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Associative learning, including classical conditioning and operant conditioning, is regarded as the most fundamental type
of learning for animals and human beings. Many models have been proposed surrounding classical conditioning or operant
conditioning. However, a unified and integrated model to explain the two types of conditioning is much less studied. Here, a
model based on neuromodulated synaptic plasticity is presented.The model is bioinspired including multistored memory module
and simulated VTA dopaminergic neurons to produce reward signal. The synaptic weights are modified according to the reward
signal, which simulates the change of associative strengths in associative learning. The experiment results in real robots prove the
suitability and validity of the proposed model.

1. Introduction

Associative learning can be divided into two types: classical
conditioning and operant conditioning [1]. As a basic type
of learning, associative learning has been studied a lot. Many
computational models have been presented. Some are about
classical conditioning [2–5]. The stimulus in these models is
assumed to have a weight to measure how strongly it predicts
the reward. The bigger the weight is, the closer the stimulus
is to the reward. Others are about operant conditioning and
reinforcement learning which originates from the former [6–
10]. A universal frame for both kinds of conditioning is much
less studied. In the present study, we try to set up a model to
regard the two aspects of associative learning as a whole and
explain them in a common way.

Although the two categories are distinguished in some
aspects (e.g., the reward does not depend on the actions
chosen by the animal in classical conditioning while it does in
operant conditioning), they still have many common features
[11]. Both of them are concerned with how animals find the
causal relationship between reward and the corresponding
signs, for example, some stimulus or their actions. Mean-
while, both of them describe how stimulus is associated with
response. Given a stimulus S, the animal tries a response 𝑅.
In classical conditioning, if S tends to predict the appearance

of reward (e.g., food), the connection is strengthened [12].
While in operant conditioning, if the result is positive, the
connection between S and 𝑅 is strengthened, otherwise it is
weakened [13].

In essence, associative learning is not a prerogative of
human being. Many researches have suggested that even
organisms with rather simple neural systems can have such
abilities and establish the association between stimulus and
response in classical [14] or operant conditioning [15] way.
These findings indicate that relatively simple neural network
can have the function of associative learning.

At macroscopic level, associative learning is a process
during which human beings and animals discover relation-
ships between stimuli, actions, and outcomes. However, at
neural level, associative learning is related to synapses’ ability
to change their strength in signal transmission, which is
called synaptic plasticity.

Synaptic plasticity is considered as a prime mechanism
for learning and memory. Such idea is firstly studied by Hebb
[16] and then gathers a broad consensus among researchers
[17–19].These studies revealed that there is an important link
between local plasticity and macrolevel behavioral learning
[20]. The synaptic changes of particular pathways in senso-
rimotor system could lead to the behavioral changes. Mean-
while, multiple researches suggest that synaptic plasticity is
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often affected by neuromodulators like dopamine [21–25].
Neuromodulation may involve associative learning and work
as a type of synaptic gating mechanism. Therefore, synaptic
plasticity modulated by neuromodulators is considered to
play an important role in conditioning behavior learning [20].
Driven by these findings, we try to construct a model based
on synaptic plasticity with neural modulation and apply it to
explain associative learning. Here, the synaptic plasticity is
artificial and represented by changing the network’s connec-
tive weights according to learning mechanism.

Another problem is how to represent theweights. Accord-
ing to Yang et al.’s research [26, 27], neurons in the lateral
intraparietal area (LIP) may involve simple decision-making,
which is similar to action selection in associative learning.
Such decision-making may be done in the form of a log
likelihood ratio (log LR) in the neural system. Pfeiffer et al.
adopted the conclusion and presented a brief frame for neural
modulated plasticity [28, 29].

Inspired by the researches above, we present a cognitive
model based on modulated synaptic plasticity. The focus of
this study is to apply the model to explain the two kinds of
associative learning in a unified way. Moreover, as memory
plays a fundamental and important role in learning and
cognition [30], we add memory module in our model. To
find out howmemory works in high-level cognitive activities,
a number of computational models for memory have been
proposed. Many of them focus on two challenging problems:
defining the nature of working memory storage and the
relationship between working memory and long-term mem-
ory. The representative work includes levels of processing
[31], parallel-distributed processing [32], models involving
hippocampal area of human brain [33], and information
processing [34]. Considering the universality, popularity, and
influence in history, we adopt information processing model
in our work.

This paper is organized as follows. In Section 2, we explain
the architecture of the model. In Section 3, we present the
working algorithm for the model. In Section 4, we analyze
the convergence of the learning mechanism. In Section 5,
we reproduce both classical conditioning experiment and
operant conditioning experiment in real robots. We also
introduce the details about the experiment settings and the
structure of the networks and analyze the results of the
experiments in this section. The paper ends with concluding
remarks in Section 6.

2. The Architecture of the Model

The architecture of our model is shown in Figure 1. The
relationship between stimulus and response is modeled as
the mapping from perception to motor, represented by the
information stream from sensory module to action module.
Meanwhile, as mentioned above, memory plays an important
role in cognition.Therefore, 3-layermemorymodule is added
in the model. Learning mechanism here refers to the rule of
changing the synaptic weights between working memory and
actionmodule, whichmakes themodel self-learning and self-
organized. VTA dopaminergic neurons are also simulated
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Figure 1: The architecture of the cognitive model. The model
includes 3 main modules: sensory module, action module, and
memory module. Thus, the interactions between agents and envi-
ronment, that is, stimulus and response, are transferred as the infor-
mation flows from sensory module to action module, signifying
the sensorimotor system. Besides, VTA dopaminergic neurons and
learningmechanismwork together as the learning system tomodify
the synaptic weights between working memory and action module.
All the above, the agent and the environment, compose a close-loop
system.

here to represent the neuromodulation and to produce the
reward signal for the learning mechanism.

2.1. Sensory Module. The sensory module represents sensors
in animals or robots. It collects and receives stimulus from
environment, which will soon be transmitted to sensory
memory. Its output also provides the unit of VTA dopamin-
ergic neurons, helping judge whether there is a reward or
not.

2.2. Memory Module. Memory is important in cognition.
Here, we adopt the three-layer architecture to describe
the memory module. They are sensory memory, working
memory, and long-term memory.

Sensory Memory. Sensory memory stores sensory informa-
tion from sensory module just long enough to transfer it
to next memory unit: working memory. Its function is to
provide a snapshot of agents’ overall sensory experience and
retain the impressions after the original stimulus has stopped.

Working Memory. Working memory, the second layer of the
multistore memory model, receives the output from sensory
memory. It plays the role not only of a bridge between
sensory memory and long-term memory, but also of the key
for learning and memory. Working memory processes the
information from sensory memory to make it easy to handle,
that is, memory coding, and delivers it to action module.
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Figure 2:The structure of the core network. Working memory and
action module are connected in a full connective way; that is, every
neuron in the former layer is connected to all neurons in the next
layer and so on. Neurons in working memory are ADALINEneuron
[35] whose threshold value is 0, shown as blue ones in the figure. All
the neurons of the action module except the ones in the last layer
are the same. The neurons in last layer are perceptron neurons [36]
whose output is discrete and easy to use, shown as red ones in figure.

Meanwhile, working memory records the statistics of
each action with reward or without reward, which offers data
for learning mechanism. All results for each action selection,
that is, the numbers of times of reward or no reward for
each serial action, will be saved in working memory. For
instance, suppose there is an action chain: 𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛 (𝑛 ≥ 1),
in which 𝑎1 is the first action while 𝑎𝑛 is the last one. 𝑅1,2,...,𝑛
records the number of times of reward after the action chain
is selected, while 𝑅1,2,...,𝑛 represents the number of times of
no reward. Both 𝑅1,2,...,𝑛 and 𝑅1,2,...,𝑛 will be saved in working
memory.

Finally, working memory communicates with long-term
memory for accumulating and taking advantage of learning
experience. Every time when learning starts, it loads the last
time learning result from long-term memory and stores new
learning result at the end of learning.

Long-TermMemory. Long-termmemory along with working
memory and sensorymemory constitutes the completemem-
ory mechanism. The main function of long-term memory is
to save the learning result, which represents the experience
accumulated through the interaction of agents with the
environment. Every time when learning starts, the long-term
memory is retrieved and loaded to working memory for new
learning. When learning ends, the result is saved in long-term
memory.

2.3. Action Module. Action module represents effector or
neurons related to actions. Its input comes from working
memory, while its output represents the expression of actions.
The action module along with working memory, especially
the connections between them, is the core of thewholemodel.
The structure of the core network is shown in Figure 2.

As illustrated in Figure 2, action module consists of
multiple layers of neurons. Each layer represents one time of
action selection while each neuron represents one action. In

fact, the network in actionmodule indicates the action chains
learned.

The actions will be chosen in winner-take-all way. In
other words, the action with the biggest connective weight
will be chosen.

Suppose at time 𝑡 the input vector for a neuron in
action module is x(t) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))T, and the
corresponding weight vector is w = (𝑤1, 𝑤2, . . . , 𝑤𝑛)T. If
the neuron is not in the last layer, its output is calculated as
follows:

𝑜 (𝑡) =
𝑛

∑
𝑖=1

𝑤𝑖𝑥𝑖 (𝑡) = wTx (t) . (1)

Otherwise, its output is calculated as follows:

𝑜 (𝑡) = {{
{
0 𝑢 (𝑡) < 𝑏
1 𝑢 (𝑡) ≥ 𝑏. (2)

The symbol 𝑏 in formula (2) signifies the threshold value,
or bias, of the neuron. And 𝑢(𝑡) = ∑𝑛𝑖=1𝑤𝑖𝑥𝑖(𝑡) = wTx(t).
2.4. VTA Dopaminergic Neurons. Reward signal is a crucial
factor in associative learning. As mentioned above, many
evidences show that neuromodulation plays an important
role in mediating the reward signal. The ventral tegmental
area (VTA) in midbrain area is believed to be the neural
substrate of such modulation [37].

VTA is one of the most important dopaminergic areas.
The best-developed current theory of dopaminergic function
is the “reward prediction error” hypothesis that dopamine
encodes the difference between actual and predicted rewards
[38, 39]. The magnitude of phasic dopamine-neuron bursts
quantitatively represents positive prediction errors [40].

The idea can be expressed in the following formula where
𝛿 represents the dopamine signal, 𝑅 represents the actual
reward, 𝑅 represents the predicted reward, and 𝑘 is the
positive coefficient:

𝛿 = 𝑘 × (𝑅 − 𝑅) . (3)

In this work, agents are supposed to have no expectations
about reward, that is, 𝑅 = 0. Thus, the dopamine signal can
be regarded as proportion to actual reward; that is,

𝛿 = 𝑘 × 𝑅. (4)

To calculate the dopamine signal, we introduce the
concept ideal degree (ID) in this model. It is a numeric value
decided by specific applications and describes how ideal the
status agents perceive is. The bigger the ideal degree is, the
better the corresponding status is. We assume that the ideal
degree will increase if agents get reward and it will decrease
if not. Based on such an assumption, a reward is regarded as
the function of ideal degree. Suppose at present time 𝑡 that the
status perceived is 𝑠, and its ideal degree is ID(𝑠). After the
serial action 𝑎 is executed, the status transfers to 𝑠, whose
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ideal degree is ID(𝑠). Then, the reward function 𝑅 can be
defined as follows:

𝑅 = 2
1 + 𝑒−ΔID − 1, (5)

where ΔID = ID(𝑠) − ID(𝑠). Then, we can calculate the
dopamine signal according to formula (4) and (5).

As formula (3) shows, 𝑅 is a sigmoid function with the
value domain (−1, 1). The function is on the symmetry of
origin and monotonically increasing. When ΔID > 0, that
is, ID(𝑠) > ID(𝑠), then 𝑅 > 0, indicating that the ideal degree
increases and agents get reward by selecting the action chain.
Moreover, since it is monotonically increasing, themore ideal
degree increases, the bigger 𝑅 becomes. The extreme case is
that 𝑅 will approach 1 in case ΔID approaches infinite. On
the contrary, if ΔID < 0, then 𝑅 < 0, indicating that agents
have not been rewarded and the status is worsening. The
more the ideal degree decreases, the less 𝑅 becomes. When
ΔID → −∞, 𝑅 → −1. A special case is ΔID = 0, that
is, ID(𝑠) = ID(𝑠); then 𝑅 = 0. The case is regarded as
unrewarded.

3. Working Algorithm of the Model

Working algorithm describes how the model works and the
input is transformed to the output. We introduce a new
concept system entropy as a measure of convergence in
the working algorithm. System entropy (denoted as SE), like
entropy in information theory, is calculated as follows:

SE = −
𝑚1∑
𝑖=1

𝑝𝑖 log𝑝𝑖, (6)

where 𝑝𝑖 represents the probability of the selected action 𝑎𝑖.
Obviously, system entropy signifies the degree of self-

organization. The less it is, the higher the degree of self-
organization is. When system entropy approaches its mini-
mum, the model or the working algorithm has converged.We
use SE or the learning times as the ending condition for the
system.

The whole algorithm is as shown below.

Step 1 (initialization). Retrieve long-term memory and load
its content to working memory.

Set 𝑛𝑟𝑖 = 0 and 𝑛𝑟𝑖 = 0 (𝑖 = 1, 2, . . . , 𝑚1), where𝑛𝑟𝑖 represents the number of times of being rewarded for
action 𝑎𝑖 and 𝑛𝑟𝑖 represents the number of times of not being
rewarded.

Set the connective weights between neurons in working
memory and action module 𝑤𝑗𝑖 = 0 (𝑗 = 1, 2, . . . , 𝑚0, 𝑖 =1, 2, . . . , 𝑚1, 𝑚0 and 𝑚1 are, resp., the number of neurons in
working memory and action module).

Calculate the system entropy according to formula (6)
where 𝑝𝑖 = 1/𝑚1; that is, agents select action randomly at
the beginning.

Step 2 (select action inWTA (winner-take-all) way). Choose
the action 𝑎𝑖 with the maximum corresponding weight.

Update the number of being selected for the action
𝑎𝑖: 𝑁𝑖 = 𝑁𝑖 + 1.

Update the probability of each selected action as follows:

𝑝𝑖 = 𝑁𝑖
∑𝑚1𝑗=1𝑁𝑗 . (7)

Update the system entropy SE.

Step 3 (observe the response from the environment, judge
whether the action is rewarded, and then get the output of
VTA dopaminegic neurons). Get the new perceived infor-
mation through sensory module.

Update the representation of the sensory information in
sensory memory and working memory.

Calculate the dopamine signal according to formula (4)
and (5).

For each action 𝑎𝑖 of the action chain being learned,
update 𝑛𝑟𝑖 and 𝑛𝑟𝑖 as follows.

If action 𝑎𝑖 results in reward,

𝑛𝑟𝑖 = 𝑛𝑟𝑖 + 1. (8)

Otherwise,

𝑛𝑟𝑖 = 𝑛𝑟𝑖 + 1. (9)

Step 4 (adjust theweights related). For eachweight𝑤𝑗𝑖 related
to the action sequence being learned, the following happens.

If corresponding action 𝑎𝑖 results in reward,

𝑤𝑗𝑖 = ln
𝑛𝑟𝑖 + 1
𝑛𝑟𝑖 = ln

𝑛𝑟𝑖
𝑛𝑟𝑖 (1 +

1
𝑛𝑟𝑖)

= 𝑤𝑗𝑖 + ln(1 + 1 + 𝑒
−𝑤𝑗𝑖

𝑛𝑟𝑖 + 𝑛𝑟𝑖) .
(10)

Otherwise,

𝑤𝑗𝑖 = ln
𝑛𝑟𝑖
𝑛𝑟𝑖 + 1 = − ln

𝑛𝑟𝑖
𝑛𝑟𝑖 (1 +

1
𝑛𝑟𝑖)

= 𝑤𝑗𝑖 − ln(1 + 1 + 𝑒
𝑤𝑗𝑖

𝑛𝑟𝑖 + 𝑛𝑟𝑖) .
(11)

Step 5 (judge whether the action module should be changed).
If reward has not been observed after given times learning, a
layer will be added in action module, signifying the action
chain should be more complicated. The number of the
neurons in the new layer is the number of the actions allowed
to be selected.

Step 6 (judge whether the learning has come to the end). If
SE is low enough or the learning times have exceeded the
maximum limit, then end the algorithm; otherwise, get back
to Step 2.

4. Convergence Analysis of the
Learning Mechanism

The learning mechanism in the model is shown in formula
(10) and (11). We modify them before analysis in a briefer
form.
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Let 𝑡 represent the learning times and 𝐴 represent the
action sequence to be learned, in which 𝑎𝑖 is an action (𝑖 =
1, 2, . . . , 𝑛). When 𝑡 → ∞, (𝑛𝑟𝑖 + 𝑛𝑟𝑖) → ∞, then, (1 +
𝑒𝑤𝑗𝑖)/(𝑛𝑟𝑖 + 𝑛𝑟𝑖) → 0, (1 + 𝑒−𝑤𝑗𝑖)/(𝑛𝑟𝑖 + 𝑛𝑟𝑖) → 0. According

to L’Hospital rule, ln(1+𝑥) is the equivalent infinitesimal to 𝑥
when 𝑥 → 0. Therefore, we can get the following formula by
such an equivalent substitution:

Δ𝑤𝑗𝑖 = 𝑤𝑗𝑖 (𝑡 + 1) − 𝑤𝑗𝑖 (𝑡) =
{{{{{
{{{{{
{

ln(1 + 1 + 𝑒−𝑤𝑗𝑖𝑛𝑟𝑖 + 𝑛𝑟𝑖) =
1 + 𝑒−𝑤𝑗𝑖
𝑛𝑟𝑖 + 𝑛𝑟𝑖 , if receiving reward

− ln(1 + 1 + 𝑒𝑤𝑗𝑖𝑛𝑟𝑖 + 𝑛𝑟𝑖) = −
1 + 𝑒𝑤𝑗𝑖
𝑛𝑟𝑖 + 𝑛𝑟𝑖 , if not receiving reward.

(12)

Let𝜇 = 1/(𝑛𝑟𝑖+𝑛𝑟𝑖); then formula (12) can be transformed
into the following equation:

Δ𝑤𝑗𝑖 = {{
{
𝜇 (1 + 𝑒−𝑤𝑗𝑖) , if receiving reward

−𝜇 (1 + 𝑒𝑤𝑗𝑖) , if not receiving reward. (13)

Obviously, 𝜇 > 0, so it can be regarded as the learning
rate.

According to formula (13), when agents receive reward,
Δ𝑤𝑗𝑖 = 𝜇(1 + 𝑒−𝑤𝑗𝑖) > 0, so the weight 𝑤𝑗𝑖 between layers will
increase continuously, which indicates that the correlation
between the action sequence 𝐴 and the reward is increasing,
too. Thus, the probability of the corresponding actions being
selected is also increasing. In short, those synaptic weights
related to the actions, that is, more likely to bring reward, will
be strengthened so that the agents will more probably choose
the actions.

On the contrary, if agents do not receive reward,Δ𝑤𝑗𝑖 < 0,
then theweight𝑤𝑗𝑖 between layerswill decrease continuously.
Therefore, the whole process can be described like the
following: if selecting those actions that are less likely to result
in reward, the related synaptic weights will decrease. Then,
the actions will be less likely chosen.

Another question is whether there is limitation for the
change of synaptic weights. In fact, the change of synaptic
weights is bounded in ourmodel, which is in accordance with
the biological fact and suggests the convergence of the model.

Let 𝐸(Δ𝑤𝑗𝑖) represent the expected value of Δ𝑤𝑗𝑖. When
𝑡 → ∞, we can obtain the following formula (14) based on
formula (13):

𝐸 (Δ𝑤𝑗𝑖) = 𝑝 ⋅ 𝜇 (1 + 𝑒−𝑤𝑗𝑖) − 𝑞 ⋅ 𝜇 (1 + 𝑒𝑤𝑗𝑖) , (14)

where 𝑝 represents the probability of being rewarded while 𝑞
represents the probability of not being rewarded. Obviously,

𝑝 = 𝑛𝑟𝑖
𝑛𝑟𝑖 + 𝑛𝑟𝑖 ,

𝑞 = 𝑛𝑟𝑖
𝑛𝑟𝑖 + 𝑛𝑟𝑖 .

(15)

Substituting formula (15) into formula (14), we obtain
another formula as follows:

𝐸 (Δ𝑤𝑗𝑖) = 𝑝 ⋅ 𝜇 (1 + 𝑒−𝑤𝑗𝑖) − 𝑞 ⋅ 𝜇 (1 + 𝑒𝑤𝑗𝑖)
= 𝑛𝑟𝑖
𝑛𝑟𝑖 + 𝑛𝑟𝑖 ⋅ 𝜇 ⋅ (1 +

𝑛𝑟𝑖
𝑛𝑟𝑖 ) −

𝑛𝑟𝑖
𝑛𝑟𝑖 + 𝑛𝑟𝑖 ⋅ 𝜇

⋅ (1 + 𝑛𝑟𝑖𝑛𝑟𝑖) = 𝜇 − 𝜇 = 0.
(16)

Therefore, when 𝑡 → ∞, 𝐸(Δ𝑤𝑗𝑖) = 0, which means the
synaptic weight 𝑤𝑗𝑖 will stop changing, neither increase nor
decrease. Therefore, the boundation of weights is proved.

Besides, we can draw the same conclusion by analyzing
the self-organization feature of the model. As mentioned
above, we use the concept system entropy (SE) to describe the
feature of self-organization. When SE decreases, the degree
of self-organization increases; that is, the model is converging
and the change of weights is becoming less.

Suppose there are 𝑛 sequences of actions, among which
𝐴 𝑖 is the one with reward while other sequences 𝐴𝑗 (𝑗 =1, 2, . . . , 𝑛, 𝑗 ̸= 𝑖) are those without reward. 𝑝𝑖 represents
the probability of being selected for 𝐴 𝑖, while 𝑝𝑗 is the
probability of being selected for other sequence actions 𝐴𝑗
(𝑗 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑖). Thus, we can get formula (17):

1 − 𝑝𝑖 = 1 − 𝑁𝑖𝑁 = 𝑁 − 𝑁𝑖𝑁 , (17)

where𝑁𝑖 represents the number of times being selected for𝐴 𝑖
and 𝑁 is the total number of times for all action sequences,
𝑁 = ∑𝑛𝑖=1𝑁𝑖.

When 𝑡 → ∞, 𝑁 → ∞, as 𝐴 𝑖 more possibly results
in reward, its number of times being selected will increase
constantly while others will decrease; that is, 𝑁𝑖 → ∞ and
𝑁𝑗 → 0 (𝑗 ̸= 𝑖).

Thus, (𝑁 − 𝑁𝑖) → 0 when𝑁 → ∞. Then, 1 − 𝑝𝑖 = (𝑁 −𝑁𝑖)/𝑁 → 0; that is, 𝑝𝑖 → 1 and 𝑝𝑗 → 0.
Therefore, we can get new system entropy as follows:

SE = −𝑝𝑖 log𝑝𝑖 −
𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝑝𝑗 log𝑝𝑗 = −1 ∗ 0 − 0 = 0. (18)

Formula (18) illustrates that SE will decrease to the
minimum value when 𝑡 → ∞, which indicates that the
system is self-organized.
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Figure 3:The real robot used in experiment I: Cogbot I. Cogbot I is a
humanoid robot with 4 wheels. It has 1 infrared sensor and 1 camera.
It is also equipped with a small LED screen, which can display the
weights in the network.

5. Experiments Design and Analysis

To evaluate our model, we reproduce two classic animal
experiments in associative learning. The first experiment is
Pavlov’s dog experiment, which is concerned with classical
conditioning, while the other experiment is Thorndike’s cat
experiment, which is concerned with operant conditioning.
We choose the two experiments because of their powerful
influence and great fame in associative learning theory. Both
experiments are reproduced in real robots, which echoed the
embodied cognition.

5.1. Classical Conditioning Experiment: Pavlov’s Dog Exper-
iment. To study the mechanisms underlying the digestive
system in animals, Pavlov and Anrep carried out a series
of experiments [12]. In the most famous one, Pavlov and
Anrep’s dog experiment, he found that if a bell was sounded
in very close association with dogs’ meal for several times, the
dogs learned to associate the bell sound with meal; that is,
they would drool even if there is no food available. The phe-
nomenon in the experiment is called classical conditioning,
or Pavlovian conditioning. The procedure described above
is acquisition of classical conditioning. Meanwhile, Pavlov
and Anrep also found that if the dogs acquiring classical
conditioning did not get food after the bell sounded for
several times, the dogs would gradually forget the association
between the bell sound and meal, that is, the extinction of
classical conditioning. We reproduce both acquisition and
extinction of classical conditioning in our model.

5.1.1. Experiment Design. We carry out the whole experiment
(including acquisition phase and extinction phase) in the real
robotCogbot I.Cogbot I is a humanoid robot with an infrared
sensor and a camera, shown in Figure 3.

The infrared sensor and the camera compose the sensory
module of the system, in which the infrared sensor represents
the dog’s ears while the camera represents the dog’s eyes.

Therefore, an infrared signal, for example, shaking hands near
the sensor, represents the sound of bell and works as the
conditioned stimulus (CS), while a yellow ball represents food
and works as the unconditioned stimulus (US).

Moreover, the registers or buffers in the sensors corre-
spond to the sensory memory. They store the sensory infor-
mation transiently and provide it to the working memory.

Working memory and the action module compose the
core network, whose structure is shown in Figure 4.There are
2 neurons in theworkingmemory: one stores the information
related to the sound stimulus, denoted as wmbell, while
the other one stores the information related to the sight
stimulus, denoted as wmsee food. The outputs of both neurons
indicate that the robot has received corresponding stimuli.
For example, if the output of wmbell is 1, it suggests that the
robot hears the sound of bell. On the contrary, if the output of
wmbell is 0, it indicates that the robot does not hear any sound.
In the action module, there is only 1 neuron corresponding to
the action salivation, denoted as 𝑎salivate. In order to make the
action visible, we use the action of bending back to represent
it. Similarly, its output shows whether the dog salivates: 1
means yes and 0 means no.

The long-term memory of the system stores the learning
results, mainly the synaptic weights of the core network. Its
initial contents are different in acquisition experiment and
extinction experiment. For example, in acquisition phase, 𝜔1
in the long-term memory is initially set to be 0, symbolizing
the robot has not associated the sound of the bell with the
presentation of food. On the contrary, in extinction phase,
the initial value of 𝜔1 is positive, symbolizing the robot
has learned the association. Each time at the beginning of
learning, the contents in the long-term memory will be
loaded to the working memory.

The reward signal produced by simulated VTA dopamin-
ergic neurons is designed in this way: as food can bring
satisfaction to the dog, we think that the dog’s statuses will
improve if food is presented; that is, the ideal degree of the
statuses will increase. Therefore, the reward signal will be
positive according to formula (4) and (5). In short, the dog
will be rewarded if food is presented. Otherwise, it will not.

In acquisition phase, as the agent gets reward, both of the
synaptic weights𝜔1 and𝜔2 will increase according to formula
(13). That is,

𝜔 (𝑡 + 1) = 𝜔 (𝑡) + 𝜇 (1 + 𝑒−𝜔(𝑡)) . (19)

On the contrary, in extinction phase, both of the synaptic
weights 𝜔1 and 𝜔2 will decrease because of no reward
according to formula (20):

𝜔 (𝑡 + 1) = 𝜔 (𝑡) − 𝜇 (1 + 𝑒𝜔(𝑡)) . (20)

Although both weights change, only the change of 𝜔1
is observed and recorded in the experiment as it is the key
reason for the explanation of the phenomenon.

Weuse the learning times as the ending condition. In both
acquisition and extinction experiments, the robot has to learn
50 times. After that, the experiments come to an end.



Computational Intelligence and Neuroscience 7

wmbell

wmsee_food
asalivate

𝜔1 = 0

𝜔2

(a) At the beginning
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(b) During experiment
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𝜔
1
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(c) In the end

Figure 4:The structure of core network in different phases of acquisition experiment. 𝜔1 and 𝜔2, respectively, represent the synaptic weights
between the neurons in working memory and action module. At the beginning of the experiment, there is no connection between wmbell
and 𝑎salivate, suggesting that the dog will not salivate when it hears the bell sound alone.Thus,𝜔1 is 0.Then, it gradually increases, indicating a
synaptic connection betweenwmbell and 𝑎salivate appears. As it is not big enough to trigger off salivation, the synaptic connection is represented
by dash line instead of solid one in (b). At the end of the experiment, 𝜔1 has increased a lot, so the connective line between two neurons
becomes full in (c). During the whole process, 𝜔2 increases too according to the learning mechanism. However, since the change of 𝜔2 is not
the highlight of the experiment, it is ignored in figure.

(a) The initial stage: only presenting the
infrared signal

(b) The initial stage: only presenting the visual
stimulus (yellow ball)

(c) The intermediate stage: the infrared signal
and yellow ball are presented together

(d) The final stage: the robot is bending back
with only the infrared signal

Figure 5: The whole process of the acquisition experiment in Cogbot I.

5.1.2. Results of Acquisition Experiment. Theprocess of acqui-
sition is the one that the connection between the sound
stimulus and the salivation response is being established. The
dog did not salivate at the beginning of the experiment when
it heard the bell sound alone.Then, it was fed every time along

with the sound. After a few times of such trials, the dog would
salivate even if it only heard the sound of the bell.

Such process is reproduced inCogbot I, shown in Figure 5.
At first, only the infrared signal presents, and the robot has
no reaction at all. Then, when the yellow ball and the infrared
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Figure 6: The change of 𝜔1 in the acquisition experiment and the
comparison with Rescorla-Wagner model.

signal are presented together, the robot bends back since the
US is presented. Finally, after a few times of trials, the weight
is big enough to excite the corresponding action. Therefore
the robot begins to bend back even without the yellow ball.

The reason behind the phenomenon lies in the change of
the synaptic weight 𝜔1. As analyzed Section 5.1.1, the weight
𝜔1 will continuously increase in acquisition experiment until
the end of the experiment. The change of 𝜔1 is recorded and
compared with the data of Rescorla-Wagner model [2] (the
learning rate is 0.1), shown in Figure 6.

Despite different meanings of these data (our model
records connective weight while Rescorla-Wagner model
records associative value), the tendencies reflected by the two
models are the same. During the process, both connective
weight and associative value continuously increase, which
indicates the agent has gradually learned to associate CS with
the reward and classical conditioning is being acquired.

According to formula (2), only when𝜔1 is bigger than the
threshold value of the neuron 𝑎salivate, denoted as 𝑏, can the
action neuron be excited. Therefore, the factor which decides
whether the action will be executed without the presentation
of food is the value of 𝑏. At the beginning of the experiment,
𝜔1 is quite small and does not exceed 𝑏 so that the neuron
𝑎salivate will not be excited and the action will not be executed,
either. However, as 𝜔1 continuously increases, it will exceed 𝑏
after a few times of learning. Then, the action can be executed
even without food.

We discuss the influence of different threshold values on
the output of 𝑎salivate, shown in Figure 7. The figure shows
that the less 𝑏 is, the more easily 𝑎salivate is excited; that is, its
output becomes 1. Since the model is proved to converge, the
increment of 𝜔1 is less and less during the experiment. Thus,
the gaps between neighboring lines in Figure 7 become wider
and wider.

5.1.3. Results of Extinction Experiment. Contrary to acqui-
sition phase, extinction phase is the process during which
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Figure 7: The output of 𝑎salivate under different threshold values
in acquisition experiment. We choose 11 different values in the
interval [2.5, 5.5]. All the values form an arithmetic progression
with common difference 0.3. All 𝑏 values are marked beside the
corresponding lines. The color of the lines indicates the values: the
darker the color is, the bigger the 𝑏 value is.

the association between CS and the conditioned response
gradually disappears. In Pavlov’s dog experiment, if CS, that
is, the bell sound, is presented alone without food repeatedly,
the conditioned response, that is, salivation, will be no longer
watched.

We reproduce it in the robot Cogbot I. The extinction
experiment is done right after the acquisition experiment.
Therefore, the robot at the beginning of the extinction
experiment acquires the classical conditioning. Then, we
present CS (the infrared signal) alone without US (the visual
signal) every time we make experiments. At the end of the
experiment, the robot does nothing when CS is presented
alone, shown in Figure 8.

The phenomenon in the extinction experiment can also
be explained from the point of the comparison between 𝜔1
and 𝑏. In the extinction experiment, 𝜔1 at first is so great
that it exceeds 𝑏 and the neuron 𝑎salivate is excited to execute
the conditioned response. However, since there is no food
presented during the experiment, the synaptic weight 𝜔1
decreases gradually according to formula (20), suggesting
that the association betweenCS and the conditioned response
is being weakened. At certain moment,𝜔1 decreases to be less
than 𝑏. Then, the conditioned response cannot be executed
any longer.

We record the change of 𝜔1 during the experiment and
compare it with that of Rescorla-Wagner model, shown in
Figure 9. Both the models show a similar process during
which the association between CS and the conditioned
response is diminishing.

We also discuss the influence of different 𝑏 in the
experiment. Figure 10 shows the result. Obviously, the bigger
the 𝑏 value is, the faster the extinction procedure is. Figure 10
still shows a similar phenomenon: the gaps between lines are
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(a) Presenting the infrared signal alone (b) The robot does not bow back in the end

Figure 8: The results of the extinction experiment in real robot Cogbot I.
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Figure 9: The change of 𝜔1 in the extinction experiment and the
comparison with Rescorla-Wagner model.

getting wider and wider, suggesting the decreasing speed of
weight 𝜔1 is slowing down as the experiment continues.

5.2. Operant Conditioning Experiment: Thorndike’s Cat Exper-
iment. Another type of associative learning is operant con-
ditioning, or instrumental conditioning. Whereas classical
conditioning focuses on the association between conditioned
stimulus (CS) and conditioned response, operant condition-
ing involves learning from the consequences of the behavior.
Operant conditioning principles presented by Skinner [41]
suggest that the behaviors which result in reward tend to be
repeated by animals while the behaviors without reward tend
to be avoided.

However, Skinner was not the first psychologist to study
operant conditioning. Indeed, Skinner’s theory on oper-
ant conditioning is developed on the ideas of Thorndike.
Thorndike formally studied operant conditioning and reward
learning back in the late 1800s. He designed and carried out a
lot of animal learning experiments, among which the escape
experiment of a cat in a puzzle box is the most famous one.
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Figure 10: The output of 𝑎salivate under different threshold values in
extinction experiment. All the threshold values are in the interval
[1, 4.5] with common difference 0.3. We mark all 𝑏 values on the
corresponding lines. The color of the lines indicates the values: the
darker the color is, the bigger the 𝑏 value is.

In the experiment, a cat was put in a puzzle box designed
by Thorndike. The cat was encouraged to escape to reach a
piece of fish placed outside. To go outside the box, it had to
firstly press a pedal and then lift the latch of the box. Only
when it finished the series of actions in right order could it
escape successfully.

Thorndike executed the experiment many times and
summarized the results in his learning theory. One is Law of
Effect, which states that the connections between situations
and responses followed by satisfaction are strengthened while
the connections with discomfort are weakened. For example,
the cat in the experiment would tend to repeat the right
series of actions once it found executing such series could
bring reward. In fact, the idea of Law of Effect is totally in
accord with Skinner’s operant conditioning theory. Another
one is Law of Exercise, which states that connections between
stimuli and response become strengthened with practice and
weakened if practice is not continued. For example, in the
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Figure 11: Thorndike’s puzzle box and the learning curve in the cat
experiment.

Press-button A:
to start the experiment

Press-button B:
to reward the robot

Figure 12: The real robot in the operant conditioning experiment:
Cogbot II. Cogbot II is a wheeled robot with 2 press-buttons, among
which press-button A is used to start the experiment while press-
button B is used to reward the robot.

cat experiment, Thorndike found that the cat more and more
adroitly escaped from the box after it grasped the right
method. The time it spent in escaping each time tended to
decrease. Thorndike recorded the time and drew a picture,
called learning curve. Figure 11 is the learning curve and the
puzzle box of the experiment.

Thorndike’s cat experiment is not only a good example
for both Law of Effect and Law of Exercise, but also a good
example for operant conditioning of animals. Therefore, we
reproduce the experiment in real robot Cogbot II based on
our model.

5.2.1. Experiment Design. The operant conditioning experi-
ment is done in the real robot Cogbot II, shown in Figure 12.

We simplify the original settings of the cat experiment
in the following way: An apple, corresponding to the fish in
Thorndike’s cat experiment, is put in the north-east of the
robot, shown in Figure 13. After we push down press-button
A, the experiment starts. The robot can move northward or
move eastward. Firstly moving northward then eastward is
considered as the only right way to get reward. Each time

AppleNorthward

Figure 13: The scene settings of operant conditioning experiment.
The aim of the robot is to go northward then eastward to reach the
apple.

Table 1: The correspondence between the operant conditioning
experiment and the original cat experiment.

The operant conditioning
experiment The original cat experiment

Robot Cat
Apple Fish
Move northward Press the pedal
Move eastward Lift the latch

when the robot chooses a direction, the action will last for
2.4 seconds or 3.5 seconds (if the action includes turning).
The speed of the robot and the position of the apple are set
just fine to allow the robot to reach the apple in a complete
northward-eastward action sequence. If the robot happens
to go in the right way, press-button B will be pushed down,
representing the robot has got the reward.

In short, the correspondence between the experiment
and the original Thorndike’s cat experiment may be listed in
Table 1.

In the experiment, press-button B composes the sensory
module of the system. It is press-button B that the robot
depends on to sense the reward. If it is pushed down, it
represents that the robot feels the reward. Otherwise, it does
not. Similarly, the registers or buffers in the press-button serve
as the sensory memory.

The working memory receives information from the
sensory memory and codes it in a suitable form for the
following operation. In this experiment, there is 1 neuron set
in the working memory, denoted as wm1. Its output values
are 1, 2, and 3, respectively, symbolizing the 3 statuses of the
cat, that is, hungry, half-hungry, and full up.

As mentioned in the second paragraph of this section,
each time the robot can choose 2 actions: move northward
or eastward. Therefore, 2 neurons in the action module are
set to represent them, denoted as 𝑎11 and 𝑎12. Among them,
𝑎11 corresponds tomoving northward, and 𝑎12 corresponds to
the other. If an action is selected, the corresponding neuron’s
output is 1; otherwise it is 0. Since the robot learns from single
action, there is only 1 layer of neurons in the action module
at the beginning of the experiment, shown in Figure 14(a).
If the robot is not rewarded all through the single-action-
learning phase (set as learning 30 times in this experiment), a
new layer consisting of 2 neurons will be added in the action
module (shown in Figure 14(b)), which symbolizes that the
robot realizes the single action learning does not work and
begins to learn more complicated action series. Meanwhile,
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(b) In the phase of learning action series

Figure 14: The structure of the core network in the operant conditioning experiment. In the phase of learning single action, there is only
1 layer of neurons in the action module, while there are 2 layers in the module representing the action sequence including 2 actions. The
synaptic weights between the working memory and the action module are denoted as𝑤1𝐴 and𝑤1𝐵, while the weights between the 2 layers of
the action module are denoted as 𝑤𝐴𝐴, 𝑤𝐴𝐵, 𝑤𝐵𝐴, and 𝑤𝐵𝐵, respectively, as shown in the picture.

Table 2: State transitions in Thorndike’s cat experiment.

𝑎1 𝑎2 𝑎1𝑎2 𝑎2𝑎1
wm1 = 1 wm1 = 1 wm1 = 1 wm1 = 2 wm1 = 1
wm1 = 2 wm1 = 1 wm1 = 1 wm1 = 3 wm1 = 1
wm1 = 3 wm1 = 2 wm1 = 2 wm1 = 3 wm1 = 2

all neurons in the action module are considered to be excited
as long as they receive the outputs of other neurons; that is, the
threshold values of the neurons are set to be minus infinity.
Every time when the robot executes an action or a sequence
of actions, the results for the action or the sequence, that is,
the number of times of being rewarded or not, will be saved
in the working memory.

Long-term memory stores the results of last time learn-
ing. Every time when experiments start, the content in the
long-term memory will be loaded to the working memory.
When the robot first learns, all of the weights are initialized
as 0, indicating that it has no experience to make advantage
of.

The reward signal produced by the simulated VTA
dopaminergic neurons is computed in the following way.

Firstly, the ideal degree for each state is defined as the
value of the corresponding output of wm1; that is, the ideal
degrees for the state of being hungry, half-hungry, and full
are, respectively, 1, 2, and 3.

Each timewhen the robot chooses an action or a sequence
of actions, the states will be transformed in accordance with
Table 2.The first line in the table represents all possible action
combinations including single action and action series, while
the first column represents all the statuses of the cat before
executing actions. The entries in the table show the states
after executing the actions. For example, the entry on line 1
at column 4 indicates that the hungry cat will be still hungry
(wm1 = 1) if it chooses the wrong action series 𝑎2𝑎1.

Let 𝑘 = 1; then we can get the reward signal 𝛿 according
to formula (4) and (5) based on the state transition and the
definition of ideal degree for each state. In general, if the robot
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w1B (corresponding to moving eastward)
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Figure 15: Change of connection weights between neurons in
single-action-learning phase.

chooses the right sequence of actions, the reward signal will
be positive; otherwise it will be negative.

In single-action-learning phase, the robot is set to try
30 times. Then, it switches to learn action sequence, which
includes 100 trials.

5.2.2. Results and Analysis. Asmentioned above, the learning
process can be divided into 2 phases: single action learning
and action sequence learning. Therefore, experiment results
will be listed by stages in this section. The following analysis
shows that the results can serve as the evidences of Law of
Effect and Law of Exercise.

In single-action-learning phase, no matter which action
the robot chooses, it will not get rewarded. Hence, according
to the learning mechanism, neither of the two weights related
to the actions will increase. Figure 15 shows how the weights
change in the phase.
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2: move eastward
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Figure 16: Action selection in single-action-learning phase. 1 represents the fact that the robot chooses tomove northward, while 2 represents
that it chooses to move eastward.
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Figure 17: The change of the connective weights of the core network in action-sequence-learning phase.

As shown in Figure 15, since no reward follows the two
actions, the weights continually decrease from the original
value 0 every time when the related actions are executed.

Indeed, the results in Figure 15 testify one aspect of Law
of Effect. As the theory states, the connections between the
stimulus and the response will be weakened if there is no
reward. The synaptic weights between working memory and
action module actually symbolize the connections between
the stimulus and the response; so what is shown in Figure 15
is completely consistent with the theory.

As a result, such changes influence how the robot chooses
actions. Figure 16 shows the change of the selections in single-
action-learning phase. The alternate decreases of the weights

make the robot choose the actions in turn during the learning
process, as it selects actions in winner-take-all way.

After 30 times of trials, the robot stops learning single
action and begins to learn action sequence. The structure
of the action module is becoming more complicated and
transformed as shown in Figure 14(b).

The change of the synaptic weights is shown in Figure 17.
Obviously, only when the robot chooses the right sequence,
that is, moving northward first then eastward, can it get
reward. Therefore, only the synaptic weights related to this
action sequence will increase while other synaptic weights
decrease or keep unchanged for the corresponding actions
have not been selected all the time.
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Figure 18: Action selection in serial-action-learning phase. (a) records the change of the first action in the sequence, while (b) is about the
change of the second action.The numbers in the figure, 1 or 2, represent the two actions the robot can choose each time.
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Figure 19: The elapsed time in each experiment.

Similarly, the changes of the weights influence the robot’s
decision. Figure 18 illustrates how the robot chooses actions
during the phase.

At the beginning of the experiment, since the robot has
not learned the association between actions and reward, it
makes some wrong decisions. For example, at the first trial,
the robot chooses to move northward two times. The second
trial is not right, either. However, from the third trial, the
robot makes the right choice. As the right action sequence
brings about reward and satisfaction, the robot repeatedly
chooses the same sequence until the end.

Thus, results in Figures 17 and 18 testify the other aspect
of Law of Effect, which states that the connections between
stimuli and responses will be strengthened if the responses
are followed by reward, and those responses or actions will
tend to repeat.

We also record the spending time of each experiment
to validate Law of Exercise. When the experiment begins,
the timer starts. System entropy, denoted as SE, is calculated
during the whole procedure. If SE < 0.3 is observed, the
experiment ends and the timer is stopped. Figure 19 shows
the results.
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Figure 20: The change of system entropy in action-sequence-
learning phase.

Figure 19 illustrates that the time spent in the experiment
is inclined to decrease over time. The robot spent a lot of
time in the first trial as it has no experience. However, along
with the progress of the experiment, the weights related to
the right action sequence were continuously strengthened.
Moreover, with the help of the memory mechanism, it had
more experience to speed up learning so that it became more
and more adept in this task. Such changes are completely
consistent with Law of Exercise, which states that practice
makes perfect.

The whole procedure including single-action-learning
phase and action-sequence-learning phase is unsupervised.
All the learning behaviors only depend on the interactions
between the agent and the environment. Meanwhile, it is
also a self-organized procedure in which the structure of the
neural network changes autonomously until it converges.

As mentioned above, the degree of self-organization
can be measured by system entropy. Figure 20 shows how
the system entropy changes during the second phase. The
decrease of the system entropy in the phase indicates that the
system is changing from disorder to order so that the degree
of self-organization increases.
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6. Conclusion

We have presented a cognitive model based on neuromodu-
lated synaptic plasticity on the issue surrounding associative
learning. We apply it to reconstructing two famous condi-
tioning experiments. The results of the experiments in real
robots prove the suitability and validity of the proposed
cognitive model in different learning tasks. The results also
prove the idea that both classical conditioning and operant
conditioning are able to be unified in a general frame.The two
types of conditioning share a similar neural mechanism and
can be unified at the level how stimulus and response connect
and how the connections change in the environment.

Moreover, the statistical feature of our model indicates
that associative learning is a kind of statistical learning.
Some research reports that certain statistical principles like
Bayesian rule possibly work in associative learning, in accor-
dance with this study [42].

Finally, this study shows that associative learning is
self-organized. As the learning mechanism is unsupervised,
the synaptic connections between neurons, or the associa-
tive strengths between stimulus and response, change and
develop in a self-organized way until new organization forms,
signifying the convergence of the model and the emergence
of intelligence.
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