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Abstract

Background: Continuous reference intervals (Rls) allow for more precise consideration of the dynamic changes of
physiological development, which can provide new strategies for the presentation of laboratory test results. Our
study aimed to establish continuous Rls using four different simulation methods so that the applicability of different
methods could be further understood.

Methods: The data of alkaline phosphatase (ALP) and serum creatinine (Cr) were obtained from the Pediatric
Reference Interval in China study (PRINCE), in which healthy children aged 0-19 years were recruited. The improved
non-parametric method, the radial smoothing method, the General Additive Model for Location Scale and Shape
(GAMLSS), and Lambda-Median-Sigma (LMS) were used to develop continuous Rls. The accuracy and goodness of
fit of the continuous Rls were evaluated based on the out of range (OOR) and Akaike Information Criterion (AIC)
results.

Results: Samples from 11,517 and 11,544 participants were used to estimate the continuous Rls of ALP and Cr,
respectively. Time frames were partitioned to fulfill the following two criteria: sample size = 120 in each subgroup
and mean difference =2 between adjacent time frames. Cubic spline or penalized spline was used for curve
smoothing. The Rls estimated by the four methods approximately overlapped. However, more obvious edge effects
were shown in the curves fit by the non-parametric methods than the semi-parametric method, which may be
attributed to insufficient sample size. The OOR values of all four methods were smaller than 10%.

Conclusions: All four methods could be used to establish continuous Rls. GAMLSS and LMS are more reliable than
the other two methods for dealing with edge effects.
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analytes with increasing age, particularly in the first
years of life and during puberty [3]. Therefore, the defi-
nitions of pediatric RIs should consider special popula-
tion features, among which age and sex are the most
important for children and adolescents [4].

A familiar method to elucidate trends of age depend-
ence of biochemical analytes is to establish RlIs for each
age partition. The use of discrete RIs for different age
groups is well-established in clinical practice and allows
easy integration into current laboratory information sys-
tems. To improve the accuracy of age partitioning, an
age partitioning algorithm for RI estimation was devel-
oped in our previous publication [2]. However, it is still
difficult for that model to describe analyte concentra-
tions at the margins of age partitioning, especially abrupt
changes during relatively narrow age periods, such as a
radical decrease of alkaline phosphatase (ALP) during
puberty [5]. Further, it may be difficult to obtain suitable
age partitioning points for analytes with continuous up-
ward trends, such as serum creatinine (Cr).

Analogous to other developmental quantities whose
relationships with age are routinely analyzed, a continu-
ous description would seem to be more appropriate for
laboratory analytes with special age-dependent trends
[6]. For example, growth curves were used by the World
Health Organization (WHO) to construct child growth
standards [7]. The current approaches for establishing
continuous RIs can be divided into the non-parametric
and semi-parametric method [3, 5, 6, 8, 9]. These differ-
ent statistical methods of curve simulation could pro-
duce different RIs using the same data [1]. Therefore, it
is imperative to explore which method is the most ap-
propriate for RI estimation of analytes with various age-
dependent trends. To our knowledge, few statistical sim-
ulations have been reported to evaluate how well these
methods estimate continuous RIs.

Our aim in the present study is to compare the accur-
acy of continuous RIs established using four different
curve simulation methods to better understand these
methods’ applicability. The continuous RIs could facili-
tate the generation of graphical reports in clinical la-
boratory settings, which could provide quantitative and
dynamic assessments of laboratory test results instead of
only absolute values [6].

Methods

Data source

Data were obtained from the results of the PRINCE
study. The eligibility criteria and other detailed informa-
tion were previously published [10]. In brief, 14,646
healthy children aged 0-19 years were recruited from
the northeast (Liaoning Province), north (Beijing Muni-
cipality and Hebei Province), northwest (Shaanxi Prov-
ince), middle (Henan and Hubei provinces), south
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(Guangdong Province), southwest (Chongqing Munici-
pality and Sichuan Province), and east (Shanghai Muni-
cipality and Jiangsu Province) regions of China from
January 2017 to August 2018. All participants were con-
firmed to be eligible based on a questionnaire screening
and subsequent physical examination. Considering that
the sample size of children aged less than 1 year was lim-
ited, we only included healthy children aged 1-19 years.
Analyte tests were measured on a Cobas C702 auto-
mated biochemistry analyzer (Roche Diagnostics GmbH,
Mannherim, Germany) at the Department of Clinical La-
boratory Center of Beijing Children’s Hospital, which
was the central laboratory of the PRINCE study. Detailed
information on quality control was described in the pub-
lished protocol [10]. The ALP and Cr analytes were se-
lected from 13 eligible biochemical markers as typical
cases because of their special age-dependent trends in
children and adolescents. The study was exempted by
the Ethics Committee of Beijing Children’s Hospital, af-
filiated with Capital Medical University, Beijing, China.

Data cleaning and management

Data cleaning was performed to detect missing values
and outliers. Missing values were defined as incomplete
information of age, sex, or biochemical analytes. Consid-
ering that ALP and Cr are known to vary significantly by
age and sex [6], outliers are removed according to sex
and age groups (for each 1-year) by Tukey’s method [4].
In this method, outliers are removed if they are less than
Q;-1.5 x IQR or more than Qs + 1.5 x IQR, in which Q;
and Qs are the 25th and 75th percentiles, respectively.
IQR is interquartile range, calculated by Qs — Qy, where
the data have a Gaussian distribution. Otherwise, the
data should be transformed by the Box-cox method,
expressed by the following formula:

y:{ (x*-1)/A

In(x+c¢)

for A=0 1
forA=0 (1)
where x is the original value, y is the value after Box-cox
transformation, and \ and c are parameters calculated by
maximum likelihood estimation.

Statistical simulations

All statistical analysis was performed using SAS 9.4 and
R 3.5.1. The lower limit and upper limit values of Rls
were calculated as the 2.5 and 97.5% quantiles of the
corresponding populations, respectively. Four methods
were implemented in this study: the improved non-
parametric method, the radial smoothing method (RS),
the General Additive Model for Location Scale and
Shape method (GAMLSS), and the Lambda-Median-
Sigma method (LMS) [4, 8, 11-13]. Both the improved
non-parametric method and RS are considered as non-
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parametric methods because non-parametric curve esti-
mation methods are used during the RI establishment
procedure. Although GAMLSS and LMS use smoothing
methods in model terms, they are deemed semi-
parametric methods because the response variable re-
quires the assumption of a parametric distribution.

In the past decades, several studies have used spline or
piecewise polynomial methods to establish continuous
RIs of laboratory analytes for interpretation of the age
dynamics of children’s development [5, 6, 14]. These
studies’” methods can be divided into three steps. First,
the whole dataset was split into several age groups; then,
discrete RIs were calculated for each age group; finally,
the RIs’ limit values for each age group were fit using ap-
propriate smoothing methods, such as spline or polyno-
mial methods [4, 6]. Arzideh et al. optimized the age
group classification procedure [3, 15]. They split the
whole dataset into overlapping time frames, which al-
lows more precise consideration of rapid changes in ana-
lyte concentrations with increasing age. We call
Arzideh’s method the improved non-parametric method
in the present study and used the bootstrap method to
calculate the reference limits for each time frame [3, 16].
To find the most suitable smoothing method for the im-
proved non-parametric method, cubic spline, penalized
spline, and fractional polynomial smoothing were per-
formed, and the goodness of fit was evaluated by Akaike
information criterion (AIC) values calculated under each
model [17]. The formula for AIC is as follows.

AIC = -2lonf + k (2)

where 0 is the maximized log likelihood function, and k
is the number of effective degrees of freedom used in
the model, e.g., k = 2. The model with the smallest AIC
value is considered to have the best fit.

The LMS model contains three parameters: skewness
(L) accounts for deviation from the normal distribution
after Box-Cox transformation; the median (M) models
the outcome variable depending on one explanatory
variable; and the coefficient of variation (S) accounts for
variation of data points around the mean and adjusts for
non-uniform dispersion [9]. GAMLSS is an extension of
the LMS method, which was introduced by Rigby and
Stasinopoulos as a way of overcoming some of the limi-
tations associated with generalized linear models and
generalized additive models [11, 18]. In contrast with
LMS, GAMLSS can accommodate more than one covar-
iate and distribution [11, 19]. The Box-Cox t and Box-
Cox power exponential distributions were compared to
select the most appropriate type of GAMLSS model [20,
21]. Worm plots were used to assess the fitting results of
additive terms and to judge whether simulation of kur-
tosis was required [22]. The procedure was implemented
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in the GAMLSS package (version 5.1-2) of the R statis-
tical software package.

In the RS method, various spline functions, such as B-
spline and truncated polynomial functions, can be used
as the basis function to fit non-parametric curve estima-
tion [8]. Radial bases are sometimes preferred for
higher-dimensional problems because of their straight-
forward extension. Wan XH et al. provided a percentile
curve for calculation of arithmetic based on four mo-
ments and the Edgeworth-Cornish-Fisher expansion,
which was used for some of the present study’s simula-
tions [23].

Before statistical simulation, the whole dataset was
randomly partitioned into training and test datasets in
an 8:2 ratio. The training dataset were used for model
fitting and model selection, and the test dataset were
used for assessment of the model’s predictive power to
fit training data, i.e., the out of range (OOR) percentage.
Considering sex differences in analyte concentrations,
the data were divided by sex before the training and test
datasets were generated. The process of data set parti-
tioning and RI calculation was repeated 100 times for
both ALP and Cr to reduce the random error caused by
running too few statistical simulations. In addition, the
Wilcoxon test was used to compare whether the training
and test datasets had similar age distributions. When
P>0.05, the results of dataset partitioning were deemed
valid, and otherwise, the partitioning procedure was re-
peated. According to the recommendations of the Clin-
ical and Laboratory Standards Institute, RIs may be
considered valid when the OOR value is < 10% [4], con-
sidering that we estimated RIs using 95% intervals. Thus,
OOR values close to 2.5% for both the upper and lower
reference limits were appropriate for method selection.
Furthermore, AIC values were calculated to evaluate the
different models’ goodness of fit under the GAMLSS
method. Then, the accuracy and goodness of fit of con-
tinuous RIs were compared comprehensively based on
the OOR and AIC values. The statistical simulation
process is summarized in Supplemental Figure 1.

Results
Characteristics of ALP and Cr distributions
The entire data cleaning process is shown in Fig. 1. Scat-
ter diagrams show outliers that were removed by
Tukey’s method (Supplemental Figure 2). After data
cleaning, samples from 11,517 and 11,544 participants
aged 1-19years were included to calculate the RIs of
ALP and Cr, respectively. The distributions of ALP and
Cr by age and sex are shown in Table 1. The probability
density plots had the same age distributions between the
training and test datasets (Supplemental Figure 3).

We represented the density of the data points by color
chromaticity using the plotSimpleGamlss function in R.
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4

»| Outlier of Cr: n=133
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ALP: n=11 517 (boys=5 669 girls=5 848)
Cr: n=11 544 (boys=5 674 girls=5 870)

Fig. 1 Data cleaning procedure. ALP, alkaline phosphatase; Cr, serum creatinine

Table 1 The distributions of alkaline phosphatase and serum creatinine by age and sex

Age Alkaline phosphatase (U/L) Serum creatinine (umol/L)
(years) Boys Girls Boys Girls
n Mean SD n Mean SD n Mean SD n Mean SD

>=1 255 253.96 62.55 225 243.68 50.98 260 24.85 352 227 2378 333
2~ 304 22859 47.73 266 236.15 5518 309 28.58 4.02 273 2861 4.46
3~ 446 222.06 45.83 337 22036 4517 449 3261 4.23 328 31.08 350
4~ 287 214.88 4228 298 22449 4775 286 35.14 436 300 34.24 434
5~ 286 226.13 47.68 280 233.63 47.95 289 3718 432 284 36.95 4.50
6~ 393 22792 4378 355 230.68 4752 392 40.90 534 362 40.02 4.99
7~ 413 231.92 52.08 372 237.97 51.65 409 4193 4.95 378 4093 5.02
8~ 401 240.51 53.58 405 25031 58.60 402 44.04 541 405 43.02 559
9~ 39 24788 58.34 371 261.05 64.72 386 46.33 5.14 369 4515 523
10~ 426 256.03 61.68 390 28331 61.18 422 4899 5.85 391 4536 5.19
11~ 298 283.69 75.29 287 27287 68.94 299 49.87 6.12 293 4575 6.25
12~ 408 325.02 9231 356 226.99 83.11 410 55.62 852 353 51.64 793
13~ 283 319.35 97.79 315 178.50 68.13 282 59.66 9.65 319 5346 8.10
14~ 230 266.79 99.06 239 137.99 49.86 232 66.92 11.03 240 55.65 7.73
15~ 309 17857 80.91 383 100.32 33.80 307 7527 10.84 375 60.77 7.39
16~ 196 13240 49.03 244 87.52 24.61 198 77.84 11.09 247 6143 8.25
17~ 162 10391 2826 264 74.55 1827 164 79.58 10.25 264 61.55 7.87
18~ 113 91,61 18.18 293 70.80 1547 115 7851 9.76 297 60.16 792
19-20 63 8344 19.79 168 69.28 1440 63 84.51 872 165 5967 6.85
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The results demonstrated that girls were more concen-
trated in the adolescent groups than boys (Fig. 2). Add-
itionally, significant age dependence was shown in the
trends of ALP and Cr, and the results differed between
the two analytes. For example, Cr continuously increased
with age from 1 to 19 years, whereas a sharp decrease in
ALP was observed after puberty (age 12 and 14 years for
girls and boys, respectively). Cr showed the same ten-
dency between boys and girls throughout the childhood
phase, where boys plateau later than girls after a long
period of growth. However, boys’ and girls’ ALP levels
showed a decreasing trend in the first 4 years of life, but
the levels then increased until puberty.

Simulation of time frames for the improved non-
parametric method

The balance between the sample size in each time frame
and the number of time frames was difficult to maintain.
Through a process of statistical simulation, we obtained
a figure with changing values of n and m (n=sample
size in time frame, m=mean difference between
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adjacent time frames), shown in Fig. 3. Although the
curves obtained under various parameters were similar,
we found that when the sample size is small (e.g., n<
60), there were more discrete reference limit values,
which may drift, influencing the curve fitting results.
Moreover, when the sample size was too large (e.g. n >
300), some details of the curve were lost, especially for
ALP at ages 14—16 years, which showed a cliff-like des-
cent. The Clinical and Laboratory Standards Institute
(CLSI) recommends a minimum sample size of 120 to
establish RIs. Combining CLSI’s suggestion with Pavlov’s
research [16], we finally set the sample size within each
time frame to 120. Using an excessive number of time
frames increases the arithmetic load. Therefore, the n
and m parameters were set as 120 and 2, respectively,
for both ALP and Cr.

Simulation of smoothing methods for the improved non-
parametric method

The AIC values for three smoothing methods are shown
in Supplemental Table 1. Smoothing parameters were

A

200 300 400 500
1 1 1

ALP(U/L)

100
1

Age(years)

B,
8
s
8 4
8
—~ 8
=
o~
2
s
5 &
<
s
i T
0 5 10 15 20
Age(years)

100
Il

80
1

60
1

Cr(umol/L)
40

20

0 5 15 20

10
Age(years)

The density of the data points is represented by the color chromaticity
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Fig. 3 Simulation of time frames with different sample sizes (n) and mean

difference between adjacent time frames. ALP, alkaline phosphatase. Notes

500 §

g -
450+ & Reference limit
< e - 2 . === Lower RI
3400- A = = UpperRI
B 350
8
©
e 3001 Change of n
_g- 250 A — =120

= n=30

£ 300
£ .
$ 450
< — n=400

1004 e

50 1

2 4 6 8 0 12 14 16 18 20

B Age (years)

450 8

A Reference limit

3400- . ' === |ower RI
=) i o ]
= 350 "\ﬁb § 1% \ - = UpperRl
2 ¢ R Ropr 34
S 300 R
®
< f* Change of m
o 2504
o &‘ — m=10
s
o 200 Q‘ —_ m=2
S — m=20
g 150 % m
< — =5

1001 S

m— m=50
50 1
2 4 6 8 10 12 14 16 18 20

frames with different sample sizes (n), n = sample size in time frame. b. Simulation of mean difference between adjacent time frames, m = mean

difference between adjacent time frames (m). a. Simulation of time

: Lines are fitted by cubic splines

selected by internal (i.e., local) maximum likelihood esti-
mation in the R software package [24]. Among all
models, the penalized spline method had the smallest
AIC value. The continuous RIs fitted by penalized spline,
cubic spline, and fraction polynomials are shown in Sup-
plemental Figure 4. The fraction polynomials did not fit
well at the end of the curve for ALP, and there was a
cross between the upper and lower percentile curves.
Furthermore, fluctuation occurred in the smooth curve
simulated by the penalized spline method. Therefore, we
adjusted the smoothing parameters of the cubic spline
and penalized spline methods through visual inspection.

Simulations based on GAMLSS and LMS

Using the GAMLSS method, the four models were simu-
lated using two distribution types (Box-Cox t and Box-
Cox power exponential) and two smoothing methods
(cubic spline or penalized spline). GAMLSS models’ AIC

values are shown in Supplemental Table 2. Compared
with the cubic spline smoothing technique, penalized
spline fit the data better according to the AIC value,
similar to the simulation results of the non-parametric
methods. The worm plots of simulations based on the
LMS and GAMLSS methods demonstrate that the
GAMLSS models fit the data better than LMS, especially
for ALP (Supplemental Figure 5). This is because the
GAMLSS model is more consistent with the theoretical
distribution, in which data points are uniformly distrib-
uted on both sides of the center line [22].

Continuous Ris for pediatric ALP and Cr

The continuous Rls were estimated using the improved
non-parametric method, the RS method, the GAMLSS
method, and the LMS method. Figure 4 shows the re-
sults of continuous RI estimation for Cr and ALP using
the four methods. The RIs estimated by the LMS,
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GAMLSS, and RS methods approximately overlapped,
while the improved non-parametric method seemed bet-
ter after visual inspection of the smoothing parameters.
However, there were slight differences at the ends and
peaks of the curves. Large edge effects were found in the
curves fit by the RS method: left and right edge effects
appeared for Cr and ALP, respectively. Age-specific ref-
erence values found for ALP and Cr using the GAMLSS
method are presented in Tables 2 and 3.

Figure 5 shows the differences between discrete Rls
partitioned by the decision tree technique and continu-
ous RIs calculated by the GAMLSS method. The discrete
RIs presented a ladder shape that jumped several times
with increasing age. In addition, we added the continu-
ous RIs from the CALIPER study [25]. The curves from
CALIPER were smoother than this study’s GAMLSS
method results, especially for ALP in boys. Further, both
the upper and lower reference limits of Cr calculated by
CALIPER were slightly lower than those in the present
study.

Verifying Rls by test set
The continuous RIs were verified using the test dataset.
All OOR values in Table 4 were smaller than 10%. The
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methods were much closer to 5%, and both the lower
OOR and upper OOR proportions were both close to
2.5%. We also verified the continuous Rls calculated by
CALIPER, all OOR values were less than 10%, except for
ALP of girls. In addition, we calculated the OOR rates of
discrete RIs, which were also close to 5%. Moreover, we
created a table of OOR values for each year of age to en-
sure that the RIs accurately represent the relationship
between age and analyte concentration (Supplemental
Tables 3 and 4), which clearly showed the differences
between continuous and discrete RIs. Although this
study’s sample size may be relatively insufficient, the
OOR values of discrete RIs have larger variation in each
age group compared with those of continuous RIs, espe-
cially near the thresholds of age divisions.

Discussion

Age partitioning is a common issue not only for
pediatric RIs but also for other clinical laboratory in-
dexes [2, 3, 26, 27]. However, the use of age portioning
methods to establish Rls still has some limitations, as
the use of discrete age groups does not sensitively reflect
continuous changes in growth and development. This
problem is illustrated in Fig. 5. In contrast to the

OOR percentages of the LMS, GAMLSS, and RS discrete RIs, the continuous RIs allow a precise
Table 2 Age-specific reference values for alkaline phosphatase
Percentiles
Alkaline phosphatase of boys (U/L) Alkaline phosphatase of girls (U/L)

Age (years)  25th 10th 25th 50th 75th 90th 97.5th  2.5th 10th 25th 50th 75th 90th 97.5th
>=1 158127 18398 21187 24958 29547 34457 41022 14765 17083 19489 22617 26005 29023  323.58
2~ 154.04 176.04 19947 23077 26796 30645 35610 15059 17239 19648 23020 27007 30880 35540
3~ 149.78 169.74 19093 21921 25245 286.19 32880 149.71 16901 19069 22177 25978 29816 346.36
4~ 145.69 16491 18544 21302 24543 27799 31870 14940 16649 18577 21365 24826 28390 329.80
5~ 146.41 16546 18590 21356 24601 27829 31822 15986 17636 19503 22215 25615 29168 33835
6~ 154.68 17462 19614 22544 25980 29367 33516 16539 18225 20118 22842 26213 29688 341.79
7~ 149.28 16946 19151 22198 25800 29350 33694 15696 17567 19659 22641 26279 29955 34584
8~ 151.66 173.21 19706 23053 27047 30986 35801 15236 17493 19989 23482 27626 31678 36584
9~ 156.19 17824 20277 23741 27874 31915 368.11 15330 18038 20944 24857 29280 33393 381.25
10~ 159.57 18249 20821 24490 28883 33160 383.14 16350 19482 22733 26950 31523 35614 40153
11~ 163.55 18880 21760 25944 31024 35994 42005 16359 19741 23263 27844 32823 37288 42247
12~ 17713 20676 24116 29220 35515 41723 49269 12862  160.81 19643 24575 30301 35746 42122
13~ 183.35 21716 25727 31829 39516 47187 566.02 9335 11765 14658 19035 24677 30619 383.20
14~ 149.89 181.66 22051 28175 36149 44293 54483 7421 9045 11036 14194 18571 23602 30837
15~ 100.65 12489 15545 20540 27268 34305 43282 6330 7412 87.20 10779 13642 16987 21954
16~ 71.07 87.33 107.74 14090 18496 230.14 28659 55.64 6343 72.59 86.56 10525 12627 156.26
17~ 62.80 7395 87.40 10824 13433 15948 18913  50.72 57.23 64.69 75.68 89.73 104.74 12489
18~ 59.95 68.26 77.98 92.52 10990 12585 14382 4753 53.67 60.54 70.35 82.37 94.60 110.11
19~ 56.06 62.90 70.82 82.53 96.23 10852 12204 4538 51.64 5849 67.96 79.08 89.88 102.90

@ Calculated by GAMLSS method
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Table 3 Age-specific reference values for creatinine
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Percentiles

Serum creatinine of boys (umol/L)

Serum creatinine of girls (umol/L)

Age (years) 2.5th 10th 25th 50th 75th 90th 97.5th 2.5th 10th 25th 50th 75th 90th 97.5th
>=1 19.01° 211 23.18 25.72 2837 30.71 33.28 17.75 19.83 21.78 2403 2643 28.79 31.65
2~ 20.84 2297 25.09 27.71 3049 33.02 35.85 19.96 2213 2418 2657 29.13 31.63 34.67
3~ 23.01 25.20 27.38 30.09 33.03 35.76 3892 2242 24.66 26.81 29.35 32.09 34.74 37.93
4~ 2538 2764 2990 3272 3581 3875 4222 2494 2726 2952 3223 3516 3796 4128
5~ 27.77 30.13 3249 3543 38.67 41.78 4548 27.36 29.78 3215 35.05 38.18 4113 44.60
6~ 30.07 32.54 35.02 38.10 4148 44.72 48.59 29.51 32.07 34.58 37.66 40.97 44,08 47.70
7~ 32.20 3480 3738 4060 4413 4748 5144 3129 3402 3669 3994 4342 4666 5042
8~ 3414 36.84 39.54 4291 46.59 50.04 54.06 32.72 35.64 3848 4191 4555 4892 52.80
9~ 3591 3872 4156 4514 4903 5262 5673 3389 3703 4006 4370 4753 5104 5504
10~ 37.60 4055 43.58 47.50 51.75 55.59 59.89 34.85 38.27 41.55 4547 49.55 53.24 57.39
11~ 39.30 4247 4581 50.23 55.07 5933 64.01 35.78 39.53 43.12 4741 51.83 55.78 60.15
12~ 41.24 44.75 4852 53.63 59.25 64.16 69.50 37.00 41.08 45.00 49.68 54.50 5877 63.47
13~ 4358 4759 5192 5783 6435 7007 7627 3869 4300 4716 5220 5741 6200  67.04
14~ 4641 51.07 56.04 62.73 70.06 76.52 83.56 40.74 45.14 4945 54.73 60.24 65.10 7043
15~ 49.77 55.12 60.68 67.96 75.84 82.79 9042 42.89 47.27 51.63 57.06 62.77 67.82 73.38
16~ 5341 5941 6543 7298 8100  88.11 95.95 4478 4909 5343 5890 6472 6990 7564
17~ 56.89 63.51 69.84 77.38 85.14 92.02 99.62 46.17 5041 54.69 60.11 6591 71.14 76.98
18~ 60.21 6738 73.88 81.22 88.53 94.97 102.02 47.15 51.31 55.50 60.79 66.48 71.64 7746
19-20 63.66 7126 7781 8486 9168 9765 10414 4799 5201 5607 6119 6672 7173 7740

? Calculated by GAMLSS method

representation of age and sex-dependent change during
growth and development. Therefore, to provide evidence
for the applicability of different algorithms to establish
continuous RIs, we presented continuous RIs simulated
by four methods from infancy to adulthood.

The age-dependent trends of ALP and Cr in the present
study were consistent with those in previous studies,
which represent distinctive age-dependent trends [6, 25].
Different from study reported by Zierk [6], in which data
were collected from hospitals, all the reference individuals
were healthy children recruited for the PRINCE study.
Moreover, there were slight differences in the continuous
RIs between the CALIPER study and the present study:
the reference limits were slightly higher in the present
study, which may be caused by differences in the reference
population and inspection instruments.

Establishing a reference interval using a non-
parametric method is an indirect process: curve fitting is
simulated considering only the values of discrete refer-
ence limits, rather than including all data. This weakness
leads to curve fluctuations, even if it has the best AIC
value and appropriate smoothing parameters. Our re-
search indicates that although the model can obtain a
better AIC value, the smoothing parameters adjusted by
visual inspection better represent the whole dataset and

are more suitable in the non-parametric methods.
Therefore, the trends of age dependence should be fully
understood before establishing continuous RIs using the
non-parametric methods. Moreover, it is necessary to
adjust the smoothing parameters through visual inspec-
tion instead of only relying on software algorithms.

We used a robust bootstrap method to estimate the
discrete RIs for each time frame in the improved non-
parametric method, after considering the accuracy and
feasibility of various methods. In our study, not all ana-
lyte levels had normal distributions across the 200,000
time frames. Therefore, the data should be transformed
to a normal distribution if we use parametric methods to
calculate RIs. However, hypotheses testing and data
transformation for large datasets depend on program-
ming capabilities and statistical package functions. We
tried to use the powertransform function in R to perform
the Box-Cox transformation, but there were still some
time frames for which the best A could not be obtained,
and those needed to be debugged manually. However,
manual debugging would incur an inestimable time cost.
According Pavlov’s research [16], the bootstrap method
has relatively high accuracy when the sample size is rela-
tively small, so we chose the bootstrap method for the
improved non-parametric procedure.
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Table 4 Out of range (OOR) of different simulation methods verified with test data set

Model Total of OOR (%)

Lower OOR (%) Upper OOR (%)

Serum creatinine of boys

Improved non-parametric® 6.50°
RS 487
LMS 5.18
GAMLSS® 5.03
Discrete reference interval 4.32
CALIPER 7.58
Serum creatinine of girls
Improved Non-parametric 6.62
RS 521
LMS 4.94
GAMLSS 545
Discrete reference interval 417
CALIPER 6.13
Alkaline phosphatase of boys
Improved non-parametric 7.01
RS 5.26
LMS 474
GAMLSS 5.04
Discrete reference interval 5.66
CALIPER 6.81
Alkaline phosphatase of girls
Improved non-parametric 6.72
RS 453
LMS 494
GAMLSS 5.02
Discrete reference interval 4.90
CALIPER 1022

334 3.16
239 247
262 257
238 265
208 225
057 7.01
334 3.28
260 262
248 246
285 260
2.00 218
0.84 528
3.69 331
275 250
246 229
251 253
3.03 263
441 239
3.59 313
230 223
248 246
243 259
232 259
7.10 3.12

OOR Out of range, GAMLSS General Additive Model for Location Scale and Shape method, CALIPER Canadian Laboratory Initiative in Pediatric Reference Intervals,

LMS Lambda-Median-Sigma method, RS radial smoothing method

@ Smoothing parameters are selected by visual inspection of non-parametric method

B All values are calculated as mean of the results of 100 times simulation

€ The models of GAMLSS method are selected from Table 3, which AIC is smallest

Additionally, LMS and GAMLSS have been widely ap-
plied to establish growth curves. They also perform well
at establishing continuous Rls for analytes. As presented,
the OOR percentages of those two methods were close
to 5%. In contrast, the OOR proportions of the non-
parametric methods were more than 6% for ALP, which
means that the non-parametric methods’ Rls are nar-
rower than those of the LMS and GAMLSS methods.
Further, both the GAMLSS and LMS methods are sim-
ple to implement and adapt to complex age-dependent
trends, especially when the age distribution of the ana-
lyte’s concentration is not fully understood.

As a new approach for estimation of age-specific refer-
ence percentile curves, the RS method performs well at

growth curve establishment [8]. However, it did not gen-
erate effective RIs for ALP without data transformation
by the Box-Cox method (Supplemental Figure 6). This
means that the distribution of data should be approxi-
mately normal, especially when the analyte has a more
intricate age-dependent trend.

As for verification results, all four methods’ OOR
values were less than 10%, which means that all methods
showed good fit for establishing continuous RIs of Cr
and ALP. However, edge effects were observed in all of
the curves fit by these four methods. Even if the smooth-
ing parameters were adjusted by visual inspection, the
drift at the end of the curve was still not improved in
the non-parametric methods. This phenomenon was
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most prominent when the RS method was used. These
results could be attributed to the limited sample size of
reference individuals. In our study, the number of refer-
ence individuals in the 19-year-old age group of boys
was less than 100 for both ALP and Cr, which is insuffi-
cient compared with the other age groups. In contrast,
the WHO Multicenter Growth Reference Study enlarged
the birth sample to 1737 to minimize the left edge effect
[7]. It is particularly difficult to sample more reference
individuals aged less than 1 year. Although we removed
the reference individuals aged less than 1year to lessen
the edge effects, the sample size of infants is not suffi-
cient. Therefore, a larger sample size would be needed
to establish continuous Rls. In comparison with the
non-parametric methods, the LMS and GAMLSS
methods have fewer edge effects when sample size is
relatively lacking. In addition, LMS and GAMLSS are
easy to implement and have high accuracy, which could
be factors to recommend them as convenient and accur-
ate methods for clinical establishment of RIs.

Other factors besides age and sex, such as height
and weight, may also affect analyte levels. In future
research to establish RlIs, multifactorial analysis could
be considered. Further, the opinions of clinicians and
laboratory physicians should be taken into consider-
ation during the variable selection process. All of
these directions would ultimately lead to huge chal-

lenges in terms of model selection and subject
recruitment.
Moreover, different methods often estimated the

upper and lower limits with the least amount of bias [1].
The idea of establishing reference limits with two differ-
ent methods was previously explored by Horn PS et al.
[28].
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There is a huge gap between the establishment of Rls
and clinical practice. A possible solution is to integrate
continuous RIs into laboratory testing platforms. The
obtained models could be embedded into hospital clin-
ical laboratory testing systems, and the RIs could be ob-
tained from the models according to the information
needed. Other quantile curves, such as the 5th, 25th,
50th, and 75th percentiles, can be easily obtained from
the model. Therefore, doctors could not only judge
whether the individual’s laboratory result is abnormal
but also provide a graph to present the patient’s level
compared with continuous RIs. In addition, longitudinal
dynamic trends can be determined when individuals
have multi-time laboratory results within a certain
period (Fig. 6). Compared with a single test, the dynamic
trends of some analytes could provide more diagnostic
information about changes to individual health status.
Moreover, graphical displays of clinical laboratory ana-
lytes would provide an improvement in clinical labora-
tory reporting.

The concept of continuous Rls is timeless and should
become a standard throughout the entire field of labora-
tory medicine. It is necessary to establish continuous Rls
for all ages rather than only focusing on the initial stages
of life. When we are limited to the reference population,
we cannot make such age divisions. Merkrid et al. pre-
sented an elegant example of this viewpoint [29].

Conclusions

Four statistical methods to estimate continuous Rls for
ALP and Cr were simulated and verified. The verifica-
tion of continuous RIs showed that all four methods
could be used to establish continuous RIs of clinical la-
boratory analytes. The GAMLSS and LMS methods were
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Fig. 6 The application of continuous reference intervals. The seven curves denote the 97.5th, 90th, 75th, 50th, 20th, 10th and 2.5th percentiles for
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During hospitalization, patient's ALP continued to increase for several times. ¢. With the increase of age, patient's ALP decreased. ALP,
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more reliable than the RS and non-parametric methods,
especially when sample size was insufficient. Therefore,
the former two can be recommended as convenient and
accurate methods for Rls establishment in clinical prac-
tice. In addition, the distribution of the data should be
approximately normal when using the RS method to es-
tablish continuous RIs.
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