for CNIM than for the
pristine PTFE membrane for all cases. The lower salt deposition on CNIM may be attributable to the
screening effect of CNTs. The table also demonstrates the advantage of using antiscalant in reducing
salt deposition on the membrane surface. The CNIM along with HEDP in the feed, successfully lowered
the salt deposition on the membrane surface, which is a major concern in treating feed containing
higher amount of foulants, such as in produced water.

Table 3. Deposition of foulants on the membrane surface after 7 h of operation at 70 ◦C.

Solution
Amount of Salt Deposited on the Membrane Surface (mg)

% Weight Decrease
PTFE PTFE-HEDP

Produced Water
15.76 4.68 70.3

CNIM CNIM-HEDP

1.02 0.79 22.5

SEM images of the deposition of various salt crystals on different membrane surfaces with and
without using HEDP antiscalant are shown in Figure 7. The SEM images clearly show the variation
in the foulants’ morphology and amounts deposited on the membrane surfaces, with and without
using HEDP for both membranes. The images also reveal that the use of HEDP significantly reduced
the fouling layer on the membrane surface. The antiscalant interacts with the foulants and with
the membrane surface to break down the crystals (foulants) and reduce the fouling as is shown in
Figure 7b,d.

3.5. Membrane Regeneration

The regenerability of the fouled PTFE membrane and CNIM treating the produced water was
studied with and without HEDP (antiscalant). Here, the MD experiments were run continuously for
6 h followed by washing the fouled membrane for 30 min with DI water at 70 ◦C, then this cycle was
repeated and the flux after 24 h is shown in Table 4.
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Table 4. Membrane regeneration data.

Membrane Initial Flux (kg/m2
·h) Flux after 24 h (kg/m2

·h) Flux Regenerated (%)

PTFE 30.9 25.1 81.1

PTFE-HEDP 35.2 33.5 95.2

CNIM 46.1 41.9 90.9

CNIM-HEDP 51.9 49.4 95.2

Table 4 shows the regenerability of the membranes with produced water, with and without HEDP.
It is clear from the table that the CNIM was able to attain around 91% of its initial water vapor flux,
which clearly indicates significant removal of the deposited salts from the membrane surface and
pores. In contrast, the PTFE membrane only reached up to 81% of its original value, which clearly
demonstrates the superiority of CNIM in terms of membrane regeneration. The use of HEDF further
helped regeneration of both membranes, which showed around 95% recovery of the initial flux.

3.6. Mass Transfer Coefficient

The overall, mass transfer coefficient can be described as:

Jw = k
(
P f − Pp

)
(3)
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or,
k = Jw/

(
P f − Pp

)
(4)

where, Jw is the water vapor flux, k is the mass transfer coefficient, and Pf and Pp are the partial vapor
pressure of the average feed and permeate temperatures. The mass transfer coefficients were found to
be higher for the CNIM membrane as compared to the PTFE membrane.

Table 5a summarizes the change in mass transfer coefficients of PTFE membrane and CNIM with
varying feed flow rates at 70 ◦C. Both membranes exhibited an increased mass transfer coefficient
with an increase in the feed flow rate. The diffusion of the water vapor through the boundary layers
mainly controls the overall mass transfer rate of the process. At a higher feed flow rate, the turbulence
increased, which led to the reduction in the boundary layer resistance and significantly increased the
mass transfer coefficients. Of these two membranes, CNIM exhibited higher mass transfer coefficients
compared to the PTFE membrane.

Table 5. (a) Effect of varying feed flow rate on mass transfer coefficient at 70 ◦C. (b) Mass transfer
coefficient of various membranes as a function of temperature.

(a)

Mass Transfer Coefficient (kg/m2 s−1 Pa) × 10−7

Feed Flow Rate (mL/min) PTFE CNIM

100 1.9 2.6

150 2.4 3.0

200 3.7 4.4

(b)

Mass Transfer Coefficient (kg/m2 s−1 Pa) × 10−7

Temperature (◦C) PTFE CNIM

60 3.4 4.9

70 3.0 4.4

80 2.4 3.1

Table 5b shows the mass transfer coefficients at different temperatures. It is evident from the table
that the CNIM showed higher mass transfer coefficients compared to the pristine PTFE membrane in
all cases. Rapid sorption/desorption on CNTs surfaces along with activated diffusion led to an increase
in the overall water vapor transport. The mass transfer coefficients were found to decrease with an
increase in temperature for both membranes. This may be due to the fact that with the increase in
feed temperature, the concentration polarization at the membrane surface was expected to increase,
resulting in higher resistance for mass transfer on the feed side of membrane. Further, at higher
temperatures, the membrane fouling rate was also observed to increase at higher temperature [55,56].

4. Membrane Stability

The quality of the permeate side water was carefully investigated to monitor the stability
of modified membrane and salt breakthrough. The stability of CNIM was tested for 60 days.
The permeated water was monitored throughout the experiment to ensure the quality of water
by measuring the conductivity of the permeate side water and using Raman spectroscopy [57].
The permeated water sample did not show any presence of salts or CNTs after a long period
of operation.
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5. Proposed Mechanism

The proposed mechanism for enhanced antifouling behavior of CNIM in presence of HEDP
antiscalant is shown in Figure 8. HEDP is known to be one of the most effective threshold inhibitors
based on phosphonic acids (or their salts), which prevents the precipitation of the foulants on the
membrane surface by delaying the clustering process of charged ions protonuclei [54]. This is important
in membrane applications, especially with produced water as it contains large quantity of inorganic
salts that deposit on the membrane surface, causing a significant reduction in membrane performance
and wetting. Our previous studies with CNTs have demonstrated that CNTs are excellent sorbents that
enhance partition coefficient of the solutes leading to higher flux in membranes [31,34,51,58]. Further,
the presence of CNTs could act as an additional screen that also prevents the salt deposition on the
membrane pores.Membranes 2020, 10, x FOR PEER REVIEW 13 of 16 
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6. Conclusions

The CNIM was successfully employed in treating the produced water. The MD performance
of CNIM was compared with pristine PTFE membrane. The addition of HEDP antiscalant in the
produced water feed solution, further helped to reduce fouling and prevented the deposition of foulants
on the membrane surface. The CNIM exhibited a lower flux decline and the regenerability of the
CNIM was also found to be superior to that of the pristine PTFE membrane. In summary, treating the
produced water solution using HEDP antiscalant on CNIM in MD was found to be highly effective
in reducing the fouling behavior, which in turn led to an enhancement in water vapor permeation
through the membrane.
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