
SURVEY AND SUMMARY

A dynamic model for replication protein A (RPA)
function in DNA processing pathways
Ellen Fanning*, Vitaly Klimovich and Andrew R. Nager

Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235-1634, USA

Received April 3, 2006; Revised June 23, 2006; Accepted July 14, 2006

ABSTRACT

Processing of DNA in replication, repair and
recombination pathways in cells of all organisms
requires the participation of at least one major
single-stranded DNA (ssDNA)-binding protein. This
protein protects ssDNA from nucleolytic damage,
prevents hairpin formation and blocks DNA rean-
nealing until the processing pathway is successfully
completed. Many ssDNA-binding proteins interact
physically and functionally with a variety of other
DNA processing proteins. These interactions are
thought to temporally order and guide the parade of
proteins that ‘trade places’ on the ssDNA, a model
known as ‘hand-off’, as the processing pathway
progresses. How this hand-off mechanism works
remains poorly understood. Recent studies of the
conserved eukaryotic ssDNA-binding protein
replication protein A (RPA) suggest a novel mecha-
nism by which proteins may trade places on ssDNA
by binding to RPA and mediating conformation
changes that alter the ssDNA-binding properties of
RPA. This article reviews the structure and function
of RPA, summarizes recent studies of RPA in DNA
replication and other DNA processing pathways,
and proposes a general model for the role of RPA in
protein-mediated hand-off.

INTRODUCTION

Replication protein A (RPA) was identified as a het-
erotrimeric single-stranded DNA (ssDNA)-binding protein
required for replication of simian virus 40 (SV40) DNA in
vitro [for reviews see (1–6)]. RPA is now known to be essen-
tial for chromosomal DNA replication, repair and recombina-
tion pathways in eukaryotic cells, and new roles in DNA
damage signaling and regulation of replication origin firing
frequency are emerging (7–15). RPA functions to protect
ssDNA from nucleases and prevent hairpin formation in

ssDNA that would interfere with DNA processing, but it
also appears to actively coordinate the sequential assembly
and disassembly of DNA processing proteins on ssDNA
(16,17). The ability of RPA to guide DNA processing
depends in large part on RPA interactions with other proteins
in each pathway. Although these mechanisms are not yet well
understood, we will review here several examples and discuss
possible models for protein-mediated RPA conformation
changes that may underlie its assembly and disassembly on
ssDNA.

RPA: A MODULAR PROTEIN WITH MULTIPLE
CONFORMATIONS

RPA is a stable complex of three subunits RPA70, RPA32
and RPA14 that are conserved among eukaryotes
(Figure 1a). The 3D structures of RPA fragments reveal six
domains that adopt an oligonucleotide binding (OB)-fold, a
structure common to other known SSBs (13,18)
(Figure 1b). Zinc binding in the C-terminal OB-fold of
RPA70 is important for RPA structural stability and ssDNA
binding (19). RPA32C adopts a winged-helix–turn–helix
fold (20). Flexible linkers join the domains in each subunit
and the two small subunits interact with RPA70C through a
3-helix bundle. However, the quaternary structure(s) of
RPA remains elusive.

RPA binds tightly to ssDNA with a defined 50!30 polarity
(21,22), and an affinity of up to �10�9–10�10 M (23). RPA
contains four ssDNA-binding domains (A–D in order of
decreasing affinities), three in the RPA70 subunit, tethered
to each other through flexible linkers, and one in the
RPA32 subunit. RPA binds to ssDNA in at least three differ-
ent modes characterized by the length of ssDNA that it
contacts (8–10, 12–23 and 28–30 nt) and the number of
ssDNA-binding domains involved (24–26). In the 30 nt bind-
ing mode, the 50 end of the binding site is occupied by
RPA70A and the 30 end by RPA32D (21,22,24,27–29). The
N-terminal OB-fold of RPA70 (RPA70N) also has weak
(mM) ssDNA-binding affinity and may contribute to regula-
tion of ssDNA-binding mode under some conditions (30–32).
The three ssDNA-binding modes of heterotrimeric RPA
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imply that the protein can adopt three different structural con-
formations. Indeed scanning transmission electron micro-
graphs and gel filtration demonstrate RPA molecules in
compact and extended conformations on ssDNA (33).
These studies suggest that all three ssDNA-binding modes
co-exist in solution, perhaps in equilibrium (33), but the
intramolecular structural re-organization of RPA domains
that gives rise to the three binding modes remains unknown.

A great deal of insight into RPA interactions with ssDNA
has been obtained from crystal structures of RPA70AB deter-
mined in the presence and absence of dC8 (25,34)
(Figure 1b). In the DNA-free state, two different relative ori-
entations of the 70A and 70B domains were found, one of
them with an unstructured linker between OB-fold A and B
(25), suggesting that the linker between the A and B domains
is flexible. This flexibility has been independently confirmed

by NMR studies of RPA70AB in solution (29). In the pres-
ence of ssDNA, OB-fold domains A and B align in a fixed
orientation with the linker parallel to the bound oligonu-
cleotide, but on the opposite side of the protein (34). Binding
of RPA70AB to ssDNA is accompanied by conformational
changes, in which two extended loops in each domain close
like ‘fingers’ around the DNA. The structural re-organization
within each domain and the change in dynamics between the
domains imply that RPA must pay a significant entropic
penalty to bind ssDNA.

Binding to ssDNA in the 30 nt binding mode is thought to
progress sequentially from 50 to 30, beginning with the RPA70
domains A and B in an initial 10 nt binding mode (Figure 2a).
The ssDNA-binding affinity of these individual DNA-binding
domains is quite weak. RPA70A binds to ssDNA with greater
affinity than the other ssDNA-binding domains (Kd � 2 mM),

Figure 1. The modular structure of RPA. (a) Schematic diagram: arrows indicate intersubunit associations; protein-binding domains are denoted by red bars;
ssDNA binding domains A–D by hatching; OB-folds by blue boxes; linkers by yellow boxes; winged helix by a green box; phosphoamino acid cluster by a
circled P [adapted from (29) with permission]. (b) Structural models of RPA domains. [Reprinted from (20,24,25,55) with permission.]
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but because only a short linker separates RPA70A and
RPA70B, the local concentration of 70B is high when 70A
binds to ssDNA (29). This leads to ssDNA binding of both
domains. In the heterotrimeric RPA molecule, this chemical
linkage between the weak individual binding domains
enhances the overall affinity of RPA for an ssDNA molecule
by several orders of magnitude (29), progressing to the
high-affinity-binding mode that involves all four major
ssDNA-binding domains (21,22,24,25,28,29) (Figure 2b).
Thus RPA ‘unrolls’ readily on ssDNA, forming a stable
complex that occludes �30 nt, stabilizes the ssDNA against
nuclease digestion and stabilizes the protein against
proteolytic digestion.

DNA processing involves not only RPA binding to ssDNA
substrates as discussed above, but also to partial duplexes
with a variety of structures. Photoaffinity labeling studies
with partial duplex DNA uncovered a novel binding mode

in which RPA32D and 70C bind to the 30-OH of a partial
duplex and to a 50-single-stranded overhanging end (35–37)
(Figure 2c). Labeling of RPA32D predominated using 30OH
photoaffinity labels with short crosslinker spacers, while
RPA70C was labeled using longer spacers, indicating the rel-
ative proximity of the two domains to the 30OH at the primer–
template junction. Strikingly, the RPA trimerization core
(RPA70C-32D-14) alone was sufficient for this binding
mode on partial duplex with a 50 ssDNA overhang of either
10 or 30 nt (24,38), implying that intact RPA may also use
this binding mode to bind to primer–template junctions or
DNA with single-stranded gaps of <30 nt. The observation
that the junction-binding mode does not utilize RPA70AB
raises the question of whether an RPA molecule in the
8–10 nt ssDNA-binding mode (Figure 2b) may actually
have two faces able to bind different DNA structures, one
composed of RPA70AB and another composed of the

Figure 2. (a) Covalent linkage of RPA70 ssDNA-binding domains A and B enhances their affinity to ssDNA. Binding constants of A or B with d(CTTCA) and
AB with d(CTTCA CTTCA) were determined (29). (b) Sequential 50!30 binding of RPA to ssDNA. Positioning of RPA70N and RPA14 relative to other
domains is speculative (24,103). Dashed lines depict a potential pathway for RPA displacement from ssDNA. (c) Schematic diagram of the primer–template
junction-binding mode of the RPA trimerization core (70C-32D-14) (38).
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trimerization core. Elucidation of RPA quaternary structures
will be needed to answer the question.

RPA tightly bound to ssDNA during DNA processing must
somehow be displaced to allow completion of the processing
pathway and restoration of the base-paired DNA. How RPA
dissociation occurs is not well understood, but one possibility
is that the four ssDNA-binding domains dissociate sequen-
tially in the reverse order, i.e. from the 30 to the 50 end of
the ssDNA (Figure 2b). Given that RPA binds tightly to
ssDNA, it seems likely that its complete dissociation from
ssDNA requires the participation of other proteins in each
DNA processing pathway. We suggest that these proteins
bind to RPA, inducing a change in its conformation to a
weaker binding mode and thereby facilitating its dissociation
from ssDNA.

PROTEIN-MEDIATED CONFORMATION
CHANGES OF RPA

The number and variety of proteins that have been shown to
bind to RPA is large and growing (10) (Table 1). Despite the
variety of its binding partners, RPA appears to have only a
limited number of regions available for protein interactions:
three domains in RPA70 and one in RPA32 (Figure 1a).
This raises the question of whether these interactions are spe-
cific, and if so, how the specificity for a given protein partner
is generated. The contact surfaces in RPA have been eluci-
dated for several of its binding partners, as discussed
below, and these results are beginning to suggest that proteins
from distinct processing pathways may use a small number of

common patterns to bind RPA and remodel its DNA-binding
mode (Table 1 and Figure 1a).

RPA32C interactions

Protein interactions with the C-terminal winged helix domain
in RPA32 (RPA32C) have been relatively well characterized
structurally. RPA32C binds to the DNA recombination pro-
tein Rad52, the base excision repair protein uracil DNA gly-
cosylase 2 and the nucleotide excision repair protein XPA
[(20) and references therein]. These interactions are weak
(Kd �5–10 mM) but specific. Remarkably, all three of these
proteins target the same surface of RPA32C and contain an
alpha helix that interacts with RPA32C (20). The conserved
nature of these interactions suggests that RPA32C may
serve a common function in at least three different DNA pro-
cessing pathways. Consistent with biological functions for
RPA32C in DNA repair pathways, an RPA32C truncation
mutant in budding yeast displays mutator and hyper-
recombination phenotypes (39).

Whether DNA replication proteins interact with RPA32C
has been controversial. Multiple lines of evidence in the lit-
erature implicate RPA32 in SV40 DNA replication. Antibod-
ies against RPA32 specifically inhibit SV40 replication in
vitro (40,41). In the context of trimeric RPA, RPA32 can
be directly cross-linked to nascent RNA–DNA primers (42)
and the RPA trimerization core alone (RPA70C–RPA32D–
RPA14) was shown recently to bind to a primer–template
junction (38) (Figure 2c). Binding of human RPA32 to
the viral replicative helicase T antigen has been reported
previously (43,44), but not confirmed by others (45–47).

Table 1. Physical interaction of RPA with DNA processing proteins

Protein RPA residuesa Protein residuesa Methodb Reference

Activation induced Cytidine Deaminase RPA32 NYD e (104)
Uracil-DNA glycosylase RPA32163–217 29–75, N-terminus cd (20,105,106)
Rad52 RPA70169–326 221–280 ac (107,108)

RPA32224–271 b (20)
SV40 T antigen RPA70181–327 Origin binding domain 131–249 ab (46,109)

RPA32C c (47,48,61)
XPA RPA70183–296 20–46 be (20,62,110)

RPA32C a (105,111–115)
p53 RPA70N1–120 38–58 ace (30–32,57–59)
ATRIP RPA70N 1–107, other? e (14,73,74)
FACT RPA70N Pob3237–477 ade (60)
Rad51 RPA70181–291 1–93 ac (63,81)
Werner syndrome helicase RPA70168–308 N-terminal acidic region, C-terminus abd (65,66)
Bloom syndrome helicase RPA70168–308 N-terminal acidic region, C-terminus abd (66)
Papillomavirus E1 RPA70181–291 NYD ab (46,47)
Parvovirus NS1 RPA70, RPA32 NYD b (116)
Pol-prim RPA701–327 Primase p48/58 ab (45,64,67)

RPA32/14?
RFC RPA70 p140, p40, p28 b (16,117)
Rad9 RPA70, RPA32 NYD a (72)
Rad17 RPA70, RPA32/14 NYD ae (70,71)
p53BP1 RPA70, RPA32 NYD a (75)
Nucleolin RPA14 645–707 ae (78,79)
BRCA2 NYD N-terminus ae (76)
XPG NYD NYD ae (22,118,119)
XPF–ERCC1 NYD NYD ae (22,119,120)
Mre11–Rad50–Nbs1 NYD NYD e (77)

aNYD, not yet determined.
bMethod used a, co-immunoprecipitation, pulldown; b, ELISA; c, NMR; d, yeast 2-hybrid; e, other assay.
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Similarly, RPA mutants with deletions in the C-terminal
domain of RPA32 supported SV40 replication poorly in
one study, but displayed nearly wild-type activity in another
investigation (44,45).

To resolve the controversy, the physical interaction of
RPA32C with SV40 T antigen was re-examined recently in
detail (48). NMR studies of RPA32C interaction with the ori-
gin DNA-binding domain of T antigen (residues 131–259)
revealed that T antigen binds to virtually the same surface
of RPA32C bound by DNA repair and recombination proteins
(20). However, the T antigen surface involved in the interac-
tion is composed primarily of two loops rather than the alpha
helix used by the repair and recombination proteins.
RPA32C-T antigen binding is weak (Kd � 60 mM) and relies
in part on electrostatic interactions between acidic residues in
RPA32C and basic residues in T antigen. Charge reverse
mutations in either protein reduced the binding affinity by
an order of magnitude. Interestingly, the charge reverse muta-
tions in RPA32C also strongly reduced the ability of T anti-
gen to stimulate primer synthesis on RPA-coated ssDNA, but
did not inhibit primer extension. Taken together, the data
confirm that RPA32C interaction with T antigen is important
for primosome activity in SV40 DNA replication, provide
insight into the structural interaction and suggest that T anti-
gen may play a role in displacing RPA from ssDNA with a
30 ! 50 polarity, permitting DNA polymerase-primase to
begin replication.

RPA bound to ssDNA ahead of an elongating DNA poly-
merase on a primed template must also be displaced, but the
mechanism is not known. It seems likely that the binding
mode of RPA at a primer–template junction may be one
that utilizes primarily the trimerization core of RPA, with
RPA70C and RPA32D contacting the 30OH of the primer
and the ssDNA template (38). The RPA14 subunit plays a
crucial role in stabilizing the trimerization core for interaction
with the partial duplex, as a mutant RPA lacking the 14 kDa
subunit did not properly recognize the 30 end of the primer at
the primer–template junction or support primer extension in
the SV40 replication system (49). Notably, the mutant RPA
also failed to support primer synthesis, implying that T
antigen-mediated RPA displacement or polymerase-primase
loading requires the intact trimerization core, as well as inter-
action between RPA32C and T antigen. Although the detailed
role of the trimerization core in these events remains to be
determined, it seems reasonable to speculate that it is impor-
tant to form or stabilize the compact conformation of RPA
(Figure 2b).

These studies raise the question of whether RPA32C
binding to other proteins (Table 1) may facilitate similar
RPA displacement from ssDNA, coupled with loading of an
incoming processing protein. One example of RPA involve-
ment in displacing a DNA-bound protein and loading
subsequent proteins is in nucleotide excision repair. RPA is
required for global genome nucleotide excision repair (50)
and cannot be substituted by other ssDNA-binding proteins,
consistent with the specific interactions of RPA with excision
repair proteins XPA, XPG and XPF-ERCC1 (Table 1).
XPA and RPA bind and stabilize the open complex after
damage-recognition by XPC-hHR23B and controlled local
separation of the two strands by TFIIH (51). The joint
recognition of a damage site by XPA and RPA has been

suggested to serve as a ‘double-check’ before the assembly
of excision endonucleases at the site (52). XPA binding
to RPA at the DNA lesion is also crucial for the ability
of XPA–RPA to displace XPC–hHR23B from DNA before
the assembly of XPG and XPF-ERCC1 endonucleases
(53,54). The polarity of RPA bound to the undamaged strand
appears to spatially coordinate the assembly of XPG on the
30 end of the damaged strand and XPF–ERCC1 on the
50 end (22). Excision of the damaged strand leads to RPA
bound to a gapped DNA, positioned such that it would
interact through RPA70C and RPA32D with the 30OH at
the gap and the undamaged strand (Figure 2c) to coordinate
assembly of RFC, PCNA and DNA polymerase delta to repair
the gap (16).

RPA70 interactions

Mapping of protein interaction sites in RPA70 has been chal-
lenging due to its complex domain structure and the multiple
linkers (Figure 1). Three protein interaction modules have
been identified so far: the N-terminal domain RPA70N (resi-
dues 1–120), RPA70A and residues 168–308/327, which span
domain 70A (181–290), part of domain 70B, and the short
linker between them (Table 1). The 70N and 70A interacting
regions are connected by a long, apparently unstructured lin-
ker (residues 120–180) (55,56), but functional interaction of
the linker with other proteins has, to our knowledge, not
been observed.

The 70N domain (residues 1–120) assumes an OB-fold, as
determined by NMR (55) and X-ray crystallography (32).
Although it binds weakly to ssDNA (30,32), it lacks the con-
served aromatic residues that confer high-affinity ssDNA
binding. However, RPA70N interacts physically with the
tumor suppressor p53 (57–59). The structural basis of this
interaction has been characterized recently in detail (32).
RPA70N binds to the transactivation domain of p53 (residues
38–57), inducing the formation of two amphipathic helices.
Hydrophobic residues in helix 2 of the p53 peptide bind to
70N, while the acidic residues on the opposite face of the
helix are exposed to solvent. This interaction mimics those
described previously for weak binding of RPA70N to
ssDNA and a pseudo-phosphorylated mutant RPA32N pep-
tide (30–32). Interestingly, these ligands compete directly
with p53 for binding to 70N, leading Bochkareva et al. (32)
to speculate that this competition may be one component of a
threshold-sensitive response to DNA damage. Exposure of
p53–RPA complex to either damage-activated protein kinases
that hyperphosphorylate RPA32N or to large amounts of
ssDNA would stimulate release of active p53.

RPA70N was also shown recently to interact with the
nucleosome remodeling complex FACT (facilitates chro-
matin transcription) (60). This phylogenetically conserved
complex is required for both transcription and replication of
nucleosomal DNA. Genetic analysis in yeast indicates that
the requirement for FACT in transcription is genetically sepa-
rable from that in chromatin replication. The Pob3 subunit of
yeast FACT binds specifically to the basic cleft of RPA70N
based on detailed structural models, genetic and biochemical
analysis. FACT interaction with RPA appears to be important
in vivo for deposition of acetylated histones H3 and H4 in
nucleosomes on newly replicated DNA, but the details of
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this process and the role that RPA plays in it remain
unknown.

RPA70A alone has been reported to be sufficient to bind
papillomavirus E1 helicase (47), SV40 T antigen (47,61),
XPA (62) and human Rad51 recombinase (63). Binding of
RPA70A to an acidic N-terminal peptide of human Rad51
(residues 1–93) has been investigated structurally in detail
(63). The Rad51 peptide binds in the basic ssDNA-binding
cleft of RPA70A, mimicking its interaction with ssDNA
and suggesting a potential competition. Mutational analysis
of Rad51 indicated that this interaction contributes to the
ability of Rad51 to displace RPA from ssDNA to form a
presynaptic Rad51–ssDNA filament. Mechanistically,
Rad51N is proposed to capture an RPA molecule that disso-
ciates from an overhanging 30 ssDNA, spontaneously or
mediated by another protein, thereby preventing its reassocia-
tion with ssDNA and positioning the bound Rad51 molecule
to bind to the ssDNA through a separate domain. Once a
few Rad51 molecules are loaded on the ssDNA, Rad51
filament formation driven by ATP hydrolysis leads to RPA
displacement (63).

The largest protein interaction module of RPA70 spans
domains 70A and B (residues 168–308/327) and is reported
to interact with the primase subunits of DNA polymerase
alpha-primase, the SV40 T antigen helicase and the RecQ
family Werner and Bloom Syndrome helicases (Table 1)
(45,64–67). There is evidence that these interactions have
physiological importance. For example, RPA stimulated the
DNA unwinding activity of Werner helicase fragments capa-
ble of binding to RPA (66). However, the RPA70 fragment
168–308/327 encompasses disordered peptides at both the
N- and C-termini, raising the question of whether its physical
interactions with other proteins are mediated through the
structured portion of the RPA fragment, or whether physical
interactions with a partner protein may structure the
disordered regions of the RPA fragment.

RPA70 interactions with the primase subunits of DNA
polymerase alpha-primase (45,64,67) are thought to aid
polymerase-primase in primer–template binding or primer
extension. Interestingly RPA enhances both the processivity
and fidelity of primer extension by polymerase-primase
(45,68). Since other ssDNA-binding proteins do not display
this enhancement, specific RPA–primase interactions,
the 30primer–template junction-binding mode of RPA
(Figure 2c) or both may be involved. RPA has thus been sug-
gested to serve as a ‘fidelity clamp’ for polymerase-primase.
The ability of RPA to facilitate primer extension by other
DNA polymerases (lambda, delta) suggests that this function
of RPA may be more general (16,40,69). Additional work
will be required to elucidate the structural basis of RPA70
interaction with these binding partners and clarify its
functional roles.

A number of other DNA damage signaling and processing
proteins have been shown recently to interact directly or indi-
rectly with RPA (Table 1): Rad17 clamp loading complex
(70,71), Rad9 clamp subunit (72), ATRIP (14,73,74),
53BP1 (75), BRCA2 (76), Mre11–Rad50–Nbs1 (77) and
nucleolin (78,79). Future characterization of these binding
interactions with RPA and their mechanistic role in DNA
processing should yield deeper understanding of DNA
damage responses.

Competition and coordination among RPA-binding
partners

Interestingly, a number of DNA processing proteins bind to
both RPA70 and RPA32C (XPA, Rad52, SV40 T antigen)
(Table 1). In Rad52 and T antigen, the same surface that
binds to RPA32C also binds to RPA70. These observations
raise new questions about the functional role of the dual
interaction. Do these proteins interact with both RPA sites
simultaneously to strengthen the complex, or do they interact
with one site at a time, possibly with different functional con-
sequences? How does ssDNA influence protein interaction
with the two RPA sites?

The interaction of Rad52 with RPA in homologous
recombination has been investigated in detail [for a review
see (80)]. In yeast and in vertebrates, RPA assembles at
double-strand breaks, preceding the association of Rad51
recombinase (81,82). Although it is not clear how the DNA
at the break is resected to create 30 ssDNA ends, RPA must
be quickly loaded on the ssDNA, either through diffusion
or a protein-mediated mechanism, preventing formation of
secondary structures (83). Rad51 must then displace RPA
to generate a recombinogenic Rad51–ssDNA filament. In
yeast, Rad52 association with RPA plays an important role
in mediating Rad51 assembly on RPA-coated ssDNA
(84–86). The Rad52-mediated RPA–Rad51 exchange mecha-
nism involves Rad52 binding to RPA–ssDNA to form a
ternary complex (85). Since a separate domain of Rad52
binds to Rad51, it is possible that Rad52-mediated remodel-
ing of RPA–ssDNA complexes from an extended binding
mode into a compact one may facilitate Rad51 loading on
the newly accessible ssDNA (for a possible model see
Figure 3). Whether Rad52 binding to RPA32C or
RPA70AB or both is required for Rad51 filament formation
is not known. Once the Rad51–ssDNA complexes are
formed, Rad51 interactions with RPA70A may accelerate
filament formation as discussed above. In addition, the
basic region of yeast RPA70N is essential for Rad51-
mediated RPA displacement and strand invasion, perhaps
by facilitating RPA remodeling (Figure 2b) (83,87).
Vertebrate Rad52 also binds to RPA and can mediate
Rad51 loading on RPA–ssDNA in vitro, but is not essential
for Rad51 filament formation in vivo; instead, Rad51 paralogs
appear to mediate Rad51 filament assembly through an
unknown mechanism (80,84,85,88–90).

In addition to mediating RPA displacement from ssDNA
and loading of incoming proteins, DNA processing proteins
may be capable of stimulating RPA binding to ssDNA. It
has been speculated that RPA interaction with some DNA
helicases may enable them to actively place RPA on
ssDNA as it emerges from the helicase complex. Interaction
of the Werner and Bloom syndrome helicases with RPA70
stimulates their unwinding activity on long duplexes, perhaps
by facilitating RPA binding to ssDNA (65,66). If helicases do
load RPA on ssDNA, the spatial orientation of RPA bound to
the helicase, the polarity of helicase movement during strand
displacement, and the structure or perhaps sequence of the
DNA may govern whether RPA is loaded on ssDNA, the
strand on which it loads, or the binding mode in which it is
loaded (Figure 2b). Whether these helicases can also displace
RPA from ssDNA to mediate loading of an incoming DNA
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processing protein (e.g. Figure 3) is not known. If so, one or
more features of the protein–ssDNA complex must determine
whether RPA is loaded or displaced.

A mechanistic model for protein-mediated RPA
dissociation from DNA

The complexity of DNA processing pathways raises ques-
tions about how the individual reaction steps are ordered,
and how rapid progression through the processing pathway
is achieved. In the SV40 replication pathway, RPA has
been proposed to coordinate the activities of the replication
proteins through competition-based switches, in which pro-
teins ‘trade places’ on ssDNA through specific RPA-binding
sites (16). In each exchange, the next protein to enter into
processing has a greater affinity for RPA than the preceding
one, which allows it to compete for RPA on the ssDNA when
the preceding protein dissociates. This successive exchange
of replication proteins, known as the hand-off mechanism,
is proposed to be a general mechanism in replication, repair
and recombination pathways (17,20). However, the in vivo
abundance of certain incoming proteins may not be sufficient
to compete with the preceding protein in the pathway. More-
over, successively increasing the affinity of protein–protein
interactions as pathway progresses could limit the rapid
protein exchanges necessary to complete the pathway.

An alternative model for the protein hand-off mechanism
would depend on the ability of RPA-interacting proteins to
remodel the conformation of RPA from an extended, stable
binding mode to a more compact form with lower affinity
for ssDNA (Figure 2b). Table 1 reveals a general pattern of

interactions in which some processing proteins contact both
RPA32C and RPA70A or AB. This common pattern suggests
that these RPA-binding partners may remodel RPA con-
formation in a similar manner. The protein-mediated remod-
eling of RPA could thus be coupled to its different ssDNA-
binding modes (Figure 2b). The incoming protein that binds
and induces RPA to shift from an extended to a compact
conformation on ssDNA could then, in concert, gain access
to the ssDNA. Since the C and D domains of RPA bound
to the 30 end of ssDNA have lower affinity for ssDNA, an
incoming protein that binds to RPA32C might gain access
to ssDNA at the 30 end. Binding of RPA70AB to the same
incoming protein could induce a compact weaker ssDNA-
binding mode, allowing the incoming protein displace RPA
and load either itself or a piggy-backed protein on to the
ssDNA made accessible by the partially dissociated RPA.

In the case of SV40 T antigen-mediated primer synthesis
on RPA-coated ssDNA, T antigen must bind to RPA to
allow primer synthesis [(48) and references therein]. We sug-
gest a model in which T antigen binds transiently to RPA,
inducing a conformation change on ssDNA, and concurrently
loads DNA polymerase-alpha-primase (Figure 3) (48). RPA
domains C and D bound to the 30 end of ssDNA undergo
rapid association and dissociation. In the absence of T anti-
gen, RPA rapidly reassociates with ssDNA, preventing
DNA polymerase-alpha-primase from binding to the template
(29). In the presence of hexameric T antigen helicase,
polymerase-primase binds to the helicase domain of T anti-
gen (91) and RPA32C binds to the origin DNA-binding
domain of T antigen (Figure 3a). We suggest that RPA32C
and RPA70AB interaction with the T antigen hexamer
remodels the conformation of RPA to a compact, weaker
DNA-binding mode, causing the release of a short stretch
of ssDNA. In concert, the polymerase-primase bound to T
antigen binds to the free ssDNA and begins primer synthesis
(Figure 3b and c). Dissociation of the weakly bound RPA and
T antigen facilitates primer extension by the polymerase-
primase (Figure 3d). Although this model is still tentative,
it is consistent with the data available in the literature, pro-
vides a plausible mechanistic explanation for hand-off and
is amenable to further experimental testing.

Regulation of RPA structure and function by
phosphorylation

It has been known for more than a decade that RPA becomes
phosphorylated, primarily in the N-terminus of RPA32
(Figure 1a), in response to cell cycle progression or DNA
damaging agents, but the structural and functional signifi-
cance of the modifications is still not well understood
[reviewed by (9,92)].

The N-terminal 33 residues of human RPA32 contain at
least 7 sites that can be modified in vivo and in vitro
(Figure 4a) and give rise to 4 differentially phosphorylated
forms separable by denaturing gel electrophoresis (93,94).
Cyclin-dependent kinases modify serine residues 23 and 29
in mitotic cells, reducing the ability of the phosphorylated
RPA to interact with purified DNA polymerase alpha-
primase, ATM and DNA-PK (93,95). DNA-PK, ATM and
ATR are involved in modifying threonine 21 and serine 33
in response to various DNA damaging agents in vivo, leading

Figure 3. (a–d) A model for protein-mediated RPA displacement from
ssDNA in concert with loading of the next protein in the pathway [Reprinted
from (48), with permission, Nature Publication Group]. For discussion
see text.
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to hyperphosphorylated forms of RPA (96,97). The hyper-
phosphorylated forms of RPA also contain phosphorylated
serines 4 and 8, as well as at least one phosphoserine in resi-
dues 11–13, but the kinases that modify these sites in vivo are
not yet known (98). Interestingly, the kinases required and the
time course of RPA phosphorylation varied depending upon
the damaging agent (97). Focus formation of RPA and gam-
maH2AX was ATR-dependent and occurred rapidly after
camptothecin exposure, but RPA32 hyperphosphorylation
occurred later and required DNA-PK activity. DNA-PK was
also required for RPA hyperphosphorylation in UV-treated
cells (99). Both ATR-dependent RPA focus formation and
hyperphosphorylation occurred more slowly after hydrox-
yurea exposure, but hyperphosphorylation did not require
DNA-PK (97). Rad51, Rad52 and ATR were reported to pref-
erentially co-immunoprecipitate with hyperphosphorylated
RPA from extracts of UV or camptothecin-treated human
cells, but it is not clear whether these interactions with
phospho-RPA are direct or indirect (72).

Whether the specific sites phosphorylated in RPA correlate
with specific changes in RPA structure or function is an
important open question. For instance, mutation of RPA32
Thr21, Ser33 or both had little effect on camptothecin-
induced RPA32 hyperphosphorylation (97). It is conceivable
that mere induction of massive negative charge in RPA32N is
sufficient to alter RPA structure and function. Based on this
rationale, some efforts to elucidate the structural and func-
tional significance of RPA hyperphosphorylation have
employed mutant forms of RPA designed to mimic the hyper-
phosphorylated protein, with substitution of aspartate for
phosphorylatable residues in RPA32N, or of alanine as a
control (31,100,101). Negatively charged mutant RPA32N
was excluded from chromosomal replication centers in
human in a manner proportional to the negative charge, and
the alanine-substituted mutant used as a control was not
excluded (101,102). Moreover, hyperphosphorylated wild-
type RPA also failed to co-localize with replication centers.
These results are consistent with the reduced affinity of
hyperphosphorylated RPA for DNA polymerase alpha-
primase (93,95).

Does the negatively charged RPA32N also alter RPA struc-
turally and if so, how? Early work on the ssDNA-binding

modes of purified human RPA using scanning transmission
electron microscopy established that RPA32N in the
extended 30 nt binding mode on ssDNA was preferentially
hyperphosphorylated by purified DNA-PK (33), implying
that RPA32N might be more accessible in the extended bind-
ing mode and sequestered in the compact mode (Figure 4b).
Given the uncharged nature of unmodified RPA32N, it is easy
to imagine that gross introduction of negative charge might
make it difficult to reverse the extended binding mode and
re-sequester RPA32N. Hyperphosphorylation would thus be
expected to shift the equilibrium distribution of RPA confor-
mations to favor the extended binding mode, which binds to
ssDNA with higher affinity than the compact modes
(Figure 4b). Lower levels of hyperphosphorylated RPA in
the compact binding mode could explain its exclusion from
replicating chromatin, since the 8–10 nt and the primer-
junction-binding modes are thought to play a central role in
rapidly cycling RPA on and off ssDNA during replication
(Figures 2 and 3). Moreover, the greater binding affinity of
the extended conformation would ensure that ssDNA in
cells exposed to DNA damaging agents remains shielded
from hairpin formation or nucleases until completion of
repair. Counter to these predictions, binding of hyperphos-
phorylated RPA to 8–30 nt ssDNA and primer–junction tem-
plates in vitro was either reduced or equal to that of
unmodified RPA (31,93–95). This paradox remains unre-
solved. Similarly, recent in vitro studies have suggested that
hyperphosphorylated RPA32N may compete with ssDNA,
binding to the basic cleft in RPA70N (31,32) or in
RPA70B (94). These findings are consistent with the inter-
pretation that hyperphosphorylated RPA does not localize
in chromosomal replication centers (101,102), but do not
explain how ssDNA remains protected in cells that have
suffered DNA damage. Thus, much important work remains
to understand the effects of RPA32N hyperphosphorylation
on the quaternary structure of RPA.

SUMMARY AND PERSPECTIVE

RPA is the common denominator in many DNA processing
pathways and is found on ssDNA from the time it is created

Figure 4. Phosphorylation of RPA32N and its potential functional roles. (a) Diagram of the phosphoamino acid cluster in RPA32N. Boldface, sites
phosphorylated by CDK; underlined, likely phosphorylated by PIKKs; asterisks, phosphorylated by unknown kinases. (b) Hyperphosphorylation of RPA32N is
proposed to shift the equilibrium distribution of RPA conformation states/binding modes to favor the high-affinity extended mode.
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by a DNA helicase or nuclease until the duplex DNA is
restored upon completion of each processing pathway. The
dynamic nature of these pathways has favored the evolution
of modular proteins with multiple domains capable of inter-
acting with multi-valent ligands. The modular interaction
mechanism allows these proteins to associate and dissociate
readily from each other. RPA is a prime example of such a
modular protein. Its ability to adopt at least three different
conformations on ssDNA and shift from one to another
under the guidance of DNA processing proteins that interact
with it suggests that RPA remodeling plays a major role in
guaranteeing the integrity of ssDNA and its orderly process-
ing. Future studies of RPA will need to explore the quater-
nary structure of the protein, the intramolecular interactions
between domains and the regulation of RPA interactions by
protein phosphorylation. This work may reveal in greater
detail how this RPA remodeling takes place and whether gen-
eral patterns of RPA remodeling may be conserved from one
pathway to another.
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