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Abstract

A fundamental goal of neuroscience is to understand how cognitive processes, such as operant conditioning, are performed
by the brain. Typical and well studied examples of operant conditioning, in which the firing rates of individual cortical
neurons in monkeys are increased using rewards, provide an opportunity for insight into this. Studies of reward-modulated
spike-timing-dependent plasticity (RSTDP), and of other models such as R-max, have reproduced this learning behavior, but
they have assumed that no unsupervised learning is present (i.e., no learning occurs without, or independent of, rewards).
We show that these models cannot elicit firing rate reinforcement while exhibiting both reward learning and ongoing,
stable unsupervised learning. To fix this issue, we propose a new RSTDP model of synaptic plasticity based upon the
observed effects that dopamine has on long-term potentiation and depression (LTP and LTD). We show, both analytically
and through simulations, that our new model can exhibit unsupervised learning and lead to firing rate reinforcement. This
requires that the strengthening of LTP by the reward signal is greater than the strengthening of LTD and that the reinforced
neuron exhibits irregular firing. We show the robustness of our findings to spike-timing correlations, to the synaptic weight
dependence that is assumed, and to changes in the mean reward. We also consider our model in the differential
reinforcement of two nearby neurons. Our model aligns more strongly with experimental studies than previous models and
makes testable predictions for future experiments.
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Introduction

Operant conditioning refers to an individual modifying its

behavior based on some consequence of that behavior. Under-

standing how this process arises from neural mechanisms in the

brain will provide a promising step toward linking neural

mechanisms with behavior and learning and discovering how

the brain gives rise to cognitive functions in general. It is also

applicable to brain-computer interfaces, where operant condition-

ing can be used to develop control of external prostheses rather

than tailoring them to existing neuronal circuitry [1].

Operant conditioning experiments have shown that the firing

rate of individual neurons in the precentral motor cortex and

prefrontal cortex of monkeys could be significantly increased by

giving positive reinforcement, provided that the monkeys were also

given immediate feedback on the neuron’s firing [2–4]. A visual

display presented the monkeys with a time-decaying signal that

was incremented for each action potential that an implanted

electrode measured. Upon reaching a threshold value, the signal

was reset and the monkey received a food reward. Negative

punishment (i.e., the removal of reward in order to decrease a

particular behavior) was performed with a similar setup, where

measured spikes decremented the signal (and artificially generated

spikes incremented the signal) [3]. In this case, low firing rates

were elicited. Through a combination of positive reinforcement

and negative punishment, they also showed that a differential

between the firing rates of two neurons could be elicited.

Current theories hold that learning at the behavioral level is

ultimately due to changes at the synaptic level. Reinforcement

learning models of synaptic plasticity depend on neuronal activity

and also on a reward signal [5] that, due to the evidence linking

dopamine to reward learning in the brain [6], typically represents

the amount of extracellular dopamine present. Similar to Fremaux

et al. [7], we identify two main types of existing models. First, there

are models that have been derived theoretically to maximize the

received reward [8–11], such as the R-max model [7]. Secondly,

there is reward-modulated spike-timing-dependent plasticity

(STDP) [11–13], or RSTDP, where the amplitudes of synaptic

changes that would have been made by STDP [14,15] are

modulated by subsequent rewards.

A reinforcement learning model of synaptic plasticity exhibits

unsupervised learning (i.e. learning that occurs independently of
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any rewards) if there is long-term potentiation (LTP) or long-term

depression (LTD) at the mean reward level. Additionally, for

models where LTP and LTD do not depend on the current

synaptic weight (additive models), unsupervised learning is only

present if the LTP and LTD do not cancel with each other.

Studies with existing models find that there should be no

unsupervised learning in order to perform reinforcement learning

tasks, such as the operant conditioning of neuronal firing rates

[7,16]. However, even after development, the brain receives large

amounts of novel sensory information without any associated

rewards or punishments [17]. Any learning based on this

information is necessarily unsupervised, suggesting an ongoing

role for unsupervised learning after development. This likely

depends on the brain region. In synapses onto GABAergic spiny

neurons in the rat striatum, Pawlak and Kerr [18] showed that no

LTP or LTD occurred when D1-receptors (dopamine receptors)

were blocked. In synapses onto pyramidal neurons in the rat

hippocampus, however, Zhang et al. [19] observed classical STDP

learning windows without any dopamine present. When extracel-

lular dopamine was added, Zhang et al. [19] observed increased

LTP for pre-post spike pairs and that LTD had switched to LTP

for post-pre spike pairs. Based on this, it seems unlikely that there

would be no LTP or LTD at the base level of dopamine, which

suggests that unsupervised learning can coexist with reward

learning.

Here, we consider the case where unsupervised learning does

occur (unlike in the situation considered in previous studies [7,16])

and so, even without reinforcement learning, a balance of LTP

and LTD produces stable firing rates. Under this assumption, we

demonstrate that existing RSTDP models are unable to elicit

increased firing rates in neurons that are rewarded for firing. We

propose a new RSTDP model that can elicit reinforcement

learning, in which LTP and LTD are modulated separately by the

reward signal. This is more consistent with the experimental

observations that dopamine affects LTP and LTD differently, even

causing LTD to switch to LTP for high concentrations [19]. We

show that these findings are robust to the introduction of spike-

timing correlations, the synaptic weight dependence that is

assumed, and the reward signal used. We demonstrate that our

model is also able to reproduce the differential reinforcement of

Figure 1. Modulation of STDP. A: Qualitative summary of the observed modulation of LTP and LTD amplitudes with increasing concentrations of
dopamine (blue circles), octopamine (red squares), norepinephrine (green triangles), and acetycholine (magenta stars). These are based on
observations by Zhang et al. [19], Cassenaer and Laurent [42], Salgado et al. [43], and Sugisaki et al. [41], respectively. The markers show qualitative
effects only and the scales between the different modulators are not necessarily comparable. An example of our new RSTDP model parameterized to
exhibit the same effect on STDP as dopamine (solid blue line). This is compared to an example of classical RSTDP model (dashed blue line). B:
Effective learning windows for dopamine RSTDP for reward levels of 0 (green), 1 (blue), 2 (purple), 3 (magenta), 4 (red), 5 (orange), and 6 (yellow). The
modulation factors are pz~1, p{~{3, qz~9, and q{~13. C: Effective learning windows for classical RSTDP. Same axes and lines (not all are
shown) as in B. The modulation parameters are pz~10, p{~10, qz~0, and q{~0. D: Conceptual plot of RSTDP variables during an operant
conditioning experiment. Variables are (from the top down): post- and pre-synaptic spike trains, LTP and LTD eligibility traces, reward signal (dashed
line shows the mean value), and synaptic weight (dashed line shows the initial value). E: Feedforward network where reinforced neuron (blue) is
recorded from, determining the reward, which in turn influences changes made to the synapses into the reinforced and surround (red) neurons. The
control neuron (green) represents either neuron before the operant conditioning experiment was preformed.
doi:10.1371/journal.pone.0087123.g001
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two neurons observed by Fetz and Baker [3]. Finally, we compare

the learning induced by the operant conditioning of firing rates

using our model with the R-max model to highlight the impact of

including unsupervised learning with reward learning.

Results

RSTDP Model
To better incorporate the effects that neuromodulators have

been observed to have on synaptic plasticity (Figure 1A), we

propose a new RSTDP model in which LTP and LTD can be

modulated differently by a neuromodulator (e.g., dopamine). In

this model, there are a pair of modulated parameters for each of

LTP and LTD. Each pair describes the linear effect that a

neuromodulator has on the amplitude of LTP and LTD. The

modulation offsets, qz and q{, give the amplitudes of LTP and

LTD, respectively, when the reward signal is zero. The

modulation slopes, pz and p{, give the rates of change of the

amplitudes of LTP and LTD, respectively. By setting both

modulation offsets to zero (i.e., q+~0), the classical RSTDP

model is recovered (dashed blue line in Figure 1A). In this paper,

we focus on a particular set of modulation parameters (solid blue

line in Figure 1A) that leads to the effect that Zhang et al. observed

dopamine to have on STDP [19] (blue circles in Figure 1A). We

refer to this parameterization as dopamine RSTDP. Figure 1B

illustrates the effective learning windows corresponding to changes

in the reward signal, as compared to classical RSTDP shown in

Figure 1C.

Our new RSTDP model introduces two qualitatively new

features. The first is that there can be LTD and LTP when the

reward is zero (provided that q+=0). This differs from previous

studies in which firing rate reinforcement was demonstrated

[7,16], where the base reward signal was zero and, at this level,

there was no LTP or LTD. This difference is illustrated in

Figure 1A and Figure 2A. However, we consider the case where

the base reward level is positive and so, for both our RSTDP

model and classical RSTDP, there is LTD and LTP present at the

base reward level and, therefore, there is unsupervised learning.

The second new feature, introduced by our new RSTDP model, is

that LTD and LTP are modulated separately by the reward signal.

This means that it is possible for a balance of LTP and LTD to be

disrupted by an increase (or decrease) in reward. It also means it is

possible for the LTP (LTD) caused by pre-post (post-pre) spike

pairs to be differentially switched to LTD (LTP) for high reward

signal values. The latter of these, where LTD transitions to LTP, is

demonstrated with dopamine RSTDP (Figure 1B) and matches

observed effects of dopamine of STDP [19]. In classical RSTDP,

the only point at which both LTP and LTD switch is when the

rewards become negative (or below baseline in previous studies

[7,16]).

The model is able to exhibit differential modulation of LTP and

LTD because it stores the effects of the pre-post and post-pre spike

pairs in two separate eligibility traces, e+ik (t). This is in contrast to

classical RSTDP, which combines these effects into a single

eligibility trace. Figure 1D shows the two eligibility traces for an

individual synapse, as well as the reward signal, y(t) (determined

by the post-synaptic spike train, Si(t)), and the changes elicited in

the synaptic weight, Kik(t).

Analytical Predictions
To apply this model to operant conditioning experiments, we

considered the feed-forward network shown in Figure 1E,

containing three different types of post-synaptic neurons:

N Reinforced: The firing of the reinforced neuron is recorded

and determines the amount of reward delivered. In operant

conditioning experiments, the firing rate of this neuron was

observed to increase.

N Surround: The surround neuron is located near the

reinforced neuron but its firing does not affect the reward

delivered.

N Control: The control neuron represents either the reinforced

or surround neuron before the operant conditioning experi-

ment was performed.

tion of the reward signal, referred to as the reward kernel. The

reward kernel has a mass, m, between 0 and 1. We initially

focussed on the case where m~0 and hence the mean of the

Figure 2. Comparison of our RSTDP model and classical RSTDP
models. A: Amounts of LTP (green) and LTD (red) vs. reward level, with
our RSTDP model (solid) and with classical RSTDP with and without
unsupervised learning (dashed and dot-dashed, respectively) at the
equilibrium synaptic weight. For classical RSTDP without unsupervised
learning the reward signal has been shifted such that there is no LTP
and LTD at the base reward level, y0 (vertical, black, dashed line) instead
of at zero reward, y~0. B: An increase (decrease) in firing rate is
predicted to occur in the hatched (unhatched) regions for LTP:LTD
ratios at the base reward level ((pzzqz):(p{zq{)) of 2:1 (red), 1:2
(green), and 1:1 (blue). On the lines that divide these regions no
increase or decrease is predicted. The points marked as C and D
correspond to a base level ratio of 1:1 and represent the classical and
dopamine parameter sets used in this paper.
doi:10.1371/journal.pone.0087123.g002
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reward signal, �yy, is equal to the base level, y0 . This is the case

in Figure 1D, where the kernel has a negative tail. The kernel

is scaled by a reward strength, c, which is positive to reinforce a

high firing rate and negative to reinforce a low firing rate.

Analytically, we found that, for there to be reinforcement and

unsupervised learning, rewards must produce a large increase in

LTP then LTD and the reinforced neuron’s firing must be

irregular. We determined this by considering the changes to the

mean feed-forward weight into neuron i, which is given by

�KKi~
1

Nk

PNk

k~1 Kik, where there are NK inputs and Kik is the

weight from input k to neuron i. Focussing on the case where the

inputs to the neurons are uncorrelated, this mean weight evolves

according to (see Section 1 of Text S1 for derivation)

_�KK�KKi&gnif(pz~yyizqz)fz( �KKi)( ~WWzn̂nzhci)

z(p{~yyizq{)f{( �KKi) ~WW{n̂ng,
ð1Þ

where z and { refer to the LTP and LTD parts of the

learning window, respectively, g is the learning rate, ni is the firing

rate of neuron i, ci is the normalized, mean strength of the cross-

covariances between neuron i and its inputs, h describes the effect

of these cross-covariances on learning, n̂n is the input firing rate,

f+(Ki) and ~WW+ are the weight dependence function and mass of

the learning window parts, respectively, and ~yyi gives the mean

effective reward following the spikes of neuron i. For weights into

the control and surround neurons, ~yyi~y0 and ~yyi~�yy, respectively.

For weights into the reinforced neuron, ~yyi~�yyzcagr, where gr

describes the interaction between the reward kernel and the

eligibility kernel, and c and a are the reward strength and the net

area of the auto-covariance function of the reinforced neuron,

respectively. The statistic a provides a measure of irregularity in

the firing of a neuron. In this way, reinforcement of a neuron

occurs based on the average value of the reward signal following

spike pairs.

We consider the case where the mean firing rates of the inputs

are equal and only small spike correlations exist. In this case, the

firing rate of a neuron is dependent on the mean excitatory

synaptic weight of its inputs (assuming no, or fixed, inhibitory

inputs). Therefore, for the reinforced neuron to increase its firing

rate for a given set of inputs, the mean weight into it must increase

compared to the mean weight into the control neuron. From

Equation (1), this requires that

pz(�yyzcagr)zqz

pzy0zqz

w

p{(�yyzcagr)zq{

p{y0zq{

: ð2Þ

Assuming that cagrw0 and that �yy~y0~1, the requirement for

reinforcement given by Equation (2) can be further simplified as

pz

pzzqz

w

p{

p{zq{

: ð3Þ

In classical RSTDP, where qz~q{~0, this requirement

cannot be satisfied and neither an increase nor a decrease in the

reinforced firing rate will occur. This is because, in classical

RSTDP, LTP and LTD must both be zero at the same reward

level and so, for there to be linear modulation of LTP and LTD

that produces a balance of LTP and LTD at the base reward level,

LTP and LTD necessarily match/balance at any reward level

(dashed lines in Figure 2A). In the study by Legenstein et al., the

reward signal was shifted so that there was zero LTP and LTD at

the base level (dot-dashed lines in Figure 2A) and so, except at this

point, no balancing of the amounts of LTP and LTD were

necessary [16]. In that case, reward above the base level produced

Hebbian STDP while reward below the base level produced anti-

Hebbian STDP. Therefore, provided that correlations between

the inputs and the neurons caused there to be a greater amount of

LTP than LTD while the reward was above the base level,

RSTDP would lead to a stable increase in the synaptic weights and

the firing rate of the reinforced neuron. However, in this situation,

no unsupervised learning was present, as there was no LTP and

LTD at the average reward level. If, in the study by Legenstein et

al. [16], the reward signal had not been shifted and there was LTP

and LTD at the base reward level, unsupervised learning would be

present but there would not be a balance of LTP and LTD at the

base reward level. In this situation, the synaptic weights would

either grow or decay unstably even without any rewards being

given to the system.

In our RSTDP model, LTP and LTD are not necessarily both

zero at the same reward level and so, to balance each other at the

base reward level, they are not required to balance for all reward

levels (solid lines in Figure 2A). In this case, it depends on the

particular parameters as to whether reinforcement occurs or

whether the ‘rewards’ actually behave as punishments and lead to

a decrease in the firing rate of the neuron. For the dopamine

inspired modulation parameters that we focus on, this requirement

is met and reinforcement occurs. The inequality in Equation (3)

and the illustration in Figure 2B show that, relative to the amounts

of LTP and LTD at the base reward level, the increase in the

amount of LTP with reward must be greater than the increase in

the amount of LTD in order for the firing rate to increase (be

reinforced). If the increase in LTP is the same as (less than) the

increase in LTD, then the firing rate remains the same (decreases).

Therefore, the parameters we consider here, which correspond to

the results of Zhang et al. [19], are just one of many possible sets of

modulation parameters that we predict would lead to firing rate

reinforcement.

Figure 1B shows that, for high values of dopamine, there is only

LTP (post-pre spike pairs lead to LTP, instead of LTD). Because of

this, if ~yyi, the mean effective reward following the spikes of neuron

i, is sufficiently large then on average post-pre spike pairs with

neuron i would lead to LTP and weights into neuron i would grow

in an unstable manner. However, we found that there is a broad

range of modulation parameters for which a stable fixed point for

the mean input weight exists.

In addition to the modulation parameters, Equations (1) and (2)

predict that the amount of reinforcement that occurs depends on

the value of a, which we show depends on how irregular the firing

of the reinforced neuron is.

Operant Conditioning Simulations
To support our analytical predictions, we simulated the learning

during the operant conditioning of a neuron’s firing rate using

leaky integrate-and-fire (LIF) neurons in two different cases. In the

first, the neurons received 10,000 excitatory inputs (E), while in the

second, they received 8,000 excitatory and 2,000 inhibitory inputs

(E+I). In the E+I case, only the excitatory input weights changed

due to RSTDP (i.e., the inhibitory inputs’ weights were fixed).

While we assume no covariance between the inputs, the

correlations arising due to the influence of individual input spikes

on the firing of the output neuron (spike triggered correlations) are

significant and need to be taken into account. Figures 3A and 3B

Coexistence of Reward and Unsupervised Learning

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e87123



show numerically determined values for the strengths of these

correlations (normalized by the firing rate) varying with mean

input weight for the two cases. While the correlation strength

increases with the mean input weight, it does so in a weaker

fashion than the firing rate and so the normalized correlation

strength decreases with mean input weight. The auto-covariance

functions of the LIF neurons had a negative region for short time

lags (Figure 3C). Negative regions represent spike time differences

that are less likely to occur. In the integrator regime (E), the

negative region is due to a minimum inter-spike-interval exhibited

by the neuron. This minimum inter-spike-interval was smaller in

the E+I case than the E case because the neuron exhibited more

irregular firing. The net area of the auto-covariance function, a, is

affected by the irregularity in firing: lower values occur for more

regular firing and higher values for more irregular firing. Figure 3D

shows how the value of a (the firing irregularity) changes as the

balance between excitation and inhibition is varied.

We compared the analytical predictions to simulations with LIF

neurons (see Section 2 of Text S1 for derivation of the predicted

weights/rates). While our analytical predictions hold for any

weight dependence, for simulations we chose logLTD weight

dependence (and also additive STDP). These results are shown in

Figures 4A, 4B, and 4C. As predicted, classical RSTDP did not

lead to an increase in the firing rate of the reinforced neuron in

either E or E+I case. With dopamine RSTDP, this increase is seen

but it is much smaller in the E case than in the E+I case. This has a

number of causes, the most significant of which is that the negative

region in the auto-covariance function, caused by the regular firing

of the neuron in this case, almost completely cancels out the delta

function at zero time lag (see Figure 3D), resulting in a small value

for a. This has the effect of decorrelating the output spike train

from itself and, therefore, the reward signal. This appears clearly

in the average reward signal following spikes from the reinforced

neuron (see Figure 4D). With low values of a (regular firing), the

inter-spike-intervals of the reinforced neuron are large and this

causes the spikes to occur less during times of high reward. This is

the reason that less reinforcement occurs in the E case.

Other reasons for the smaller amount of reinforcement observed

in the E case (compared with the E+I case) are that the correlation

strength decreases faster with mean weight and that a larger

increase in the mean input weight is required for the same increase

in the firing rate (Figures 3A and 3B). The latter of these influences

is somewhat made up for by the larger value of a used in the E

case. Figures 4A, 4B, and 4C include analytical predictions that

Figure 3. Numerically determined spiking statistics using the LIF neuron model. A: Mean output firing rate (n, solid) and mean cross-
covariance strength (covariance normalized by the firing rate) between the input and output spike trains (c, dashed) for different mean input weights,
�KK , for a LIF neuron with 10,000 excitatory inputs. B: Same as A but for a LIF neuron with 8,000 excitatory inputs and 2,000 inhibitory inputs. C: The
auto-covariance function of the output spike trains, Cii , of the LIF neurons in A (light blue) and B (dark blue) with mean input weights of 1:498|10{4

and 1:092|10{3 , respectively (dashed vertical lines in A and B). D: The net area of the auto-covariance (AC) functions, a, of LIF neurons (with input
and output rates of 10 spikes/s) with 8,000 excitatory inputs and 2,000 inhibitory inputs for different ratios of the inhibitory and excitatory input
currents. The auto-covariance functions for the first, third, fifth, sixth, and seventh points are shown to the right from bottom to top. The first point is
the case in A and C (light blue), except with only 8,000 excitatory inputs, and the fifth point is the case in B and C (dark blue). Table 1 shows the
parameters used in the LIF neuron model.
doi:10.1371/journal.pone.0087123.g003
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assume a~1 and others that take the correct value of a into

account (a&0:15 for E and a&0:92 for E+I). This shows the

contribution that the value of a, the irregularity of the firing, has

on the reduced reinforcement in E compared with the other

factors.

Cases E and E+I typify mean- and fluctuation-driven regimes,

respectively, for the neurons. We observed that varying the relative

amount of inhibitory input controls a smooth transition between

these two regimes (Figure 3D). The correlation between the firing

of the reinforced neuron and the reward signal and, therefore, the

amount of reinforcement, perfectly follows this transition

(Figure 4D).

Figure 4C also shows an example of this reinforcement learning

with an additive weight dependence (E+I case only). This weight

dependence includes rate-based learning terms, as used by Gilson

et al. [20], and used slightly different modulation parameters to

achieve stable equilibria (see Methods). These simulations show

similar results as for the logLTD weight dependence.

Correlated Inputs
We simulated the learning during the operant conditioning

experiment where the inputs (excitatory and inhibitory) contained

pairwise spike correlations and found that reinforcement still

occurs and that the firing rate of the surround neuron also

increased. We used two different methods of generating input

correlations: the single and multiple interaction process (SIP and

MIP, respectively) models [21]. Introducing correlations to the

inputs leads to a higher firing rate even without providing the

system with rewards. As shown in the inset of Figure 5A, we used

smaller values of the modulation offset, qz, with dopamine

RSTDP so that the stable firing rate of the control neurons

remained at 10 spikes/s. For classical RSTDP, equal reductions

Figure 4. Operant conditioning experiment with LIF neurons. A: Mean weight into the reinforced neuron (c~0:06) over time for LIF neurons
receiving 10,000 excitatory inputs where the weights are updated using the classical (dashed) and dopamine (solid) RSTDP models. Horizontal lines
represent analytical predictions for classical RSTDP (dashed), dopamine RSTDP where a~1 (dotted), and dopamine RSTDP where the correct value of
a is assumed (solid). B: Same as A with 8,000 excitatory inputs and 2,000 inhibitory inputs (inhibitory synaptic strengths were fixed at 0.01). C: The
mean firing rates of the reinforced (blue), surround (red), and control (green) neurons for the last 30 minutes of the simulations (shaded areas in A
and B) with classical (C) and dopamine (D) RSTDP in A (E (log)), B (E+I (log)), and as in B but with additive weight dependence (E+I (add)), as described
by Equation (19). Horizontal lines represent analytical predictions as in A and B. D: The average reward signal after the reinforced neuron’s spikes
(spike triggered reward) for neurons with different ratios between the excitatory and inhibitory input currents. The different ratios shown increase
from no inhibitory inputs (lightest blue) up to the strongest inhibitory inputs (darkest blue), and correspond to the points in Figure 3D. The first line
corresponds to the E case in A and C while the sixth line corresponds to the E+I case in B and C. The inset shows the relationship between the net
area of the auto-covariance (AC) function and the peak of the spike triggered reward (STR) curve normalized by the peak of the reward kernel (red
dashed line).
doi:10.1371/journal.pone.0087123.g004
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were made to pz to achieve the same outcome. Figure 5A shows

the resulting firing rates of the reinforced and surround neurons

from simulations with different input correlations with dopamine

RSTDP. Using either method, we observed a lower firing rate

after learning for the reinforced neuron than for the uncorrelated

case but reduction was larger with SIP correlations. We also

observed an increase in the firing rate of the surround neurons

above baseline (10 spikes/s) using either method. While this

reduction may not have completely saturated with a covariance

strength of ĉc~0:02, the trend appears to be sufficiently captured.

Also, as the increase in the firing rate of surround neuron is due to

its firing becoming correlated with the reinforced neuron’s, our

model does not predict that the surround neuron would ever

increase its firing rate more than the reinforced neuron. Figure 5B

shows the firing rates for only ĉc~0:01 with both classical and

dopamine RSTDP and compares them to the case with

uncorrelated inputs. There is no apparent reinforcement of the

firing rates of either neuron for classical RSTDP with input

correlations.

Non-Zero Reward Kernel Mass
We found a similar result to adding correlated inputs, when we

considered the case where the mass of the reward kernel, m, is no

longer zero. In this case, the mean of the reward signal, �yy, is not

fixed at the base level, y0. Instead, it is given by

�yy~y0zcm�nnR, ð4Þ

where c is the reward strength and �nnR is the firing rate of the

reinforced neuron. Figure 6A shows the analytical predictions for

the mean firing rates of the neurons after learning for different

reward strengths for m~0:00 and m~0:05. These results are

supported by simulations, as shown in Figures 6A and 6C. For

dopamine RSTDP, we observed that the firing rate of the

surround neuron (as well as the reinforced neuron) increased

above that of the control neuron when using a non-zero mass

reward kernel. This was because the reward signal mean was no

longer fixed but increased according to Equation (4). Because of

this, we observed that the reinforced firing rate was unstable if the

reward strength and kernel mass were too large. For classical

RSTDP, neither the reinforced nor the surround firing rates

increased.

Differential Reinforcement
We also considered the case where there are two differentially

reinforced neurons (i.e., the neurons have positive and negative

reward strength, respectively). In this case, the mean reward is

given by

�yy~y0zcHRm�nnHR{cLRm�nnLR, ð5Þ

where cHR and cLR and �nnHR and �nnLR are the reward strengths

and firing rates of the neurons reinforced for high and low firing

rates, respectively. Figure 6B shows the analytical predictions for

the mean firing rates of the four neurons (two differentially

reinforced neurons and surround and control neurons) after

learning for a positive reward strength of 0:035 and different

negative reward strengths for m~0:00 and m~0:05. These results

are supported by simulations, as shown in Figures 6B and 6C. As

was the case with only one reinforced neuron, classical RSTDP

did not lead to changes in the firing rates of any of the neurons.

For dopamine RSTDP, we observed a decrease in the firing rate of

the low-rate reinforced neuron, either for all values of cLR (with

m~0:00) or for values of cLR above a certain threshold (with

m~0:05), in addition to the increase in the firing rate of the high-

rate reinforced neuron. Interestingly, as the negative reward signal

increased, there was an initial decrease in the stable firing rate of

the high-rate reinforced and surround neurons followed by a slow

increase. This increase is due to the decreasing stable firing rate of

the low-rate reinforced neuron having less of an effect on the mean

of the reward signal. Figure 6D shows how the stable firing rate of

the surround neuron depends on the two reward strengths.

Depending on the two reward strengths, the stable firing rate of

the surround neuron is above or below the firing rate of the control

neuron.

Comparison with R-max Model
As discussed by Fremaux et al. [7], the average change in

synaptic weights due to reinforcement learning rules can be split

into the unsupervised and reward learning components. The

Figure 5. Operant conditioning experiment with correlations between inputs. A: Firing rates of reinforced (blue), surround (red), and
control (green) neurons after learning in simulations with dopamine RSTDP for different input correlations (ĉc~0:000, 0:002, 0:005, 0:010, and 0:020)
introduced using two different methods. The first method (SIP, solid with circles) leads to common spikes across many spike trains, while the second
(MIP, dashed with squares) does not. Inset: Smaller values of the modulation offset, qz, were used so that the stable firing rate of the control neurons
remained at 10 spikes/s. B: Firing rates of the three neurons after learning with classical (C) and dopamine (D) RSTDP for uncorrelated inputs
(ĉc~0:000) and with input correlation (ĉc~0:010, dashed vertical line in A) introduced using the two different methods.
doi:10.1371/journal.pone.0087123.g005
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reward learning component depends on the covariance between

neural activity and reward, while the unsupervised learning

component is independent of this covariance, depending only

the mean reward value. This separation of components is given by

_KKik !SC½pzez
ik (t)zp{e{

ik (t),y(t)�zE½ez
ik (t)�½pz�yyzqz�

zE½e{
ik (t)�½p{�yyzq{�TT ,

ð6Þ

where C½A,B� denotes the covariance between A and B, E½A�
denotes the expected value of A and SxTT denotes the temporal

average of signal x. The first term in the equation is the reward

learning component and the second and third terms combine to

give the unsupervised learning component. For R-max and

classical RSTDP, this simplifies to

_KKik !SC½eik(t),y(t)�zE½eik(t)��yyTT , ð7Þ

where eik(t)~ez
ik (t)ze{

ik (t). To maximize the reward that the

system receives the unsupervised component needs to be as small

as possible. The major difference between R-max and RSTDP is

that, in the R-max model, the unsupervised component (or bias) is

always zero (i.e., E½eik(t)�~0). This is only possible because an

assumption of the R-max model is that it has an unbiased

estimator of the instantaneous firing rate of the post-synaptic

neuron. In contrast, RSTDP is only able to have zero

unsupervised bias if, in the classical case, the mean value of the

reward signal is zero (or can be removed), or if, in our model, the

mean value of the reward signal is such that pz�yyzqz~0 and

p{�yyzq{~0. However, we are interested in when this is not the

case and there is an unsupervised learning component. The

unsupervised learning component without any reward learning

leads to a stable base firing rate, and the introduction of the

reward learning component, during operant conditioning, should

result in a shift of this stable point. As we have shown, classical

RSTDP is not able to both exhibit an ongoing unsupervised

learning component that produces such a stable point and also

elicit a shift in this stable point due to reinforcement learning.

In order to demonstrate how the operant conditioning

experiment is different with and without an unsupervised learning

component present, we used the Spike Response Model [22] to

compare our dopamine RSTDP model (with logLTD) to the R-

max model [7]. This is shown in Figure 7. Both models are able to

elicit an increased firing rate in the reinforced neuron. For the

same learning rate, the R-max model leads to much faster firing

rate reinforcement so for comparison we have set the learning rate

for the R-max model to be 60 times smaller than for the dopamine

Figure 6. Operant conditioning experiment with non-zero-mass reward kernels. A: Firing rates of reinforced (blue), surround (red), and
control (green) neurons after learning with dopamine RSTDP using reward kernels with masses of 0:05 (solid) and 0:00 (dashed) with reward strength.
The green solid line and the red and green dashed lines are shown separate but are actually in line. Dots show the firing rates after learning from a
simulation using the 0:05 mass reward kernel. B: Same as A but with an additional neuron (magenta) that is reinforced for a low firing rate. The high-
rate reinforced neuron has fixed reward strength of 0:035, while the negative reward strength is varied. C: Firing rates of the three neurons (same
colors as in A and B) after learning with classical (C) and dopamine (D) RSTDP for the single reinforced neuron, c~0:035, and differentially reinforced
neurons, c~0:035 and {0:21 (vertical dashed lines and dots in A and B). D: Heat map of the firing rate (FR) of the surround neuron as the reward
strengths (RSs) of the two neurons are varied. The solid line shows where the firing rate is unchanged from the base level (10 spikes/s) and the
dashed line shows where the positive and negative reward strengths are equal in magnitude.
doi:10.1371/journal.pone.0087123.g006
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RSTDP model. Aside from the differences in learning rate and the

size of the firing rate increase, there are two important differences

between the models. They are both due to the fact that there is an

unsupervised component (or bias) to the changes elicited by the

dopamine RSTDP model but not with the R-max model. The first

difference is that, using dopamine RSTDP, the firing rate returned

to the base level during extinction, as observed in operant

conditioning experiments [2–4], while in the R-max model it did

not. The second difference is that the firing rate saturated in the

dopamine RSTDP model, also as observed experimentally, while

in the R-max model it did not. With our RSTDP model, there is a

transient drop in the firing rate of the surround neuron at the

beginning of the extinction period. This is due to a transient

decrease in the mean value of the reward signal due to rewards no

longer being delivered and the negative tail of the reward kernel. A

transient increase in this firing rate similarly occurs at the

beginning of the reinforcement period.

Summary of Results
We considered RSTDP in the case where LTP and LTD exist,

both without any rewards and also at the mean reward level,

which means that unsupervised learning is present. We showed

that, in this situation, classical RSTDP is not able to elicit the

neuronal firing rate reinforcement that is observed in experiments

and in models which assume that there is no unsupervised

learning. We proposed a new RSTDP model, which better

captures the experimentally observed modulation of STDP by

dopamine, and showed that it is able to elicit firing rate

reinforcement. Without any rewards, the unsupervised learning

component led to a stable base firing rate (this was demonstrated

with the control neuron) and, during an operant conditioning

experiment, a reward learning component was introduced and,

coexisting with the unsupervised learning component, led to a shift

in the firing rate of the reinforced neuron. We identified that this

reinforcement is much stronger when the neurons are in a

fluctuation-driven regime (as opposed to a mean-driven regime),

such as when they receive a balance of excitatory and inhibitory

inputs. We demonstrated that our findings are robust to the weight

dependency used, the input correlations, and whether the mean of

the reward signal is fixed or dependent on the reinforced firing

rate.

Discussion

Related Models of Operant Conditioning
Previous reinforcement learning models, such as classical

RSTDP and R-max, are able to perform operant conditioning

tasks only when they do not have an unsupervised component (or

bias) to the synaptic changes they elicit [7,16]. For R-max, this is

the case regardless of the reward signal statistics, but, for classical

RSTDP, this is only true when there is no LTP and LTD at the

average reward value. However, there is much experimental

evidence suggesting that unsupervised learning occurs in the brain.

This includes all experiments in which STDP is observed to occur

and especially the findings of Zhang et al. [19], which show that

LTP and LTD are always present regardless of the dopamine

concentration. An unsupervised learning component is also

evident in the operant conditioning experiments when the

reinforced firing rate returns to its original level during extinction

[2,3]. Figure 7 shows that our dopamine RSTDP model, with its

unsupervised bias, can capture this behavior, unlike a model

without an unsupervised component, such as R-max. A further

aspect to the R-max model is that it requires an unbiased estimator

of the instantaneous firing rate of the post-synaptic neuron in

order to ensure there is never an unsupervised bias.

While a learning rule with an unsupervised learning component

cannot always maximize the rewards received, it is not clear that

learning rules employed by the brain are able to either. For

example, in certain learning tasks, such as where perceptual roving

is involved, R-max has been shown to out-perform the human

brain [23]. This was our reason for considering the operant

conditioning learning task in this paper. This simple situation can

be compared directly with experiments and it is important to

understand cases such as this before considering more general and

complex learning situations. While out of the scope of this study,

we would expect our model to perform similarly in more complex

reinforcement learning tasks. As in this simple task, the unsuper-

vised learning component would work against the reward-based

changes but given sufficiently strong reinforcement learning

components there is no reason why these learning tasks could

not be performed.

Fremaux et al. argued that RSTDP is not an appropriate model

of reward learning because it is sensitive to changes in the mean of

the reward signal and will only work if the mean reward can be

estimated without bias and subtracted from the current reward

Figure 7. Comparison between dopamine RSTDP and R-max. A: Change in the firing rate over time for the reinforced (blue), surround (red),
and control (green) neurons using the dopamine RSTDP model (g~2:00|10{8), SRM neurons, and 10,000 excitatory inputs. A reward strength of 0.2
is used during the first 45 mins and this is either maintained for the second 45 mins (dashed) or reduced to 0.0 (solid). B: Same as A but using the R-
max model (g~3:33|10{10).
doi:10.1371/journal.pone.0087123.g007
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[7]. However, in the simple operant conditioning protocol

corresponding to published experiments [2–4], we show that

reward learning can coexist with unsupervised learning provided

that certain conditions are imposed on how the STDP learning

window changes with the value of the reward signal. Also, while

Fremaux et al. considered a system in which rewards with positive

mass (net area) were given and the mean reward over multiple

trials had to be estimated and removed [7], we considered a model

of dopamine dynamics in which this was unnecessary. Similar to

Legenstein et al. [16], we assumed that rewards (bursts of

dopamine) that the system received had zero mass, with dopamine

dropping below baseline after an initial burst. This meant that the

mean reward value was fixed and the presence of a critic to

accurately estimate this mean (as discussed by Fremaux et al. [7])

was unnecessary.

Reward Prediction
In the actual operant conditioning experiments, rewards are not

given for each of the output spikes. However, visual feedback is

presented to the monkey at the level of individual spikes and,

through classical conditioning, we assume that the dopamine

response comes to be elicited by the more frequent and earlier

feedback of the spikes (conditioned stimuli) as this is predictive of

the less frequent and delayed rewards (unconditioned stimuli). For

this reason, we believe the reward signal we have used, in which

kernels for each of the output spikes are summed, is consistent with

the evidence that dopamine encodes reward prediction error

(RPE) [6]. While dopamine ceases to be released for the actual

rewards, no further predictor of the reinforced spikes exists and we

expect that dopamine continues being released as these spikes

occur.

We made the same type of assumptions for the case where a

differential firing rate was being reinforced. As in the simple case,

the visual feedback of the spikes is completely predictive of the

rewards received. The only difference is that spikes from the

neuron that is negatively punished for firing (the low-rate neuron)

predict less (or later) rewards and so we assumed that these spikes

should lead to a drop in the dopamine concentration.

Firing Regimes
Neurons can operate as integrators that accumulate inputs over

time to reach a threshold or as coincidence detectors that are

sensitive to inputs arriving at the same time. These two different

modes are referred to as mean-driven and fluctuation-driven

regimes, respectively. In simple network models that only include

excitatory synapses, neurons can only operate in a mean-driven

regime, where firing is regular. However, when neurons receive a

balance of excitatory and inhibitory inputs, they operate in a

fluctuation-driven regime with high firing variability [24–26].

Experimental studies suggest that this is how cortical neurons

operate [27,28].

In this study, we found that firing rate reinforcement is stronger

for irregular firing neurons. This is consistent with previous

reinforcement learning studies [8,9,29], which found that firing

variability is important for ensuring correlation between the

reward signal and the neural firing to be reinforced. Here, we

controlled the firing variability of LIF neurons by varying the

relative amounts of excitatory and inhibitory inputs to the

neurons.

In all the simulations in this study, the input firing rates (and the

control firing rate) were 10 spikes/s. This was based on the

observed firing rates in the corresponding experimental studies [2–

4]. For lower firing rates, Equation (1) predicts a lower learning

rate and a stronger influence of the cross-covariances between

neurons and inputs, but it still predicts qualitatively similar

outcomes for the firing rate changes.

Experimental Predictions
We suggest three different types of possible experiments in

which our model makes testable predictions. The first relates to the

firing regime of the reinforced neuron. We predict that the

effectiveness of the reinforcement learning is dependent on the

firing regime of the neuron being reinforced. Fetz and Baker

describe the reinforced neuron in their experiments as firing in

bursts [3]. This type of firing regime would have an auto-

covariance function with a net area greater than 1. This fits with

our study, which predicts that this type of firing is beneficial to the

reinforcement of firing rates (Figures 3D and 4D). To further test

this prediction, operant conditioning experiments could be

performed on neurons with different firing regimes, in particular,

differently shaped auto-covariance functions. These could be

different neurons, potentially in different brain regions, which are

observed to naturally produce different firing behaviors. Alterna-

tively, it may be possible to experimentally modify the firing

statistics in a single neuron.

The second type of experiment relates to directly controlling a

particular neuromodulator, such as dopamine, in the manner

described in this paper and observing the firing rate changes. This

would allow the RSTDP mechanism to be investigated more

explicitly, without assuming the dopamine signal based on the

reward scheme. As mentioned in the Introduction, other

neuromodulators have been observed to affect STDP (see

Figure 1A). It would be of particular interest to carry out this

experiment with one of these modulators. This study predicts that

neurons could either be reinforced or punished with the same

reward signal depending on the neuromodulator and concentra-

tions used. For example, a burst of octopamine could be injected

into an area of the mushroom body of a locust for each spike from

an arbitrarily chosen neuron such that it resembles the reward

signal considered in this study. A similar experiment to this was

performed by Nargeot et al., where an analogue of the operant

conditioning of Aplysia was performed by stimulating the

esophageal nerve, releasing dopamine [30].

The third type of experiment relates to the behavior of a nearby

neuron, especially during the differential reinforcement experi-

ment. During operant conditioning experiments, where a high

firing rate was being reinforced, the firing rates of nearby neurons,

which were not being reinforced, were also observed to

significantly increase [3]. This increase was much more variable

and in some cases was larger than the increase in the reinforced

neuron. In our study, while the increase would never be more for

the surround neuron than the reinforced neuron, this is consistent

with there being correlated inputs (and, therefore, correlations

between the neurons) or with a reward kernel with positive mass

(and, therefore, an increase in the mean of the reward signal), or

with both of these. Fetz and Baker qualitatively observed

correlations between the neurons but did not carry out more

quantitative measurements or analysis [3]. During the operant

conditioning of the firing rate of a neuron, correlations between

the reinforced neuron and a nearby neuron could be measured

and compared with the increases of the firing rate of the two

neurons. Alternatively, the firing of a nearby neuron could be

controlled and made to fire independently of its inputs and, more

importantly, independently of the reinforced neuron. After the

firing rate of the reinforced neuron has increased, the control of

the nearby neuron could be released and the firing rate that it

exhibits immediately afterwards due to its inputs could be

observed. Our model predicts that the firing rate of a nearby
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neuron will increase less if it is not correlated with the reinforced

neuron. If there was still a firing rate increase, this would

assumedly be due to an increase in the mean reward value. In this

case, another experiment could be performed, observing the

change in firing rate of a nearby neuron during the differential

firing rate reinforcement of two neurons. Figure 6D shows that

whether the firing rate of the surround neuron increased or

decreased depended on the relative reward strengths of the two

differentially reinforced neurons.

Other Plasticity Models
We focussed on two specific weight dependencies (logLTD and

additive), but Equation (1) holds for any pair of weight functions.

Because the mechanism for the firing rate reinforcement is in the

differential modulation of LTP and LTD, we would expect similar

findings regardless of the weight dependence. It remains to be seen

how more detailed models such as triplet STDP [31,32] and

voltage-based STDP [33] could be incorporated into RSTDP and

how this would affect the results of this paper.

Building upon earlier models [34,35], Graupner et al. proposed

a synaptic plasticity model based on postsynaptic calcium

concentrations of cells [36]. This biophysically based model is

able to exhibit the results of many plasticity experiments relating to

different STDP windows, pairing with postsynaptic spikes and

bursts, triplet and quadruplet STDP, firing rate effects, and the

effects of dendritic location. While our RSTDP model allows the

change in the STDP learning window that Zhang et al. observed

to occur with the addition of dopamine [19], this same dopamine

dependence could be more simply incorporated by the modulation

of just one of the parameters in the calcium-based plasticity model.

Methods

Neuron Models
We considered three neuron models: the Poisson neuron model,

the leaky integrate-and-fire (LIF) neuron model, and the Spike

Response Model (SRM) [22]. The Poisson neuron model was used

in the analytical derivations, together with numerically determined

functions for the firing rate and auto- and cross-correlations for the

spike trains with mean input weight for the LIF neuron model.

This aided the comparison between our analytical results and

simulations with the LIF neuron model. The SRM is only used

when comparing our RSTDP model to the R-max model.

The Poisson neuron model is a stochastic model that outputs a

spike train that is a realization of an inhomogeneous Poisson

process [37]. The intensity function of this process is analogous to

the membrane potential of the neuron. It is made up of a

spontaneous rate and the weighted sum of post-synaptic response

kernels given by

li(t)~n0z
X

k

Kik(t)
X

n

(t{tk,n{d̂dik), ð8Þ

where li(t) is the intensity function for the ith neuron at time t,

n0 is the spontaneous rate (assumed to be zero in this study), Kik(t)
is the synaptic weight from input k to neuron i, (t)
post-synaptic potential (EPSP) kernel, tk,n is the time of the nth

spike output by neuron k, and d̂dik is the axonal delay from neuron

k to neuron i. Synapses here are modeled as current based. This

means that synaptic input into the neuron is independent of the

neuron’s membrane potential (the intensity function in this model).

The EPSP kernel used in this study has the form

(u)~
1

tB{tA

(e
{ u

tB{e
{ u

tA )h(u), ð9Þ

where tBwtA and h(u) is the Heaviside function (i.e., h(u)~1
for u§0 and h(u)~0 otherwise).

The leaky integrate-and-fire neuron is modeled using a single

variable, Vi(t). This represents the membrane potential for each

neuron, i, and evolves according to

dVi(t)

dt
~

1

tm
(Vp{Vi(t)z

X
k

fKik(t)½ES,k{Vi(t)�
X

n

c(t{tk,n{d̂dik)g),
ð10Þ

where tm is the passive membrane time constant, Vp is the

resting membrane potential, ES,k is the synaptic reversal potential

of the (excitatory) synapses from neuron k, and c(t) is the

excitatory post-synaptic conductance (EPSC). The EPSC plays a

similar role to the EPSP kernel, (t), in the Poisson neuron model

and, because of this, we refer to both (t) and c(t) as EPSPs or

EPSP kernels. Kik(t), tk,n, and d̂dik are the same as for the Poisson

neuron model. A spike is produced when the membrane potential

reaches a threshold value, Vth, and it is reset to Vr. An absolute

refractory period is used, which prevents the membrane potential

from changing during this time. The values of these parameters

are given in Table 1. Similarly, the parameters for the Spike

Response Model (the same as those used by Fremaux et al. [7]) are

shown in Table 2. Simulations with the LIF neuron model and the

SRM were performed using an in-house neuron modeling

software program, SpikeSim, used in previous studies [20,38–40].

We considered the feed-forward network shown in Figure 1E,

which has three different post-synaptic neurons: the reinforced,

surround, and control neurons. Unless otherwise stated, we have

considered the case where there is a single reinforced neuron and

an arbitrary number of surround and control neurons (the number

does not affect the results). Each neuron outputs a spike train, Si,

with a mean firing rate, �nni. They receive synaptic inputs from

10,000 input spike trains, ŜSk, with strength, Kik, and equal axonal

delay, d̂d (dendritic delays are assumed to be negligible). The input

spike trains are assumed to be uncorrelated and have the same

mean firing rate, n̂n. The mean feed-forward weights and mean

firing rates of the reinforced, surround, and control neurons are

denoted �KKR and �nnR, �KKS and �nnS , and �KKC and �nnC , respectively. In

simulations, the weights are initially the same and set to be

approximately equal to �KKC .

Table 1. LIF Neuron Parameters.

Parameter Value

Synaptic Rise and Decay Times: tA , tB (ms) 1, 5

Membrane Time Constant: tm (ms) 20

Threshold, Resting and Reset Potentials: Vth , Vp , Vr (mV) {50, {65, {65

Excitatory/Inhibitory Reversal Potentials: ES,k (mV) 0, {70

Refractory Period (ms) 1

doi:10.1371/journal.pone.0087123.t001
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Reward Signal
As in previous studies [16], we assumed that rewards given to

the monkey affect the concentration of dopamine in the neural

network. This is based upon the evidence linking dopamine to

reward learning in the brain [6]. Dopamine is delivered to

different brain regions by the axons of neurons located in the

ventral tegmental area (VTA), whose activity is dependent not

only on rewards received but also on predicted or expected

rewards.

In the operant experiments by Fetz and Baker, and Kobayashi

et al. [2–4], monkeys were presented with a screen showing a

signal that decayed with time but was incremented for each action

potential measured from an electrode implanted in their precen-

tral motor cortex or prefrontal cortex. If the signal reached a

threshold value, a reward was given and the signal returned to a

reset value. With this setup, the experiments showed that high

firing rates were elicited. Negative punishment (i.e., the removal of

reward in order to decrease a particular behavior) was performed

with a similar setup, where measured spikes decremented the

signal (and artificially generated spikes incremented the signal). In

this case, low firing rates were elicited. Through a combination of

positive reinforcement and negative punishment, they also showed

that a differential between the firing rates of two neurons could be

elicited.

In our model, the reward signal, which is related to the

dopamine concentration, is driven by the firing of the reinforced

neuron(s) and is given by

y(t)~y0z
X

i

ci

ð?
0

Si(t{dr{r)gr(r)dr, ð11Þ

where y0 is the base level of the reward signal, Si(t) is the spike

train of reinforced neuron i, dr is the reward delay, and ci is the

reward strength for neuron i (this can be either positive or negative

for neurons whose firing affects the signal, or zero for neurons

whose firing does not). Reward strengths correspond to the heights

of the voltage pulses delivered to the feedback signal for each spike

of reinforced neurons in the operant conditioning experiments

[2,3]. The reward kernel, gr(t), is given by

gr(t)~½(
1

tr,B{tr,A
)(e

{t
tr,B{e

{t
tr,A )

{(1{m)(
1

tr,C{tr,B
)(e

{t
tr,C {e

{t
tr,B )�h(t),

ð12Þ

where tr,A, tr,B, and tr,C are the rise, decay, and recovery time

constants, respectively, and m is the normalized kernel mass. As in

the study by Legenstein et al. [16], we initially focussed on the case

where the reward kernel has zero mass (i.e., m~0 and soÐ?
0

gr(r)dr~0). If this is the case, the mean of the dopamine signal

is fixed (�yy~y0). This dopamine signal affects the synapses to the

reinforced and surround neurons but not the control neurons. The

dopamine signal that affects the control neuron(s) is one that remains

fixed at the base level, y0. The reward kernel parameters used in this

study are shown in Table 3. Figure 1D shows an example of a

reward signal, y(t), dependent on the spike train of neuron i, Si(t).

RSTDP Model
Based upon the experimental results of Zhang et al. [19],

Figure 1B shows the observed effect that the concentration of

dopamine has on the amplitudes of LTP and LTD (blue circles).

These experimental observations suggest that LTD and LTP are

non-zero when there is no dopamine, that as the concentration of

dopamine increases, LTD and LTP change in different ways, and

that for high dopamine concentrations, LTD switches to LTP. In

addition to dopamine, other neuromodulators have been observed

to affect STDP. These neuromodulators include acetycholine [41]

in the hippocampus of rats, octopamine in the mushroom body of

locusts [42], and norepinephrine in the visual cortex of mice [43].

Their effects on LTP and LTD are illustrated with the markers in

Figure 1A.

In the existing RSTDP model, ‘‘classical RSTDP’’, both LTP and

LTD are modulated equally by the reward signal (i.e., the dopamine

concentration) such that no synaptic changes can occur when there

is no reward. This is illustrated in Figure 1A (dashed blue line).

Figure 1C shows this as different learning windows (relationships

between the timing difference of spike pairs and the change in

synaptic weight) for different dopamine concentrations. This paper

introduces a new RSTDP model that can better capture experi-

mental findings [19,41–43]. In our RSTDP model, the potentiation

(LTP) and depression (LTD) parts of the STDP learning window

( tv0 and tw0, respectively) are modulated separately by the

reward signal. This new model is shown in Figure 1A (solid blue line)

and with different learning windows in Figure 1B.

In our RSTDP model, changes to the feed-forward weights are

given by

Kik(t) ~

g

ðtz t

t

fez
ik (t’)½pzy(t’)zqz�ze{

ik (t’)½p{y(t’)zq{�gdt’,
ð13Þ

and so the time and ensemble averaged rate of change of these

feed-forward weights is given by

_KKik(t) ~gSEfez
ik (t)½pzy(t)zqz�ze{

ik (t)½p{y(t)zq{�gTT
,

ð14Þ

where g is the learning rate, EfXg is the expected value of a

random variable X , and Sx(t)TT~ 1
T

Ð tzT

t
x(t’)dt’ is the temporal

average of the signal, x(t), over a timescale, T , that is slower than

both the neuronal and reward signal dynamics. The eligibility

traces for LTP and LTD are given by

e+ik (t)~f+(Kik(t))

ð?
0

gc(r)

ð?
{?

W+(u)Si(t{r)ŜSk(t{rzu)dudr,

ð15Þ

Table 2. SRM Neuron Parameters.

Parameter Value

Synaptic Rise Time: ts (ms) 5

Membrane Time Constant: tm (ms) 20

Firing Rate at Threshold: r0 (spikes/s) 60

Threshold and Reset Potentials: h, ureset (mV) 16, {5

Escape Noise Control: u (mV) 1

doi:10.1371/journal.pone.0087123.t002
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where W+(u) and f+(K) are the learning windows and weight

dependence functions for LTP (z) and LTD ({), respectively.

The modulation offsets, q+, give the amplitude of LTP and LTD

for zero reward, while the modulation slopes, p+, describe how

the reward signal affects the amplitudes of LTP and LTD,

respectively. The eligibility kernel, gc(t), is given by

gc(t)~(
1

tc,B{tc,A
)(e

{t
tc,B{e

{t
tc,A )h(t): ð16Þ

This learning process is described in Figure 1D.

The learning window, which is divided into the LTP and LTD

windows, is given by

Wz(t)~e
t

tzh({t), W{(t)~{e
{t
t{h(t), ð17Þ

where tz and t{ are the time constants for LTP and LTD,

respectively. As the relative amplitudes of LTP and LTD are

determined by the modulation parameters, the amplitudes of the

learning windows were both set to to 1 to avoid redundancy in the

parameters. For the same reason, the base value of the reward

signal (which for zero-mass reward kernels is equal to the signal

mean) is set to 1.

The type of weight dependence, f+(K), that we focussed on in

this paper was one with additive LTP and logarithmically

dependent LTD. This was inspired by the weight dependence

considered by Gilson et al. [44]. This weight dependence is

referred to as ‘‘logLTD’’. The functions for logLTD are given by

fz(K)~1, f{(K)~
log(1za K

K0
)

log(1za)
, ð18Þ

where a and K0 are parameters defining the shape of the LTD

weight dependence. This weight dependence was chosen because

it provides an intermediate between additive and multiplicative

weight dependencies. Additive STDP leads to strong competition

between the synapses and a bimodal weight distribution.

Multiplicative STDP leads to a unimodal weight distribution but

only weak competition [44]. LogLTD elicits strong competition

between the synapses, while producing a stable, unimodal weight

distribution. We also considered additive weight dependence,

where the functions are given by

fz(K)~1, f{(K)~1: ð19Þ

Additive weight dependence was considered with rate-based

learning terms [37], which are not modulated by the reward

signal. These are given by vin and vout, which either increase or

decrease the synaptic weight for each pre- or post-synaptic spike,

respectively. When using an additive weight dependence, these

rate-based terms are necessary to achieve a stable mean weight.

The parameters values for the eligibility kernel, learning

window, and weight dependence functions are shown in Table 3

(the parameters of the weight dependence functions were chosen

to produce the desired stable firing rate for the control neuron and

to exhibit sufficient sensitivity to being reinforced). Equation (1)

was derived from Equations (11), (14) and (15) using results from

Bohrnstedt and Goldberger [45] (see Section 1 of Text S1). The

analytical predictions for the resulting mean input weights, for the

two different weight dependencies in Equations (18) and (19), are

based on Equation (1) (see Section 2 of Text S1).

Covariances in the Network
We have focussed on the case where the inputs are uncorrelated

and the neurons receive separate (non-overlapping) sets of input

spike trains. While the inputs are uncorrelated, correlations

between the neurons and inputs arise due to the influence of

individual input spikes on the firing of the output neuron. These

are referred to as ‘‘spike triggered correlations’’. Therefore, for

neurons i and j and one of the inputs, k, into neuron i, we have

mean neuron-input cross-covariances, �FFik(u) and �FFjk(u), and

mean neuron-neuron auto- and cross-covariances, �CCii(u) and
�CCij(u), given by

�FFik(u) ~cini({uzd̂d),

�FFjk(u) ~0,

�CCij(u) ~0,

�CCii(u) &anid(u),

ð20Þ

where ci is the magnitude of the spike triggering effect, (u) is the

EPSP kernel, and a is net area of the auto-covariance function of

neuron i for short time lags. For Poisson neurons, ci~N{1
K , where

NK is the number of input spike trains into each neuron. However,

for LIF neurons, ci is not constant but depends on the strength of

the inputs into neuron i. Figures 3A and 3B show numerically

determined values for ci when there are only excitatory inputs and

when there is a balance of excitatory and inhibitory inputs,

respectively. For Poisson neurons, a~1, while for LIF neurons,

this is not necessarily the case. This discrepancy is often due to the

minimum inter-spike interval that LIF neurons exhibit. While we

approximated �CCii(u) as a delta function, Figure 3C shows that this

is not the case on short time scales. Figure 3D shows how a and the

shape of the auto-covariance function change with the ratio of

inhibitory to excitatory input currents. These curves agree with

analytical studies that considered the statistics of LIF neuron

outputs [46,47].

Table 3. RSTDP Parameters.

Parameter Value

Reward Rise, Decay & Recovery Times: tr,A , tr,B , tr,C (s) 0:10, 0:15, 3:00

Reward Delay: dr (s) 0:20

Base Reward Level: y0 1

Eligibility Rise and Decay Times: tc,A , tc,B (s) 2:0, 5:0

LTP/LTD Window Time Constants: tz , t{ (ms) 20, 20

LogLTD Parameters (E): K0 , a 1:4541|10{4 , 5:0

LogLTD Parameters (E+I): K0 , a 1:0692|10{3 , 1:5

LogLTD Parameters (SRM): K0 , a 1:4550|10{4 , 15:0

Additive Input/Output Rate Parameters: vin , vout 0:1, 0:0

Dopamine Modulation Parameters (log): pz , p{ , qz , q{ 1, {3, 9, 13

Classical Modulation Parameters (log): pz , p{ , qz , q{ 10, 10, 0, 0

Dopamine Modulation Parameters (add): pz , p{ , qz , q{ 1, {3, 9, 13:64

Classical Modulation Parameters (add): pz , p{ , qz , q{ 10, 10:64, 0,

doi:10.1371/journal.pone.0087123.t003
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For correlated inputs, �FFjk(u) and �CCij(u) would no longer be zero

and new curves for the output firing rate and the neuron-input and

neuron-neuron covariance strengths with mean input weight

would need to be determined. While this would be more complex,

the analytical framework presented is able to incorporate these

differences and make predictions for reinforcement learning with

input correlations. However, in this study, we considered operant

conditioning experiments with correlated inputs through simula-

tions only, and did not analytically derive expressions for this case.

In these simulations, we considered two methods for generating

inputs with constant firing rates and pairwise covariances. The

first, referred to as the single interaction process (SIP) model,

introduces the pairwise covariances between inputs through

common spike events, in which many inputs participate

[21,48,49]. The second, referred to as the multiple interaction

process (MIP) model, introduces pairwise covariances without

these common spike events [21]. We considered input correlations

of up to 0.02, consistent with the range of correlations typically

observed in the cortex [50].

Supporting Information

Text S1 Analytical derivations. (PDF). Sections: (1) Deriva-
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(PDF)
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