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Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological

responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in

idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide

pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin

(ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular

lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid,

forming locally upon increased ATX levels and acting also locally through its receptors,

likely guided by ATX’s structural conformation and cell surface associations. Increased

ATX activity levels have been detected in many inflammatory and fibroproliferative

conditions, while genetic and pharmacologic studies have confirmed a pleiotropic

participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis,

ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA

engagement of its receptors activate multiple G-protein mediated signal transduction

pathways leading to different responses from pulmonary cells including the production

of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial

physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation.

Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development

in animal models, thus providing the proof of principle for therapeutic interventions.

Keywords: autotaxin (ATX), lysophosphatidic acid (LPA), lysophosphatidic acid receptor (LPAR), g-proteins,

pulmonary fibrosis

INTRODUCTION

ATX was first identified as an autocrine motility-stimulating factor, isolated from the supernatant
of highly metastatic melanoma cells (1). Its cDNA cloning revealed that ATX was homologous
to ectonucleotide pyrophosphatase-phosphodiesterase 1 (ENPP1), possessing phosphodiesterase
activity in vitro (2); ATX was thus classified as ENPP2 in the ENPP (1–7) protein family, being the
only secreted and not transmembrane member (3). In addition, several years later it was discovered
that ATX is identical to the long elusive plasma lysoPLD (4, 5), and is now considered responsible
for the synthesis of the majority of extracellular LPA (Figure 1).
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FIGURE 1 | Schematic representation of ATX’s mode of action in pulmonary

fibrosis. ATX, derived from the bronchial epithelium and alveolar macrophages

or extravasated from the circulation, catalyses the hydrolysis of LPC and the

local production of LPA. In turn, LPA activates its cognate receptors LPAR1,

possibly LPAR2, and hypothetically LPAR6, activating the corresponding

G-protein-mediated signal transduction cascades. As a result, LPA induces

epithelial apoptosis, the initiating pathogenetic event in modeled pulmonary

fibrosis and possibly IPF. LPA also induces IL-8 secretion from epithelial cells,

promoting inflammation, while it also stimulates endothelial permeability, thus

promoting pulmonary oedema. Moreover, LPA stimulate the αvβ6-mediated

TGFβ activation leading to the activation and trans-differentiation of pulmonary

fibroblasts, for which LPA is additionally a pro-survival and chemotactic factor.

THE ENPP2/Enpp2 GENE; EXPRESSION
AND REGULATION

ENPP2 consists of 27 exons and resides in the human
chromosomal region 8q24 (6, 7), a region with frequent somatic
copy number alterations in cancer patients, containing potential
susceptibility loci for various types of cancers (8, 9). The 8q24
locus has been suggested to regulate the expression of the proto-
oncogeneMYC, also residing in the region (10). In silico analysis
of publicly available genomic data at The Cancer Genome
Atlas (11) indicated genetic alterations, mostly amplifications,
of ENPP2 in cancer patients, with the highest rates observed
in ovarian (33%), breast (20%), liver (20%), and lung (11%)
carcinomas (12). Moreover, a number of single nucleotide
polymorphisms (SNPs) that associate with cancer susceptibility
have been detected in or around ENPP2 (9). Promoter regions of

ENPP2 were found hyper-methylated in primary invasive breast
carcinomas (13), while inhibition of histone deacetylases 3 and
7 with trichostatin A also attenuated ENPP2 expression in colon
cancer cells (14), suggesting that ENPP2 expression can be also
amenable to epigenetic regulation. In mice, the highly (93%)
homologous Enpp2 gene is located in chromosome 15 and has
a similar structure (15, 16).

A variety of cell types and/or tissues have been reported
to express ENPP2/Enpp2; the highest mRNA levels in healthy
conditions have been observed in adipose tissue, brain, and spinal
cord, testis and ovary, followed by lung, kidney, and pancreas
(15, 17–19), suggesting that ATX/LPA may participate in the
homeostasis of these tissues. In disease states, increased mRNA
expression has been reported in a large variety of cancer types and
cell lines, as well as in different cell types in chronic inflammatory
disorders (20).

Several transcription factors have been suggested to
control ENPP2/Enpp2 transcription in different cell types
and pathophysiological states: Hoxa13 and Hoxd13 in mouse
embryonic fibroblasts (21), v-jun in chick embryo fibroblasts
(22), c-jun in soft tissue sarcomas (23), Stat3 in breast cancer
cells (24), AP-1 in keratinocytes and neuroblastoma cells (25, 26),
NFAT1 in melanoma and carcinoma cells (27, 28), as well as NF-
kB in keratinocytes and hepatocytes (26, 29, 30). Enpp2 mRNA
stability has been reported to be controlled by the RNA-binding
Proteins HuR and AUF1 (31), adding an extra level of regulation.

Several extracellular, mainly pro-inflammatory, factors have
been suggested to stimulate ENPP2/Enpp2 expression, many
through the transcription factors indicated above: TNF in
synovial fibroblasts, hepatocytes, hepatoma cell lines, and thyroid
cancer cells (32–35), IL-1β in thyroid cancer cells (34), IL-6 in
dermal fibroblasts (36), as well as galectin 3 in melanoma cells
(27). Different TLR ligands, including LPS, CpG oligonucleotides
and poly(I:C), were shown to stimulate ENPP2 expression in
THP-1 monocytic cells, likely involving an IFN autocrine-
paracrine loop (37, 38). Lysophatidylcholine (LPC), a major
component of cell membranes and oxidized lipoproteins as well
as the enzymatic substrate of ATX, is a potent inducer of Enpp2
expression in hepatocytes (32). On the other hand, the enzymatic
product of ATX, LPA, as well as sphingosine 1 phosphate (S1P),
have been suggested to create a negative feedback loop on Enpp2
expression or activity, under certain conditions (34, 39).

ATX ISOFORMS, STRUCTURE, AND
ENZYMATIC ACTIVITY

Alternative splicing of ENPP2/Enpp2 exons 12 and 21 leads
to five, all catalytically active, protein isoforms, named α to ε

(15, 40). Isoform β is the most abundant one, likely accounting
for the majority of ATX/LPA reported pathophysiological effects.
Isoform δ is also abundant, lacking an exon 19 encoded
tetrapeptide of unknown function, also missing in isoform ε.
Isoform γ is brain specific, and contains an exon 21 encoded 25 aa
insert of unknown function (20). Isoforms α and ε are much less
abundant, while they contain a 52 aa polybasic insert, encoded
by exon 12, that has been shown to bind to heparin and heparin
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sulfate proteoglycans (41). Proteolytic cleavage of a N-terminal
hydrophobic sequence that functions as a signal peptide (42, 43)
and glycosylation at asparagine residues (42–45), are necessary
for secretion and optimal enzymatic activity.

ATX can be found catalytically active in most biological fluids,
such as serum/plasma, bronchoalveolar lavage fluid (BALF),
blister fluid, cerebrospinal fluid, synovial fluid, peritoneal fluid,
and urine (20). The major source of serum ATX is likely
the adipose tissue, as conditional genetic deletion of Enpp2
in adipocytes resulted in a 38% decrease of plasma LPA (17),
whereas ubiquitous heterozygous deletion results in a 50%
reduction (46–48). Moreover, ATX has been shown to be
secreted, in healthy conditions, from bronchial epithelial cells
(49) and high endothelial venules (19), as well as choroid plexus
epithelium cells (43), activated astrocytes and oligodendrocytes
in the brain (50). Intriguingly, ATX has been also detected in
exosomes (51), cell derived vesicles that have been suggested to
mediate intercellular or cross-tissue signaling.

ATX consists of two N-terminal somatomedin B-like (SMB)
domains, a central phosphodiesterase (PDE) domain and a
nuclease-like domain (NUC) in its C-terminus (16, 52, 53).
The SMB domains, stabilized by four pairs of disulphide
bonds, likely mediate ATX binding to integrins, thus localizing
LPA production to the cell surface (19, 52, 54–56). The PDE
domain, which interacts with both SMB and NUC domains,
contains the active catalytic site consisted of a threonine residue
(Thr209/210, for mouse and human, respectively) and two
zinc ions coordinated by conserved aspartate and histidine
residues. It contains a hydrophobic lipid-binding pocket that can
accommodate various LPC and LPA species and an open tunnel
that could serve as an exit to LPA (53).

LPC, the enzymatic substrate of ATX, is highly abundant
in the circulation, predominantly associated with albumin and
lipoproteins (57). LPC is synthesized through the hydrolysis of
phosphatidylcholine (PC) by phospholipases (PLA2, PLA1) and
lecithin cholesterol acyltransferase (LCAT) enzymes (58). ATX
has a preference for shorter and unsaturated fatty acid chains,
depending on divalent cations such as Co2+ or Mn2+ (20, 53).
Although ATX can also hydrolyze sphingosylphosphorylcholine
(SPC, the precursor of S1P) and nucleotides in vitro, genetic
and pharmacologic studies in mice established that the main
enzymatic activity of ATX in vivo is LPC hydrolysis and the
production of extracellular LPA (20, 53).

LPA, RECEPTORS, AND SIGNALING

LPA consists of a glycerol backbone, a single fatty acyl chain of
varying length and saturation, and a free phosphate group as
a polar head. It can be found in most biological fluids, mostly
following the expression profile of ATX (57, 59). LPA levels in
serum are much higher than those in plasma, due to the release
of LPC and other phospholipids from activated platelets during
coagulation and their hydrolysis by ATX (60, 61). Moreover, the
LPA concentration in plasma (∼0.7µM) is significantly lower
than LPC’s (∼200µM), while the predominant LPA species (18:2
> 20:4 > 18:1) are not analogous to the corresponding LPC ones

(16:0 > 18:1/18:0 > 20:4); similar observations were made in
BALFs (62). This can be likely explained by the slow release of
LPA from ATX, due to its high affinity for LPA (39, 63), as well by
the rapid turnover of LPA, as shown after the pharmacological
inhibition of ATX in vivo (64, 65). Although there are other
biosynthetic routes for LPA production, any increases in the
extracellular LPA content of biological fluids and local sites can be
attributed to the lysoPLD activity of ATX (58). On the other hand,
a group of membrane-associated lipid-phosphate phosphatases
(LPPs) have been suggested as negative regulators of LPA levels,
adding an extra layer of regulation of its effects (66, 67).

LPA signals through at least six type I rhodopsin-like
receptors (LPARs) that exhibit widespread, but differential,
tissue distribution, as well as overlapping specificities (68). The
orphan GPR87 and P2Y10 receptors (69, 70), as well as the
receptor for advanced glycation end products (RAGE) (71) and
the intracellular peroxisome proliferator-activated receptor γ

(PPARγ) (72), have also been suggested tomediate LPA signaling.
Little is known on LPARs functional conformation and possible
associations; LPAR1 has been detected in lipid rafts (73, 74) and
suggested to heterodimerize with CD14 (74) and CD97 (75).

LPARs couple with G-proteins, crucial molecular switches
activating numerous signal transduction pathways (76). G-
protein coupled receptors (GPCRs) is the largest family of cell-
surface molecules involved in signal transduction, and their
aberrant function has been linked with various human diseases,
thus representing almost 50% of current therapeutic targets (77).
Many in vitro studies, extensively reviewed elsewhere (20, 57, 61),
have shown that LPA: stimulates the mitogenic Ras-Raf-MEK-
ERK pathway and the PI3K pathway promoting cell survival
through Gαi; induces RhoA-mediated cytoskeletal remodeling,
as well as cell migration and invasion through Gα12/13 in
cooperation with the Gαi-mediated Rac activation pathway;
activates phospholipase C, through Gαq, with consequent
production of second messengers. Of note, most in vitro effects
of LPA were reported at concentrations much higher than
the physiological concentrations, as found in healthy biological
fluids, suggesting that they likely concern pathophysiological
situations with increased levels of LPA. Overall, any LPA effect
in each cell type will depend on its local concentration, regulated
by ATX and LPPs, the levels of possible agonists and antagonists
and the relative abundance of the different receptor subtypes.

ATX/LPA IN PATHOPHYSIOLOGY

Ubiquitous genetic deletion of ATX and abrogation of LPA
production resulted to embryonic lethality in mice due to
malformations of the vascular and neural systems (46–48, 78),
indicating a major role for ATX in development; reviewed in
Moolenaar et al. (79). Of note, the embryonic phenotype of ATX
knock out mice did not resemble the phenotype of any of the
individual LPA receptors knock out mice (68), suggesting that
coordinated LPA signaling through various receptors is necessary
for the observed ATX effects in embryonic development; non-
catalytic effects of ATX in development are also possible
especially in the neural system (50, 80). Accordingly, elevated
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ATX levels have been detected in human pregnancy, further
modulated in pregnancy-related pathophysiological conditions
(81–86).

Notwithstanding the necessity for ATX in embryonic life,
induced genetic deletion or long-term pharmaceutical targeting
of ATX in adult mice was shown to be well tolerated (18),
indicating that the majority of ATX/LPA (>80%) is dispensable
in adult healthy life. The remaining ATX-mediated LPA levels,
together possibly with LPA produced via other routes (58) are
likely adequate to maintain a healthy tissue homeostasis. Given
the importance of ATX in embryonic development but not in
adult life, the overexpression of ATX in a pathophysiological
condition suggests ATX/LPA as a developmental pathway
aberrantly re-expressed in pathophysiological situations.

One of the main features of the embryonic lethal phenotype
of ATX knock out mice was the aberrant vascular system,
as also seen upon ATX knockdown in zebrafish (87) and in
line with the suggested role of LPA in vascular homeostasis

(88, 89). A similar phenotype was also seen in the embryos
of transgenic mice overexpressing ATX (90) and LPP3 knock
out mice (91, 92) that sustain much higher levels of LPA than
wt mice, suggesting that LPA levels should be tightly regulated
during development. Of note, Ga13

−/− embryos display similar
impairments in the vasculature as the Enpp2−/− embryos (46,
93), suggesting Ga13 as the predominant G-protein mediating
ATX/LPA effects in the vasculature. In adult life, LPA has
been suggested to modulate endothelial cell physiology, through
the stimulation of the expression of angiogenesis related genes
and the modulation of their permeability (88, 89, 91). Beyond
endothelial cells, LPA has a plethora of effects on other cells
of the vessel wall, as well as on blood cells including platelets.
Moreover, LPA is generated during mild oxidation of LDL, while
its levels accumulate in atherosclerotic plaques, suggesting a role
for ATX/LPA in atherosclerosis (94, 95).

The possible involvement of ATX/LPA in atherosclerosis is
further underscored by the fact that the adipose tissue is a major
source of systemic ATX, while its effects, through LPA, can
classify ATX as an adipokine. Although the effects of ATX/LPA
in adiposity are not clear (17, 96, 97), the ATX-LPA pathway
has been suggested to participate in obesity related insulin

resistance and the regulation of glucose homeostasis (98), with
many implications for the pathogenesis of different metabolic
disorders. However, the autocrine and/or paracrine effects of
ATX/LPA in metabolism and the consequent effects in disease
pathogenesis have not yet been fully explored.

ATX was first isolated due to its ability to promote the motility
of melanoma cells (1). Accordingly, many xenograft studies
have shown that ATX knock down in melanoma cells, as well
as pharmacological inhibition of ATX and LPAR antagonism,
attenuate the metastasis of melanoma cells in the lungs of mice,
well establishing a role for ATX/LPA in metastasis; reviewed in
Leblanc and Peyruchaud (99). Beyond melanomas, interaction
of ATX with integrin αvβ3 on tumor cells, has been reported to
control the metastasis of breast cancer to the bone [reviewed in
(56, 100)].

Transgenic over-expression of Enpp2, as well as Lpar
1, 2, or 3, in the mammary gland resulted in spontaneous

breast cancer development (101), indicating a role for the
ATX/LPA axis in breast cancer. However, spontaneous
carcinogenesis was only observed in aged mice, suggesting
that ATX/LPA act synergistically with oncogenic age-related
signals. Notwithstanding the conflicting reports on ATX levels in
breast cancer, the source of ATX in breast cancer was suggested
to be the adjacent mammary fat pads, rather than the cancer
cells themselves (102), suggesting that ATX can have paracrine
effects in cancer development. In the liver, genetic deletion of
Enpp2 from hepatocytes attenuated hepatocellular carcinoma

(HCC) development, revealing ATX/LPA autocrine effects in
hepatocyte metabolism (32, 103). Increased ATX expression has
been reported in many other types of cancer, including thyroid
and ovarian (20, 104).

Increased ATX levels have been also reported in
neuroblastomas and glioblastomas (50) and given the abundant
expression of the brain specific isoform ATXγ as well the
neuronal defects of the Enpp2−/− mice, a role for ATX/LPA
in brain cancer seems likely, but it remains yet unexplored.
However, another major role for ATX/LPA was revealed
in the brain, as it was shown that PLA2/ATX-dependent
LPA/LPAR1 signaling is crucial for the initiation of neuropathic
pain (105, 106). Moreover, ATX was shown to modulate
oligodendrocyte physiology and differentiation via catalytic and
non-catalytic functions (50, 107). In this context, increased ATX
and LPA levels have been reported in the sera and cerebrospinal
fluid (CSF) of multiple sclerosis patients (108–110), while
pharmacologic inhibition of ATX attenuated the development of
experimental autoimmune encephalomyelitis (111).

Besides multiple sclerosis, ATX/LPA were shown to have a
role in the pathogenesis of other chronic inflammatory diseases.
Conditional genetic deletion of ATX from synovial fibroblasts
or pharmacologic inhibition attenuated the development of
inflammatory arthritis in animal models (33, 112), suggesting
a major role for ATX/LPA in rheumatoid arthritis (113, 114).
TNF-induced ATX secretion from synovial fibroblasts was
shown to result in increased production of LPA which in turn
stimulated, in an autocrine mode, cytoskeletal re-organization,
proliferation, and migration of synovial fibroblasts (33), the
main effector cells in disease pathogenesis. Moreover, increased
ATX staining was noted in lymphoid aggregates, in line with
the suggestion that ATX can be an adhesive substrate for
homing lymphocytes, facilitating their transmigration across
endothelial layers in different modes (19, 115–118). Further
to the possible regulation of immune responses by ATX/LPA,
LPA was recently shown to convert monocytes to macrophages
(119).

Chronic inflammation of the liver, due to cytotoxic, viral
or metabolic stimuli, was shown to stimulate ATX secretion
from hepatocytes, while LPA was shown to activate hepatic
stellate cells and to amplify pro-fibrotic signals (32). Conditional
genetic deletion of Enpp2 from hepatocytes or pharmacological
inhibition of ATX, attenuated the development of fibrosis in
a cytotoxic model (32). Increased ATX expression has been
reported in patients with chronic liver diseases of different
etiologies, suggesting ATX as a diagnostic marker of different
forms of liver fibrosis (32, 120). ATX/LPA have been also
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implicated in the fibrosis of other tissues, such as renal fibrosis
(121) and skin fibrosis (36, 122).

ATX/LPA IN PULMONARY FIBROSIS

Enpp2 has been suggested, using genome-wide linkage analysis
coupled with expression profiling, as a candidate gene controlling
lung function, development and remodeling (123). Accordingly,
Enpp2−/− mice were found to be embryonically lethal (46–
48, 78), while Lpar1−/− mice were shown to have reduced
alveolar septal formation during development (124). In adult
life, ATX is constitutively expressed by bronchial epithelial cells,
in both humans, and mice, and can be detected in BALFs
(49, 125). However, a 50% reduction of systemic ATX levels
in the heterozygous Enpp2+/− mice or genetic abrogation of
bronchial Enpp2 expression had no major phenotypic effect in
the lungs of mice, suggesting that tissue homeostasis in health
does not require large amounts of LPA (49, 126). On the other
hand, transgenic overexpression of Enpp2 from the bronchial
epithelium or from the liver resulting to 200% increases of
ATX systemic levels, had no gross phenotypic effect in the lung
either, suggesting that ATX/LPA are not sufficient to induce lung
damage per se (126).

Subsegmental allergic challenge of asthma patients induced
ATX/LPA levels in their BALFs (127, 128), while pharmacologic
inhibition of ATX resulted in a marked attenuation of Th2
cytokines and allergic lung inflammation in a triple-allergen
mouse asthma model (128); conflicting reports have suggested
both pro-inflammatory and anti-inflammatory roles for LPAR2
(128–130). Therefore, a role for ATX/LPA in asthma seems
likely and consistent with early reports on LPA effects in the
proliferation and contraction of airway smooth muscle cells
(131, 132).

Increased ATX staining has been detected in lung tissue
samples from IPF and fibrotic non-specific interstitial
pneumonia (fNSIP) patients, compared to other interstitial
diseases and especially control samples (49). ATX localized
mainly within the hyperplastic bronchiolar epithelium, but
it was also detected weakly on alveolar epithelium around
fibroblastic foci, interstitial macrophages, and fibroblast like
cells. On the contrary, ATX was minimally localized within
both the inflammatory components of cellular NSIP lung
samples and in areas of loose connective tissue, called Masson
bodies, representing the pathogenic hallmark of cryptogenic
organizing pneumonia. These two latter forms of idiopathic
interstitial pneumonias have a propitious prognosis and an
excellent treatment response to corticosteroids, indicating that
ATX up-regulation is closely associated with more progressive
and irreversible forms of pulmonary fibrosis, such as IPF/UIP
and fNSIP (49). Of note, as ATX has been suggested to
bind to integrins at the surface of platelets and cancer cells
(52, 54, 56), it cannot be excluded that ATX can bind to the
surface of lung cells via integrins, thus avoiding clearance
while exerting locally-produced LPA effects. In turn, the
levels of specific LPA species have been found moderately
increased in BALFs and exhaled breath condensates collected

from IPF patients (133, 134); however, larger studies are
needed.

A similar ATX staining profile was observed in the lungs
of mice treated with bleomycin (BLM) (49), the most widely
used animal model of pulmonary inflammation and fibrosis
(135, 136), while increased ATX levels were detected in the
corresponding BALFs (49, 62). Conditional genetic deletion of
Enpp2 from bronchial epithelial cells (CC10+) and macrophages
(LysM+), the main pulmonary cells expressing ATX, reduced
BALF ATX levels and disease severity thus confirming the
pulmonary ATX sources as well as establishing a pathogenic
role for ATX. However, BALF ATX levels remained relatively
high, while the modeled disease was not completely attenuated,
suggesting additional, extrapulmonary sources of ATX. ATX
levels in BALF correlated with total protein and albumin
measurements, pointing to a possible extravasation of ATX from
the circulation; paradoxically, no major effects in BLM-induced
fibrosis development were noted in genetically modified mice
with increased or decreased serum and systemic levels of ATX
(49). Nevertheless, systemic pharmacologic inhibition of ATX,
both with small molecules and DNA aptamers, decreased LPA
levels, and attenuated pulmonary fibrosis (49, 137, 138). It should
be noted that ATX inhibition with PAT-048 (Bristol Myers
Squibb;WO2012024620) was reported to have no effects in BLM-
induced pulmonary fibrosis (62), most likely due to experimental
settings and compound characteristics. However, the therapeutic
potential of targeting the ATX/LPA axis was recently re-
evaluated, where yet another ATX inhibitor was shown to prevent
BLM-induced pulmonary fibrosis (139). Many more small
molecule ATX inhibitors have been reported (140, 141), however
they are still not tested in animal models of pulmonary fibrosis.
Intriguingly, the bile salt tauroursodeoxycholate (TUDCA) was
recently reported to be a partial non-competitive inhibitor of
ATX (142), suggesting that the previously reported therapeutic
effects of TUDCA in BLM-induced fibrosis (143), could be due
to ATX inhibition.

Moreover, an autocrine pathway linking ATX, LPA signaling
and b-catenin was recently reported to contribute to fibrosis
progression in lung allografts, one of the primary causes
of long-term graft failure after organ transplantation (144).
Pharmacologic ATX inhibition or LPAR1 antagonism decreased
allograft fibrosis (144), further extending the therapeutic
potential of targeting the ATX/LPA axis in lung fibroproliferative
disorders.

In agreement with a pathogenic role of ATX/LPA in
pulmonary fibrosis, ubiquitous genetic deletion of either Lpar1
or Lpar2 also abrogated BLM-induced disease development
(133, 145). Pharmacologic antagonism of LPAR1 was shown
to be beneficial for the treatment of BLM-treated mice (146),
thus stimulating the respective on-going clinical trial (NCT
02068053). Moreover, simultaneous ATX inhibition and LPAR1
antagonism has been reported to have some additive effect
in melanoma metastasis (147), warranting further investigation
and/or optimization. Beyond LPAR1&2, LPAR6 is the highest
expressing LPAR in the lung (not published data), but its possible
role in pulmonary pathophysiology and fibrosis has not been
explored yet (Figure 1).
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Reduced numbers of TUNEL+ cells were noted in the
alveolar and bronchial epithelium of BLM-treated Lpar1−/−

and Lpar2−/− mice, suggesting that LPA, through LPAR1
and/or 2, promotes epithelial apoptosis (145, 148), the initiating
pathogenetic event in this model (135) and, likely, in human
patients (149). Interestingly, apoptosing epithelial cells post BLM
were shown to express TNF that has a major contribution in
the pathogenesis of the modeled disease (150), while TNF has
been reported to stimulate ATX expression in other cell types
(33, 35). Many other LPA possible effects in pulmonary epithelial
cells in vitro have been reported and are detailed elsewhere (151),
including the induction of IL-8 secretion resulting to neutrophil
influx (152, 153).

LPA stimulation of normal human bronchial epithelial cells
has been shown to increase stress fiber formation, and to
reorganize integrin αvβ6 at their ends leading to TGF-β activation
(154). Integrin αvβ6 has been shown previously to bind and
activate TGF-β, a mechanism suggested to regulate pulmonary
inflammation and fibrosis (155). TGF-β is the prototype pro-
fibrotic factor with a well-documented involvement in the
pathogenesis of both the human and the modeled disease,
with effects on alveolar epithelial cell injury, myofibroblast
differentiation, epithelial-to-mesenchymal transition, and ECM
deposition and remodeling (156). TGF-β is produced by different
cell types, including alveolar macrophages, while LPA was shown
to induce TGF-β expression in pulmonary fibroblasts in vitro
(145). Therefore, TGF-β activation and possibly expression is
another important mechanism through which LPA promotes
pulmonary fibrosis.

BALF isolated from BLM-treated mice stimulates the
chemotaxis of pulmonary fibroblasts, which was found
attenuated by more than 50% in the absence of Lpar1 expression,
indicating that LPA is a major fibroblast chemoattractant
(133). The structural organization of LPAR2 has been
suggested to govern gradient sensing and the directional
migration of fibroblasts in response to LPA (157), while
LPA-induced mTORC2-mediated PKC-δ phosphorylation was
shown to be critically important for fibroblast migration and
pulmonary fibrosis development (158). LPA has been reported
to promote, through GPCR-mediated pathways, the cytoskeletal
reorganization and proliferation of lung fibroblasts (151),
mediated likely from LPAR2 (145) but not from LPAR1 (133).
Moreover, LPA signaling, specifically through LPAR1, has been
found to suppress, under certain conditions, the apoptosis of
primary mouse lung fibroblasts induced by serum deprivation
(148). Similar anti-apoptotic effects of LPA have been reported
in many cell lines (151), further supporting a role for ATX/LPA
in mediating pathologic fibroblast accumulation, the main
pathogenetic event in IPF.

Calcium second messenger signals are essential for many
critical cellular functions (159). In fibroblasts, calcium
homeostasis and ionic mechanisms have been proposed to
orchestrate many of their functions, including proliferation,
secretion of extracellular matrix components, as well as
TGF-β production and differentiation to myofibroblasts
(160). In this context, transient receptor potential vanilloid
4 (TRPV4) Ca2+ channels have been shown to get activated

in response to matrix stiffness, as found in fibrotic lungs
(161), and to mediate fibroblast activation and differentiation
(162). Interestingly, LPA is well known to stimulate Ca2+

influx and/or mobilization in many cells (163), while it was
recently shown to directly activate a TRPV1 ion channel (164).
Although, the activation was intracellular (164), transbilayer
LPA movement has been suggested before in the activation
of the nuclear PPARγ receptor (72). Therefore, LPA-induced
alterations in calcium homeostasis can have dominant effects
in the physiology of fibroblasts, as well as many other cell
types.

One of the hallmarks of the observed protection from
BLM-induced fibrosis in Lpar1−/− mice was the attenuation
of BLM-induced vascular leak, indicating a major role of
LPA in promoting endothelial permeability upon damage
(133). Accordingly, transgenic overexpression of ATX from
the liver resulting to elevated circulating LPA levels induced
a bleeding diathesis (55). However, the effects of LPA on
endothelial permeability remain controversial, while different
LPA receptors have been proposed to mediate different effects
on endothelial physiology (23, 151, 164). Endothelial dysfunction
mainly characterizes the development of atherosclerosis and
cardiovascular diseases, however, interstitial lung diseases have
all been reported to have a lung vascular disease component
(165).

Therefore, ATX-mediated LPA production promotes
pleiotropic effects in pulmonary cells stimulating the
development of pulmonary fibrosis (Figure 1). Accordingly, ATX
inhibition was shown to attenuate BLM-induced pulmonary
fibrosis (49, 137, 138), thus providing the proof of principle
for therapeutic interventions and stimulating the on-going
clinical trial. In a phase 1 study, GLPG1690, a potent and
orally bioavailable ATX inhibitor exhibiting a good PK/PD
profile (137), was shown to be safe and well tolerated (166),
as previously shown with another compound and genetic
interventions in mice (18). An exploratory phase 2a study in
IPF patients (FLORA; NCT 02738801) was just completed with
promising results (expected to be published soon), leading to
phase IIb, currently recruiting.
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