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Abstract
Obesity is linked to reproductive disorders. Novel neuropeptide phoenixin demonstrated many therapeutic actions. In this 
study, we aim to evaluate phoenixin’s potential effect in obesity-induced infertility through modulating mitochondrial dynam-
ics. Ninety adult female rats were divided to 4 groups: (I), fed with normal pellet diet; (II), given phoenixin; (III), fed with 
high-fat diet. Rats that developed obesity and infertility were divided to 2 groups: (III-A), received no further treatment; 
(III-B), given phoenixin. Our results showed that phoenixin treatment in obese infertile rats significantly decreased serum 
levels of insulin and testosterone and ovarian levels of dynamin-related protein1(Drp1),reactive oxygen species ROS, TNF-α, 
MDA, and caspase-3. Phoenixin treatment also significantly increased serum estrogen progesterone, LH, and FSH together 
with ovarian levels of GnRH receptor (GnRHR), mitofusin2(Mfn2), mitochondrial transmembrane potential (ΔΨm), and 
electron transport chain (ETC) complex-I significantly when compared with obese group. Ovarian histopathological changes 
were similarly improved by phoenixin. Our data demonstrate phoenixin’s role in improving obesity-induced infertility.
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Introduction

Obesity and overweight have significantly increased 
around the world, with subsequent detrimental impacts on 
a variety of human body functions, including reproductive 
health [35]. Obesity causes intracellular lipid accumulation 
in many tissues and thus impairs mitochondrial function 
and lipotoxicity responses, stimulating inflammatory and 
oxidative stress (OS) pathways that probably culminate in 
apoptosis [40]. Wu et al. [42] have shown that lipotoxic-
ity is a significant contributor to obesity-induced infertility 
via alteration of oocyte quality. A high-fat diet also causes 
hypothalamic inflammatory changes, which eventually alter 
fertility [6].

Since oxidative stress and apoptosis are hallmarks 
in obesity, the link to mitochondrial dynamics in such 
conditions must be considered, especially since the ETC 
is the primary source of reactive oxygen species (ROS) 
generation. Mitochondrial dynamics refers to the fusion 
and fission processes during mitochondrial movement, 
which are in perfect balance physiologically to allow 
proper local energy production and distribution needed 
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by each cellular organelle to perform its needed func-
tion [7, 9]. The disintegration of this balance results in 
apoptosis.

Phoenixin (PNX) is a novel neuropeptide first described 
by Yosten et al. [47] via a bioinformatics approach revealing 
amidated 14-amino acid peptide and 20-amino acid peptide. 
The first biological action described for PNX was the poten-
tiation of the GnRH-stimulated release of LH. The stimula-
tion of LH by PNX-14 and PNX-20 is GnRH-dependent, 
with increased GnRH receptor expression following PNX 
treatment. It is evident that the GnRH receptor is also 
expressed in ovarian cells at a 200-fold lower rate than that 
of the pituitary. GnRH affects ovarian steroidogenesis, pro-
liferation, and survival [23].

The G protein–coupled receptor 173 (GPR173), which 
belongs to the orphan G-protein-coupled receptor subfami-
lies, was found to be the mediator of most of the PNX-20’s 
physiological functions. GPR173 is now known to be widely 
distributed in various tissues [32]. Despite the finding that 
PNX was found to be most abundant in multiple hypotha-
lamic nuclei, it was also expressed in other CNS areas, 
including the brain and the spinal cord, the heart, stomach, 
esophagus, spleen, kidney, and lung [30, 47].

The widespread PNX expression in various hypothalamic 
subnuclei denotes that it possibly has a significant influence 
as a mediator of a wide range of physiological and/or patho-
physiological functions. It was found to improve memory 
formation and retention while also alleviating memory 
impairment and anxiety [13]. PNX has also been proven 
one of the neuropeptides responsible for the brain-gut con-
nection with a potent centrally mediated orexigenic effect 
[31]. Peripherally, PNX has been proposed to play a role in 
pruritis, mediating its signaling in the peripheral nervous 
system [5].

With regard to its earlier-described role in the modulation 
of pituitary gonadotropins, PNX injection was also found to 
alter reproductive gene mRNA abundance [39], adipogenesis 
[2], and in vitro human granulosa cell proliferation [25]. In 
addition, the anti-inflammatory functions of GnRH possibly 
implicate PNX as an anti-inflammatory compound [48].

Interestingly, Yang et al.[45] provided direct experi-
mental evidence that PNX-20 upgrades neuronal mito-
chondrial biogenesis which requires further investiga-
tions in other organs both in vivo and in vitro to evaluate 
PNX’s modulatory effect in cases of mitochondrial dam-
age such as obesity.

Also, McIlwraith et al. [22] concluded that nutritional 
levels and environmental chemicals can possibly modulate 
the reproductive function through manipulating Gpr173 
expression. This suggests a future therapeutic objective 
in inflammatory diseases, such as obesity which requires 
further investigations of the role of PNX in obesity-related 
fertility impairment.

Considering all this, we hypothesized that PNX could 
possess a role in the positive modulation of obesity-induced 
fertility impairment. The current study was conducted to 
understand the underlying mechanism of PNX’s role in such 
conditions and its relation to PNX’s effect on mitochondrial 
functions.

Material and methods

Experimental animals

The study was carried out on 90 adult female albino rats 
weighing (180–220 g). The rats were housed in standard, 
well-ventilated animal cages at room temperature, with free 
access to water and food throughout the entire study interval. 
The maximum number of rats per cage was assigned to three 
to avoid cage overcrowding or decreased cleanliness. Rats 
were monitored five times a week for cage aggression or 
disease signs. All procedures were performed according to 
the ethical committee of Tanta University (Approval Code 
Number: 34223/10/20).

Drugs and chemicals

Phoenixin-14 amide (Asp-Val-Gln-Pro-Pro-Gly-Leu-LysVal-
Trp-Ser-Asp-Pro-Phe-NH2) was supplied by Sigma–Aldrich 
Co, (St. Louis, MO).

Standard rat chow (control rats; 3.8 kcal/g–63.4% carbo-
hydrate, 25.6% proteins, and 11.0% fat).

High-fat diet (obese rats; 5.4 kcal/g–25.9% carbohydrate, 
14.9% proteins, and 59.0% fat).

Animal groups

After 12 days of acclimatization and monitoring of the estrus 
cycle, the 90 rats showing regular estrus cycle were divided 
into three groups:

(1) Group I: control group (20 rats): The rats were fed on 
a normal pellet diet for the entire experimental period 
of 20 weeks.

(2) Group II (20 rats): control treated by phoenixin: The 
rats of this group were given phoenixin-14 once daily 
at a dose of 100 nmol/g body weight by gastrogavage 
for ten weeks[44].

(3) Group III (50 rats): obese group: The rats were fed on 
a high-fat diet for 10 weeks to induce obesity. Estrus 
cycle and body weight were monitored. Rats showing 
average/low body weight and/or regular estrus cycle 
were excluded. The remaining rats were then exam-
ined for confirmation of obesity-induced infertility via 
the lipid profile and hormonal state analysis. Forty rats 
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demonstrated disturbed estrus cycle either in irregular-
ity or 2–3 days lengthening. In addition, animal lipid 
profiles and hormonal states denoted the development 
of obesity-induced infertility. These rats were furtherly 
subdivided into two subgroups:

(4) Group III-A (20 rats): These rats were given no further 
treatment and were sacrificed, as mentioned below.

(5) Group III-B (20 rats): These rats were given phoe-
nixin-14 once daily at a dose of 100 nmol/g body 
weight by gastrogavage for 10 weeks [44].

Blood sample and biochemical assessment of lipid 
profile, hormonal state

At the end of the experimental period, all rats were weighed, 
anesthetized with an intraperitoneal injection of pentobar-
bital (50 mg/kg) [1], sacrificed by cervical dislocation, and 
blood samples were collected, and then serum was separated 
by centrifugation at 3000 rpm for 10 min and transferred into 
clean storage tubes for determining the following param-
eters: total lipid profile calorimetrically (Biodiagnostic, 
Egypt), Insulin (Cat# No: ab63820), estradiol (Cat# No: 
ab108667), progesterone (Cat# No: ab108670), FSH (Cat# 
No: CSB-E06869r), LH (Cat# No: CSB-E12654r), Testos-
terone (Cat# No: ab108666), by ELISA kits according to 
manufacturer’s instructions.

Preparation of ovarian tissues

Each studied group’s ovarian tissues were randomly divided 
into three divisions. One division was assigned for biochem-
ical and mitochondrial sample analyses after proper homog-
enization, and another division was assigned for real-time 
gene abundance analysis. The third division was assigned 
for histopathological analyses.

Biochemical analysis of inflammation, OS, 
and apoptosis

Tissue samples were collected from anesthetized rats, 
homogenized in cold phosphate buffer (pH 7.4), and 
centrifugated at 3000 rpm for 10 min. The supernatant 
was separated in clean storage plastic test tubes and 
stored at − 80 °C and was used for immunoassay deter-
mination of tumor necrosis factor-α (TNF-α) (Cat# No 
MBS355371) as a marker of inflammation, caspase-3 
activity (Cat# No: ab39401) as a marker of apoptosis; 
both according to manufacturer’s instruction. Also, OS 
marker malondialdehyde (MDA) levels were measured 
per the methodology described by Ohkawa et al. [27].

Mitochondrial samples analysis

The assigned division of ovarian tissues was homogenized 
in a mitochondrial buffer, followed by centrifugation for 
10 min at 2000 g. Mitochondrial fractions were obtained 
by centrifuging the supernatants for an additional 20 min 
at 5000 g. Spectrophotometric methods measured the fol-
lowing mitochondrial parameters: mitochondrial transmem-
brane potential (ΔΨm) by the method of Maity et al. [20], 
electron transport chain (ETC) complex-I activity (Cat# No. 
ab109721).

Quantitative estimation of GnRHR mRNA 
abundance, mitochondrial‑related protein 1 (Drp1) 
and mitofusin 2 (Mfn2) relative genes abundance 
by real‑time PCR

RNA extraction

Ovarian tissue total RNA isolation was carried out by gene 
Jet RNA purification kit according to the manufacturer’s 
instructions (Thermo scientific, # k 0731 USA)0.29. Con-
centration and purity of total RNA were estimated at the 
OD260 and OD260/280 ratios, respectively, using Nano 
Drop spectrophotometer (NanoDrop Technologies, Inc., 
Wilmington), then stored at − 80 °C.

Complementary DNA (cDNA) synthesis

Using reverse transcription, cDNA was then produced from 
of 5 μg total RNA sample using Reverse Transcriptase (a 
revert Aid H Minus) (Thermo scientific, # Ep0451). Detec-
tion of Drp1 and Mfn2 relative gene abundance was done 
using the obtained cDNA (as a template) via Step One Plus 
Real-Time PCR system (Applied Biosystem). The primer 
sequences have been conceived with Primer 5.0 software 
(Table 1).

The conditions of thermal cycler

First, a 10-min denaturation at 95 °C was followed by 40 
to 45 amplification cycles (DNA denaturation for 15 s 
at 95 °C, annealing for 30 s at 60 °C, and then extension 
for 30 s at 72 °C). At the end of the last cycle, the tem-
perature increased from 63 to 95 °C for melting curve 
analysis. The Ct values (cycle threshold) for both (target 
and housekeeping) genes were estimated, and the rela-
tive gene abundance assessment was performed using the 
 2−ΔΔCt method.
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Histopathological evaluation of ovarian tissues

Ovarian tissues were fixed into 10% buffered formalin and 
then embedded in paraffin. They were cut into 4-μm-thickness 
sections using a microtome. Hematoxylin and eosin (H&E) 
staining was carried out for histopathological evaluation.

Statistical analysis

The obtained results were represented using the 
mean ± standard deviation. One-way ANOVA and Tukey’s 
post hoc test were used to analyze and evaluate the sig-
nificance. Statistical significance was considered at p-val-
ues < 0.05. SPSS software (Version 23.0, IMB, NY) was 
used for statistical analyses. GraphPad Prism software (Ver-
sion 9.3.1) was used for statistical graphing.

Results

Effect of phoenixin treatment on body weight, lipid 
profile, redox status, and inflammatory response

As shown in Table 2, the results of this work showed that body-
weight is significantly different among the studied groups. The 
total cholesterol (TC), LDL-c, and TAG showed a significant 
increase in the obese group as compared to control and PNX-
treated groups. HDL-c showed a significant decrease in the 
obese group as compared to control and PNX-treated groups. 
TNF- alpha, MDA, and caspase-3 showed significantly elevated 
levels in the obese group as compared to control and PNX-treated 
ones. There was no significant difference between the control 
group and PNX-treated groups in lipid profile, body weight, 
oxidative stress, inflammatory, and apoptotic markers (Table 2).

Table 1  Primers of Drp1, Mfn2, β-actin, and GnRHR mRNA abundance

Drp1 gene (NCBI GenBank Nucleotide accession # NM_053655.3)
  Forward 5′-GCT AGA TGT GCC AGT TCC AGT-3′
  Reverse 5′-TGT GCC ATG TCC TCG GAT TC-3′

Mfn2 gene (NCBI GenBank Nucleotide accession # NM_130894.4)
  Forward 5′-AGT GTC AAGA CCG TGA ACCA-3′
  Reverse 5′-ACACA TCA GCA TCC AGG CAA-3′

β-actin housekeeping gene (NCBI GenBank Nucleotide accession # NM_031144.3)
  Forward 5′-ATC AGC AAG CAG GAG TAC GAT-3′
  Reverse 5′-AAA GGG TGT AAA ACG CAG CTC-3′

GnRHR gene
  Forward 5′-TTC TCA TCA TGG TGA TCT GCAA-3′
  Reverse 5′-GCA AAT GCA ACC GTC ATC TTTA-3′

Table 2  Effect of phoenixin 
treatment on body weight, 
redox status, apoptosis, and 
inflammatory response among 
the studied groups

Superscript letters a, b, c, and d denote a statistically significant difference at (P < 0.05) using one-way 
ANOVA with Tukey’s post hoc test
a Statistical significance when compared to group I
b Statistical significance when compared to group II
c Statistical significance when compared to group III
d Statistical significance when compared to group IV

parameter Control group (I)a

N = 20
Control treated by 
phoenixin (II) b
N = 20

Obese (III)c

N = 20
Obese treated 
with phoenixin 
(IV)d

N = 20

Body weight (g) 152.8 ± 2.6(c) 153.1 ±  4(c) 319.8 ± 13.9(a, b, d) 154.5 ± 2.4(c)

TC (mg/dl) 114 ± 1.2(c) 112.3 ± 1.5(c) 356.6 ± 1.18(a, b, d) 120.3 ± 0.89 (c)

LDL-c (mg/dl) 48.6 ± 1.1(c) 46.1 ±  1(c) 111.3 ± 1.3(a, b, d) 49.4 ±  2(c)

HDL-c (mg/dl) 56.6 ± 1.5(c) 60.4 ± 4.8(c) 16 ± 1.9(a, c, d) 56.8 ± 2.6(c)

TAG (mg/dl) 67.2 ± 1.3(c) 64.6 ± 1.1(c) 146.5 ±  5(a, b, d) 65.6 ± 1.1(c)

MDA (ng/L) 0.9 ± 0.015(c) 0.8 ± 0.12(c) 2.18 ± 0.71(a, b, d) 0.94 ± 0.04(c)

TNF alpha (ng/ml) 173.3 ± 3.5(c) 170.25 ± 1.3(c) 207 ± 8.3(a, b, d) 176.8 ± 1.5(c)

Caspase 3 (ng/ml) 2.2 ± 0.08(c) 1.9 ± 0.13(c) 8.5 ± 0.23(a, b, d) 3.2 ± 0.09(b)
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Effect of phoenixin treatment on hormonal profile 
among the studied groups

Table 3 shows that PNX treatment significantly lowered the 
obesity-induced significantly high levels of insulin and testos-
terone. On the other hand, the neuropeptide elevated the level of 
LH, FSH, estradiol, and progesterone significantly as compared 
to the obese group. There is no significant difference between 
hormonal level l among control groups and PNX-treated group.

Effect of phoenixin treatment on mitochondrial 
transmembrane potential (ΔΨm), complex 
I of electron transport chain (ETC) and ROS 
among the studied groups

Table 4 shows a significant decrease in mitochondrial trans-
membrane potential (ΔΨm) and complex I of ETC levels in 
the obese group with a concomitant increase in ROS level 
as compared to the control groups. Treatment with PNX 

has corrected this significantly lowered level of (ΔΨm) and 
complex I and decreased the ROS level in the treated group 
as compared to the obese group. There is no significant dif-
ference between control groups and PNX-treated group in 
(ΔΨm), complex I, and ROS levels (Figs. 1, 2, 3).

Effect of phoenixin on relative mRNA abundance 
of Drp1 and MFN2 among the studied groups

The obese group showed significant upregulation of Drp1 
mRNA abundance and downregulation of Mfn2 as compared 
to the control groups. PNX treatment has significantly cor-
rected this imbalance, (Figs. 4, 5).

Effect of phoenixin treatment on GnRHR relative 
mRNA abundance

The obese group showed significant downregulation of 
GnRHR mRNA abundance and as compared to the control 

Table 3  Effect of phoenixin 
treatment on hormonal profile 
among the studied groups

Superscript letters a, b, c, and d denote a statistically significant difference at (P < 0.05) using one-way 
ANOVA with Tukey’s post hoc test
a Statistical significance when compared to group I
b Statistical significance when compared to group II
c Statistical significance when compared to group III
d Statistical significance when compared to group IV

Hormone Control group (I)a

N = 20
Control treated by 
phoenixin (II)b
N = 20

Obese (III)c
N = 20

Obese treated 
with phoenixin 
(IV)d

N = 20

Insulin (ng/ml) 0.9 ± 0.47(c) 0.76 ± 0.35(c) 9.5 ± 0.49(a, b, d) 1.3 ± 0.26(c)

Testosterone (ng/ml) 0.8016 ± 0.028(c) 0.71 ± 0.08(c) 1.6 ± 0.18(a, b, d) 0.785 ± 0.04(c)

LH (mIU/ml) 0.034 ± 0.004(c) 0.041 ± 0.006(c) 0.013 ± 0.005(a, b, d) 0.041 ± 0.005(c)

FSH (mIU/ml) 0.087 ± 0.005(c) 0.091 ± 0.0056(c) 0.028 ± 0.01(a, b, d) 0.083 ± 0.012(c)

Estradiol (Pg/ml) 19.44 ± 0.3(c) 20 ± 0.49(c) 7.36 ± 0.23(a, b, d) 18.58 ± 0.27(c)

Progesterone (Pg/ml) 37.71 ± 0.5(c) 38.19 ± 0.95(c) 12 ± 2.7(a, b, d) 36.4 ± 1.2(c)

Table 4  Effect of phoenixin treatment on mitochondrial transmembrane potential (ΔΨm), complex I of electron transport chain (ETC) and ROS

Superscript letters a, b, c, and d denote a statistically significant difference at (P < 0.05) using one-way ANOVA with Tukey’s post hoc test
a Statistical significance when compared to group I
b Statistical significance when compared to group II
c Statistical significance when compared to group III
d Statistical significance when compared to group IV

Parameter Control group (I)a

N = 20
Control treated by phoe-
nixin (II)b

N = 20

Obese (III)c

N = 20
Obese treated 
with phoenixin 
(IV)d

N = 20

(ΔΨm) (fluresence unit) 7.6 ± 0.42(c) 8.1 ± 0.34(c) 3.5 ± 0.85(a, b, d) 7.3 ± 0.59(c)

Complex I (nmol/min./mg protein) 52.9 ± 1.9(c) 51.97 ± 1.68(c) 32.6 ± 0.67(a, b, d) 52.1 ± 1.7(c)

ROS(pmol/min./mg protein) 6.5 ± 0.35(c) 5.6 ± 0.93(c) 15.9 ± 0.97(a, b, d) 6.3 ± 0.5(c)
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groups. PNX treatment has significantly corrected this 
imbalance, (Fig. 6).

Histopathology

As shown in Fig. 7, control groups (I and II) show normal 
ovarian tissue showing many primordial follicles (primary 
oocyte surrounded by a single layer of cuboidal epithelium) 
and primary follicles (stratified granulosa cells) in the ovar-
ian cortex, covered with surface epithelium, within normal 
ovarian stroma.

Obese group (III) shows increased peri-ovarian fat and 
marked interstitial hyalinization. The primordial follicles 
are surrounded by interstitial fibrosis, marked interstitial 
inflammation, and congested blood vessels. The follicular 
epithelium shows atrophic and degenerative changes with 
shrinking and pyknosis of its nuclei.

PNX-treated group (VI) shows normal ovarian tissue with 
primordial follicles within the ovarian cortex, covered with 
surface epithelium within loose ovarian stroma.

Discussion

The current study has revealed that PNX treatment for 
10 weeks significantly decreased obesity-induced infertil-
ity in adult female rats, as confirmed by the biochemical, 
histopathological, and real-time gene abundance results. In 
addition, we investigated the effect of PNX on mitochondrial 
functions and its relation to ovarian cells’ survival, function, 
and hormonal receptor status Fig. 8.

Effect of PNX on mitochondrial dynamics modulates 
obesity‑induced oxidative stress

Since the cellular redox state is one of the significant con-
trollers of cell function, gene abundance, and cell survival, 
we investigated the effect of PNX on oxidative stress and the 
potential role of mitochondrial function modulation.

Furthermore, we noted that obesity-induced alteration 
in mitochondrial dynamics pathways with increased mito-
chondrial fission as indicated by significant over-expression 
of the fission protein Drp1 accompanied by a decreased 

Fig. 1  Effect of phoenixin treatment on Complex I of electron trans-
port chain (ETC). Values are represented as mean ± SD (n = 20). 
Superscript letters a, b, c, and d denote a statistically significant dif-
ference at (P < 0.05). aStatistical significance when compared to 
group I. bStatistical significance when compared to group II. cStatisti-
cal significance when compared to group III. dStatistical significance 
when compared to group IV using one-way ANOVA with Tukey post 
hoc test

Fig. 2  Effect of phoenixin treatment on mitochondrial transmem-
brane potential (ΔΨm). Values are represented as mean ± SD (n = 20). 
Superscript letters a, b, c, and d denote a statistically significant dif-
ference at (P < 0.05). aStatistical significance when compared to 
group I. bStatistical significance when compared to group II. cStatisti-
cal significance when compared to group III. dStatistical significance 
when compared to group IV using one-way ANOVA with Tukey post 
hoc test
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mitochondrial fusion as indicated by the substantial reduc-
tion in expression of fusion protein Mfn2 with the subse-
quent imbalance between mitochondrial fusion and fission. 
This finding can be attributed to obesity generating the fis-
sion process utilizing Drp1 recruitment from the cytosol to 
the dysfunctional site to cleave the damaged mitochondrial 
site. When mitochondrial damage is induced by the loss of 
membrane potential or oxidative stress [28], which devel-
oped in the current study, as evidenced by the significantly 
decreased ΔΨm, ETC complex I, and increased MDA and 
ROS in obese rats.

Broughton and Jungheim [3] reported that the increased 
circulating levels of FFA in obese women induce increased 
ROS with subsequent mitochondrial stress culminating in 
apoptosis in variable tissue types, including ovarian tissue. 
These results are consistent with the report by Sebastián et al. 
[34] that obese subjects demonstrate inhibited Mfn2 associated 
with decreased substrate oxidation, cellular metabolism, and 
reduced membrane potential in ETC complexes. Furthermore, 

obesity caused a reduction in mitochondrial O2 respiration and 
ATP production. Lipid accumulation stimulated mitochondrial 
ROS emission as H2O2 emission [11]. It was observed that 
PNX treatment significantly improved the mitochondrial dys-
function induced by obesity. Mitochondria, particularly the 
ETC, is a vital controller of the cell’s ROS production. PNX 
treatment restored the cell’s redox state to control levels, as 
evident by the PNX-induced significant increase of complex 
I ETC and Δψm levels with a subsequent decrease in ROS 
levels. Consistent with our results, Ma et al. [19] have dem-
onstrated the PNX-14’s role in relieving oxidative stress and 
increasing glutathione levels in ischemia.

Interestingly, PNX treatment also restored balanced 
mitophagy to almost a control level. This finding was 
achieved by decreasing mitochondrial fission, as evidenced 
by the significantly reduced abundance of the Drp1 gene, 
and increased mitochondrial fusion, as evidenced by the 
elevated abundance of the Mfn2 gene.

Fig. 3  Effect of phoenixin treatment on ROS levels. Values are repre-
sented as mean ± SD (n = 20). Superscript letters a, b, c, and d denote 
a statistically significant difference at (P < 0.05). aStatistical signifi-
cance when compared to group I. bStatistical significance when com-
pared to group II. cStatistical significance when compared to group 
III. dStatistical significance when compared to group IV using one-
way ANOVA with Tukey post hoc test

Fig. 4  Effect of phoenixin treatment on Drp1 relative mRNA abun-
dance. Values are represented as mean ± SD (n = 20). Superscript 
letters a, b, c, and d denote a statistically significant difference at 
(P < 0.05). aStatistical significance when compared to group I. bStatis-
tical significance when compared to group II. cStatistical significance 
when compared to group III. dStatistical significance when compared 
to group IV using one-way ANOVA with Tukey post hoc test
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The role of PNX‑induced modulation 
of mitochondrial functions and upregulated 
expression of GnRHR in promoting ovarian cell 
survival and decreased apoptosis

Obesity-induced infertility is marked by ovarian cell 
apoptosis, as evidenced by our histopathological results 
and the significant increase in caspase-3 activity. Obe-
sity increases the mitochondrial release of cytochrome c 
to the cytoplasm due to impaired mitochondrial balance 
between pro-apoptotic proteins (Bax) and anti-apoptotic 
proteins (Bcl-2, Bcl-XL). The released cytochrome c binds 
to apoptotic protease-activating factor-1 (Apaf1), dATP, 
and pro-caspase-9, activating caspase-3 resulting in DNA 
fragmentation, which is a hallmark of apoptosis [11].

Bcl-2 family are also reported as regulators of mito-
chondrial fusion and fission through interacting with Mfn2 
and Drp-1 [33]. DRP1 accumulation was reported to medi-
ate and precede cytochrome c release with subsequent cas-
pase activation and apoptosis. Consequently, increased 
mitochondrial fission usually occurs before apoptosis 
develops. In contrast, overexpression of Mfn2 delays Bax 
activation, cytochrome c release, and apoptosis [38]. This 

suggested a strong link between PNX-induced regulation 
of mitochondrial dynamics and enhanced the ovarian cell 
survival observed in our histopathological results, and 
decreased caspase-3.

Our histopathological results demonstrated an antia-
poptotic effect of PNX treatment on ovarian tissue, which 
is consistent with the results of Nguyen et al. [25] who 
reported that PNX and its receptor successfully promoted 
the growth of ovarian follicles in vitro, which has proven to 
have a dose-dependent pattern by Komatsu et al. [16] and 
Murase et al. [24].

Consistent with our results, PNX was reported to decrease 
myocardial apoptosis by blocking the upregulation of pro-
apoptotic genes, such as Bax and caspase 3, and increasing 
the abundance of the anti-apoptotic gene, Bcl-2, possibly 
through the reperfusion injury salvage kinase (RISK) and 
survival activating factor enhancement (SAFE) pathways. 
RISK activates pro-survival kinases that protect the heart by 
inhibiting apoptosis, while SAFE acts through STAT3 [21].

Moreover, the respiratory chain affects apoptosis. Res-
piratory chain dysfunction enhanced ROS production and 
changed the complement of anti-apoptotic proteins in the 
mitochondria [17]. Remarkably, Δψm is also crucial for cell 
maintenance, which was also reported by Wu et al. [43] who 
illustrated that reduced cell viability and Δψm caused by 

Fig. 5  Effect of phoenixin treatment on MFN2 relative mRNA abun-
dance. Values are represented as mean ± SD (n = 20). Superscript 
letters a, b, c, and d denote a statistically significant difference at 
(P < 0.05). aStatistical significance when compared to group I. bStatis-
tical significance when compared to group II. cStatistical significance 
when compared to group III. dStatistical significance when compared 
to group IV using one-way ANOVA with Tukey post hoc test

Fig. 6  Effect of phoenixin treatment on GnRHR relative mRNA 
abundance. Values are represented as mean ± SD (n = 20). Superscript 
letters a, b, c, and d denote a statistically significant difference at 
(P < 0.05). aStatistical significance when compared to group I. bStatis-
tical significance when compared to group II. cStatistical significance 
when compared to group III. dStatistical significance when compared 
to group IV using one-way ANOVA with Tukey post hoc test
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obesity were shown to be almost completely ameliorated by 
PNX-14 treatment, which is also evident in the current study. 
This furtherly emphasizes that PNX-induced modulation of 
mitochondrial functions is one of the proposed mechanisms 
for enhancing ovarian cell survival.

On the contrary, the current study also showed upregu-
lated expression of GnRHR. GnRH was reported to protect 
ovarian tissue and promote ovarian cell survival, especially 
with cytotoxic drugs. Although not yet established, upregu-
lated ovarian GnRHR was suggested to enhance ovarian 
follicle survival probably through the sphingosine-1 phos-
phate-dependant mechanism [36]. This finding indicates 

that PNX-induced upregulation of GnRHR also promoted 
ovarian cell survival.

Role of PNX in hormonal profile modulation

The current study results demonstrated that the obese group 
rats showed significantly increased insulin levels along with 
obesity, as indicated by the significant increase in choles-
terol and triglycerides levels. They also developed hormonal 
impairment as indicated by the significant decrease in estro-
gen, progesterone, LH, and FSH.

Fig. 7  Histopathological results. 
a Section in control group (I) 
showing normal ovarian tissue 
with many primordial follicles 
(thin arrow) and primary folli-
cles (thick arrow) in the ovarian 
cortex, covered with surface 
epithelium (H&E × 400), b 
section in control group (II) 
showing normal ovarian tissue 
with many primordial fol-
licles (thin arrow), covered 
with surface epithelium (thick 
arrow), within normal ovarian 
stroma (H&E × 200), c section 
in obese group (III) shows 
increased peri-ovarian fat (thin 
arrow) (H&E × 100), d section 
in obese group (III) showing 
primordial follicles surrounded 
by interstitial hyalinization 
(thin arrow), marked interstitial 
inflammation, and congested 
blood vessels (thick arrow) 
(H&E × 400), e section in obese 
group (III) showing hyaliniza-
tion (thin arrow) and degenera-
tive changes of the follicular 
epithelium, with shrinking and 
pyknosis of its nuclei (thick 
arrow) (H&E × 400), f section in 
PNX-treated group (VI) show-
ing normal ovarian tissue with 
primordial follicles (thin arrow), 
covered with surface epithelium 
(thick arrow) within loose ovar-
ian stroma (H&E × 200)
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The developed hyperinsulinemia and insulin resistance 
is a condition accompanying obesity that was attributed to 
various factors, including free fatty acids, leptin, cytokines, 
and androgens [29]. Hyperinsulinemia induced an increase 
of local androgen production by theca cells either directly 
or by increasing theca cells’ sensitivity to LH along with 
the action of ovarian insulin-like growth factor-I (IGF-I) 
on its ovarian receptors [15, 35]. Increasing intra-ovarian 
androgen consequently induced premature follicular atre-
sia, which is evident in our histopathological results, with 
subsequent anovulation, which explains hyperinsulinemia-
induced infertility.

Obesity, in addition to intra-ovarian hyperandrogenism, 
caused increased tissue targeting by free blood androgen 
secondary due to the combined effect of the obtained regard-
ing increased adipose tissue synthesis of androgens and 
decreased sex hormone-binding globulin (SHBG) circulat-
ing levels described by [8].Obese women’s ovaries also show 
apoptosis in granulosa cells, which could be attributed to 
increased androgen [4].

Furthermore, increased androgen peripheral conversion 
to estrogens in adipose tissue deteriorates the function of 
the hypothalamic-pituitary–gonadal (HPG) axis with subse-
quent inhibition of gonadotropin secretion which furtherly 
contributes to hormonal imbalance, anovulation, and fertility 
impairment.

In contrast, PNX treatment demonstrated a corrected hor-
monal profile to almost a control level, which could be due 

to the fact that PNX acts on both central and local intracel-
lular levels to enhance ovarian steroidogenesis eventually.

The role of PNX‑induced mitochondrial dynamics 
modulation and upregulation of GnRH receptor 
in local improvement of ovarian steroidogenesis

In the ovary, reorganization of cellular organelles and contact 
of membranes is necessary for hormone synthesis and secre-
tion since many enzymes are localized between mitochondria 
and the endoplasmic reticulum, highlighting the necessity 
of mitochondrial fusion for normal hormonal levels to be 
obtained [7]. This finding explains that the PNX-induced 
Mfn2 upregulation, as demonstrated in the current study, is 
a proposed mechanism for restoring ovarian hormone levels.

Also, Park et al. [14] reported that Drp-1 phosphorylation 
determines mitochondrial shaping inducing mitochondrial elon-
gation through inhibiting mitochondrial fission, which offers 
an optimal environment for steroidogenesis. Interestingly, this 
phosphorylation process is mediated by a cAMP/PKA path-
way [25] similar to the pathway activated by ovarian GPR173 
stimulation, suggesting that GPR173 activation may induce 
Drp1 phosphorylation and decrease the activity of cytoplas-
mic Drp1 alongside its effect inhibiting its protein synthesis.

Furthermore, mitochondria are dynamically distributed 
using cytoskeletal tracks and motor protein for their intracel-
lular relocation. It is reported that mitochondria are arrested 
at the sites of  Ca+2 elevation, providing the sufficient energy 

Fig. 8  Summary scheme of the reproductive defects in obesity
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supply for the processes where Ca + 2 is used to signal for 
[10]. As a G-protein-coupled receptor, GnRHR increases 
intracellular Ca + 2 by activating phospholipase C, we sug-
gest retaining the mitochondria at the upregulated GnRHR 
signaling sites, which might be related to steroid biosynthesis, 
as another proposed mechanism for increasing ovarian ster-
oidogenesis back to the normal levels after PNX treatment.

Also, Duarte et al. [7] illustrated that hormonal stimu-
lation by hCG triggers mitochondrial fusion into tubu-
lar-shaped structures to meet the increasing demand for 
energy during steroidogenesis. Given the previously 
described cytoprotective role of GnRH in the ovary, com-
bined with the PNX-induced overexpression of GnRHR, 
described in the current work, we proposed that GnRH can 
have a role in regulating mitochondrial fusion to relocate 
the energy production sites within the course of its cyto-
protective effect in the ovary. In contradiction with our 
explanation, Hom et al. [12] described the role of intra-
cellular  Ca+2, which can be induced by GnRHR stimula-
tion, in increasing Drp-1 with more mitochondrial fission 
in cardiomyocytes. Also, Metallinou et al. [23] described 
GnRH-induced increase in Drp-1 in gonadal cells induc-
ing apoptosis. These discrepancies can be justified by the 
different targeted cells or the different duration and doses 
of exposure to exogenous GnRH or its analogues, or the 
different mechanisms of action of GnRHR in these cases 
which necessitates further investigations of this point.

Also, in support of our results, PNX-20 was found to 
upregulate critical gene expression in gonadal sex steroi-
dogenesis peripherally in both male and female zebrafish 
(Rajeswari & Unniappan, 2020).

Therefore, apart from its previously reported role in 
increasing GnRH secretion and sensitization of pituitary 
to GnRH, also denoted in our study by the PNX-induced 
increase in LH and FSH, we report that PNX increased 
ovarian sensitivity to circulating GnRH by inducing upregu-
lated expression of GnRHR. Together with the modulation 
of mitochondrial functions, these are proposed mechanisms 
for the local effect of PNX on ovarian steroidogenesis.

Central role of PNX in improving the hormonal 
profile

The results of Wang et  al. possibly rationalize the 
improvement of the hormonal profile by PNX [41] who 
reported that PNX treatment directly stimulates both the 
HPG-axis and the pituitary gland. PNX-20 stimulates the 
release of GnRH-induced LH, which is probably medi-
ated by PNX-stimulated GnRH receptor upregulation 
[37]. This can be induced either by central or peripheral 
administration of PNX since it can cross the blood–brain 
barrier.

Furthermore, kisspeptin system overexpression was 
reportedly induced by PNX-20 treatment, which denotes 
PNX-20’s evident influence on the hypothalamic regula-
tion of reproduction [26]. It was also reported that in the 
rat hypothalamus, PNX stimulates kisspeptin-1 transcription 
in both arcuate and anteroventral periventricular (AVPV) 
nucleus 3 [39].

Regarding the anti-inflammatory effect of PNX shown 
in our results, Yao et al. [46] reported the role of PNX-14 
in the downregulation of the expression of obesity-induced 
cytokines. Furthermore, PNX-14 may significantly inhibit 
the HMGB1/TLR4/MyD88/NF-κB inflammatory cascade 
by downregulating the expression and activation of each 
of these factors. Also, the anti-inflammatory functions of 
GnRH may involve PNX as an anti-inflammatory compound, 
suggesting a therapeutic role for PNX in inflammatory dis-
eases [18].

Conclusion

We conclude that phoenixin possesses a significant role 
in the positive modulation of obesity-induced fertility 
impairment by acting locally on mitochondrial machin-
ery and GnRHR gene upregulation together with its 
well-known central effect. The peripheral role of phoe-
nixin in such conditions comprises not only the systemic 
effect on ameliorating obesity, but also its highlighted 
local gonadal improvement of mitochondrial dynamics 
and upregulation of GnRHR mRNA abundanc which 
are suggested to improve ovarian cellular resistance to 
obesity-induced inflammatory, oxidative, and apoptotic 
stress leading to better cell survival and steroidogenesis.

Recommendations

Our data suggest that phoenixin can be used as a promising 
adjuvant therapy in the treatment of obesity-induced fertility 
impairment. However, further research is required to fully 
understand its safety limits and toxicity, verify its effect on 
the ovarian protein content of DRP-1, MFN-2, and GnRHR 
rather than their mRNA abundance, and study its effect on 
ovarian gene expression of gonadotropin receptors in obese 
females and its effect in other cases of fertility impairment 
such as polycystic ovary syndrome. Also, the expression of 
phoenixin and its receptor in obese infertile subjects both 
centrally and in the gonads need further research to obtain a 
better understanding of the role of phoenixin in such condi-
tions. More work is also needed to investigate the possible 
link between the cytoprotective role of PNX-induced GnRH 
sensitization and mitochondrial dynamics.
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