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Abstract: Biologically active substances from microalgae can exhibit antioxidant, immunostimulating,
antibacterial, antiviral, antitumor, antihypertensive, regenerative, and neuroprotective effects. Lipid
complexes of microalgae Chlorella vulgaris and Arthrospira platensis exhibit antibacterial activity and
inhibit the growth of the Gram-positive strain Bacillus subtilis; the maximum zone of inhibition is
0.7 ± 0.03 cm at all concentrations. The carbohydrate-containing complex of C. vulgaris exhibits
antibacterial activity, inhibits the growth of the Gram-positive strain B. subtilis, Bacillus pumilus; the
maximum zone of inhibition is 3.5 ± 0.17 cm at all concentrations considered. The carbohydrate
complex of A. platensis has antimicrobial activity against the Gram-negative strain of Escherichia coli
at all concentrations, and the zone of inhibition is 2.0–3.0 cm. The presence of mythelenic, carbonyl
groups, ester bonds between fatty acids and glycerol in lipid molecules, the stretching vibration of the
phosphate group PO2, neutral lipids, glyco- and phospholipids, and unsaturated fatty acids, such as
γ-linolenic, was revealed using FTIR spectra. Spectral peaks characteristic of saccharides were found,
and there were cellulose and starch absorption bands, pyranose rings, and phenolic compounds.
Both algae in this study had phenolic and alcohol components, which had high antibacterial activity.
Microalgae can be used as biologically active food additives and/or as an alternative to antibiotic
feed in animal husbandry due to their antibacterial properties.

Keywords: Chlorella vulgaris; Arthrospira platensis; FTIR spectra; antimicrobial activity; functional
products; biologically active substances; biofuels

1. Introduction

Microalgae cultivation has recently piqued the interest of researchers due to their abil-
ity to synthesize a variety of biologically active substances, rapid biomass growth, and the
ability to adjust their biochemical composition depending on cultivation conditions. Unlike
heterotrophic microorganisms, which need various organic compounds for growth, unicel-
lular photosynthetic organisms produce biomass from fully oxidized inorganic substances
and mineral elements due to light energy converted during cultivation photosynthesis.
Furthermore, microalgae biomass production technologies do not pollute the environment,
use carbon dioxide while releasing oxygen, consume a relatively small amount of water,
and can be produced using land resources unsuitable for crop cultivation [1–3].

There are currently two main applications for microalgae: biomass production as a bi-
ologically active additive (BAA) and cultivation for the subsequent isolation of biologically
active substances (BAS) from the biomass [4].
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Microalgae are rich in nutrients and biologically active substances, such as proteins,
carbohydrates, lipids, polyunsaturated fatty acids, vitamins, pigments, phycobiliproteins,
enzymes, etc. Biologically active substances from microalgae can exhibit antioxidant,
immunostimulating, antibacterial, antiviral, antitumor, antihypertensive, regenerative, and
neuroprotective effects. These compounds are in high demand in medicine, cosmetics, the
food industry, fish farming, energy, agriculture, feed, and functional food production [5–8].

Only a few microalgae species (Arthrospira (Spirulina) platensis, Chlorella or Chlorella vulgaris,
Dunaliella, Aphanizomenon, and Nostoc) are currently approved for human consumption.
These microalgae are a promising object for large-scale cultivation due to the high content
of biologically active substances and the relatively cheap production process. Other microal-
gae species, such as Chlamydomonas sp., Chlorococcum sp., Scenedescmus sp., Tetraselmis chuii,
and Nanochloropsis sp., have demonstrated their value as ingredients in feed, fertilizers,
cosmetics, and aquaculture but do not yet have GRAS status [9–13].

Finding new, unstudied strains of microalgae can broaden the scope of their industrial
application and create new opportunities for use. Because of the wide variety of microal-
gae, their high metabolic flexibility, and the variety of cultivation conditions, their true
potential has yet to be fully evaluated. Innovative developments in microalgae production
optimization will make their use economically viable and in demand in the future.

Marine microalgae are microalgae that are used in many parts of the world as food,
feed, and fertilizer, as well as a potential renewable resource in medicine and commercial
activities. The biostimulatory properties of marine microalgae are being investigated for
potential applications in the development of new antibiotics. Many metabolites isolated
from marine microalgae have bioactive properties [14]. Bioactive natural products are
widely distributed in the plant world, and extracts of various plants, as well as red, green,
and brown macro- and microalgae, can be used as natural products [15]. Marine algae are a
never-ending source of raw materials for pharmaceuticals, medicine, food processing, and
cosmetics [16]. The need for compounds with biological activity for potential pharmaceuti-
cal applications or other potentially significant economic properties has resulted in a sharp
increase in research into the chemistry of marine microalgae in recent years [17]. Marine
microalgae are an important source of bioactive natural substances [18]. Particular attention
was paid to the antibacterial activity of marine microalgae against several pathogens [19]. It
was demonstrated that various marine microalgae extracts and compounds have antibacte-
rial activity against both Gram-positive and Gram-negative bacteria [19,20]. Antimicrobial
compounds derived from marine microalgae are composed of a diverse group of chemical
compounds [21,22].

The microalgae Chlorella vulgaris and Arthrospira platensis are of particular interest
because they have high potential for use and grow rapidly (doubling time up to 6 h),
are more productive at small scales than plants, do not require agriculturally significant
land (do not compete with the food industry), use very basic mineral components for
growth, use salty sea water, and can grow on wastewater while treating it, use only solar
energy, absorb carbon dioxide when growing, contain a large amount of proteins, fats, and
carbohydrates [22].

This study sought to identify the antimicrobial metabolites present in microalgae
by analyzing their FTIR spectra. The novelty of this study lies in the fact that the an-
timicrobial activity of biologically active chemical groups identified by IR spectroscopy
and found in the proteins, lipids, and carbohydrates of microalgae Chlorella vulgaris and
Arthrospira platensis isolated from the Baltic Sea was investigated for the first time.

2. Materials and Methods
2.1. Materials

Materials: Zarukka and Tamiya mediums for cultivating medium for cultivating; ana-
lytically pure reagents; NaCl (Areolab, Moscow, Russia), chloroform (Areolab, Moscow, Rus-
sia), methanol formazin (Areolab, Moscow, Russia), hydrazine sulfate (Areolab, Moscow,
Russia), urotropine (Areolab, Moscow, Russia), zinc selenide (Areolab, Moscow, Russia).
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2.2. Microalgae Samples

Microalgae were collected in the Baltic Sea, Kaliningrad, Russia, in June 2019 as follows.
Microalgae were sampled with a box-shaped bottom sampler developed at the Institute

for Biology of Inland Waters of the Russian Academy of Sciences (IBIW) (Borok, Russia),
covering a square area of the bottom 160 × 160 mm in size with a maximum immersion
depth of 440 mm in bottom sediments; a 400 mm length sample was taken. Immediately
after transportation to the shore, test cores were taken using plastic tubes with an inner
diameter of 45 mm. The tubes were sealed at both ends and stored in an upright position at
+4 ◦C. In the laboratory, the core was cut lengthwise and halved using two thin stainless-
steel plates inserted into the cut. The halves of the core were then divided into transverse
samples (slices) with a step of 5–10 mm. All samples were stored at –20 ◦C in the dark, in
plastic bags with air access, from which microalgae samples were taken for research.

Further, pure microalgae cultures were isolated and microalgae strains that can ac-
tively accumulate biomass and target products (lipids, proteins, and carbohydrate–mineral
complex) and are suitable for cultivation in laboratory conditions were identified.

The collected microalgae were washed to remove impurities and cultivated in 500 mL
Erlenmeyer laboratory flasks. The cultivation was carried out on an orbital shaker (Hei-
dolph, Unimax 1010, Schwabach, Germany) at 118 rpm. The algae were dried in a drying
oven at T = 40 ◦C (Memmert, Büchenbach, Germany). Before extraction, the samples were
stored at T = 4 ◦C.

To identify isolates from the enrichment culture strains of microorganisms (microalgae),
partial sequences of the 18S and/or 16S rNA encoding gene were determined. DNA from the
samples was isolated using DNeasy Plant Pro Kit (Quagen, Limburg, Germany). The primer
annealing regions corresponded to forward primer 5′-AACCTGGTTGATCCTGCCAG-3′

and reverse primer 5′-CACCAGACTTGCCCTCCA-3′. The samples were amplified by
the qPCRmix-HSreaction mixture (Eurogen, Moscow, Russia) using C1000 Touch system
(BioRad, Hercules, CA, USA) and were cloned into pAL2T-vector (Eurogen, Moscow, Rus-
sia). After that the recombinant vectors were sequenced by M13 primer system (Eurogen,
Moscow, Russia) using 3500 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA).
The sequences processing was made by software CLC Genomics Workbench (Quagen,
Germany). The comparative analysis was performed with the known sequences from
the Genbank database. The results of a comparative analysis of the 18S and/or 16S rNA
gene sequence showed that the following microalgae were isolated from the Baltic Sea:
Chlorella vulgaris and Arthrospira platensis [23,24].

2.3. Extraction of Protein Concentrate, Lipid and Carbohydrate Complexes

To extract the protein complex, 2 g of dried algae were dissolved in 40 mL of distilled
water and incubated at 4 ◦C for 16 h. The solution was centrifuged at 9000 rpm for 20 min at
4 ◦C (Thermo Scientific™ Heraeus™ Megafuge™ 16 Centrifuge Series, Waltham, MA, USA.
After centrifugation, the obtained precipitate was treated with acid (HCl) and alkali (NaOH)
at concentrations of 0.3 M. A solid to solvent ratio of 1:15 was used and the solutions were
stirred for 1 h at 4 ◦C and then centrifuged at 9000 rpm for 20 min at 4 ◦C. The resulting
precipitate was dried at 40 ◦C for 18 h, and its protein content was analyzed. The protein
content was also measured in the supernatant, the values were summarized.

The Folch method was used to extract the lipid–pigment complex. For this, 2 mL
of a chloroform:methanol (2:1 by volume) mixture was used per 100 mg of dry biomass.
Next, the sample was sonicated for 30 min to extract the lipid fraction. After sonication,
0.25 volumes of 0.9% sodium chloride solution were added to the sample, and the mixture
was intensively stirred. After phase separation, the organic phase was separated and
evaporated using a rotary evaporator to constant weight. The dry weight of the lipid
fraction was determined by weighing. The lipid content Wl (%) was determined using the
following formula:

Wl =
ml
mb
× 100 %
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where ml—mass of extracted lipids; mb—mass of dry biomass.
Acid hydrolysis was used to extract the carbohydrate–mineral complex. Sulfuric

acid with a sulfuric acid concentration of 5.0% was used. Hydrolysis was performed at
a temperature of 121 ◦C for 20 min at a pressure of 1 atm. The loading volume of dried
microalgae biomass during the experiment was 50 g/L. After the hydrolysis process, the
samples were cooled at room temperature and centrifuged at 7000 rpm for 5 min. The
total concentration of carbohydrates was analyzed using the phenol–sulfuric acid method.
A reagent was prepared for analysis using the phenol–sulfate method. To prepare it, 5 g
of phenol was added to 100 mL of distilled water. The standard curve was plotted with
different concentrations of D-glucose. In total, 50 µL of the reagent was added to 50 µL of
the sample and followed by 2 mL of concentrated sulfuric acid. The solution was kept at
room temperature until an orange color was obtained. The presence of the carbohydrate
complex was determined spectrophotometrically at a wavelength of 490 nm.

2.4. Determination of the Antibiotic Activity of Microalgae

The antibiotic activity was determined by the disk diffusion test [19]. A bacterial
suspension was applied to the surface of the nutrient medium with agar in Petri dishes
within 15 min after preparation. Petri dishes were innoculated manually by applying the
suspension evenly with streaking movements on the entire surface of the agar in three
directions so that there were no gaps between the strokes. Six-millimeter disks with the
antibiotic ampicillin (control), lipid, carbohydrate and protein complexes (20 mL) were
applied to the agar surface within 15 min after inoculation of the bacterial suspension. The
contact of the disks with agar was complete and tight. The disks were not moved after
being applied to the agar surface because the antibiotic and the studied complexes isolated
from microalgae diffused into the medium very quickly. The dishes were incubated for
24 h at 37 ◦C, and the inhibition zone was measured in centimeters (cm).

Microalgae lipid solution for determination of antimicrobial activity was prepared in
5% Tween 20 (polysorbate-20) emulsifier solution by adding 32 mg of lipids to 1 mL of
5% Tween 20. Polysorbates are very strong emulsifiers. They weaken the surface active
tension between water and oil, causing the process of solubilization. Solubilization means
the dissolution of lipids in water and facilitates the diffusion of lipids into agar media,
exhibiting antibacterial properties [25].

A. platensis and C. vulgaris lipid complex samples, that included all isolated lipids,
were tested at 50, 75, and 100 mg/mL. Discs with ampicillin (10 mg/mL) were used
as controls to assess the inhibition zones. The tests performed in triplicate (biological
triplicates). Two different Gram-positive bacteria (Bacillus subtilis (B-7918) and Bacillus
pumilus (B-1133) and one Gram-negative strain of Escherichia coli showed insignificant
differences in the diameter of the zone of inhibition when interacting with the extract
isolated from microalgae. B. subtilis is only a pathogen in severely immunocompromised
patients as a result of severe illness [26]. However, the study of the antimicrobial activity
of microalgae in relation to this strain is of clinical interest. In this regard, the effect of
microalgae on this Gram-positive bacterium was studied.

The isolated and purified extracts were diluted from 100 mg/mL to 1 mg/mL. Three
concentrations of organic complexes (100, 10, 1 mg/mL) were formed and tested on
pathogenic and opportunistic microorganisms. To completely remove the effect of solvents
on microorganism growth, preliminary measures were taken to remove them from the
composition of the tested organic complexes. A rotary evaporator was used to remove
n-hexane residues from the lipid complex.

2.5. FTIR Spectroscopy

FTIR spectroscopy of solid microalgae samples: A dry microalgae sample was mixed
with KBr (Pike Technologies, Madison, WI, USA) and ground in an agate mortar to obtain
a fine fraction. The resulting mixture was compressed into a transparent tablet. The
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FTIR spectra of the obtained tablet were measured on an IRPrestige-21 IR spectrometer
(Shimadzu, Kyoto, Japan) in the range of 500–4000 cm−1.

FTIR spectroscopy of liquid microalgae samples: In total, 0.11 g of KBr powder (Pike
Technologies) was impregnated with 0.5 mL of microalgae sample solution. Next, the
powder with the sample was dried in an oven (Memmert, Schwabach, Germany) at a
temperature of 50 ◦C until complete evaporation of the liquid within 40 min. The resulting
dry powder was triturated in an agate mortar to grind the fraction. The resulting mixture
was compressed into a transparent tablet. The tablet FTIR spectra were measured on an
IRPrestige-21 IR spectrometer (Shimadzu, Kyoto, Japan) in the range of 500–4000 cm−1 [27].

2.6. Statistical Analysis

The data were subjected to analysis of variance (ANOVA) using Statistica 10.0 (StatSoft
Inc., 2007, Tesla, WV, USA). Post hoc analysis (Duncan’s test) was undertaken to identify
samples that were significantly different from each other. The equality of the variances of
the extracted samples was checked using the Levene test. Differences between means were
considered significant when the confidence interval is smaller than 5% (p < 0.05).

3. Results

Tables 1–4 present the antimicrobial activities of the C. vulgaris and A. platensis lipid
and carbohydrate complexes.

Table 1. Antimicrobial activity (zone of inhibition, cm) of the C. vulgaris lipid complex.

Strain Control (Ampicillin)
Lipid Complex

100.0 mg/mL 10.0 mg/mL 1.0 mg/mL

E. coli 3.0 ± 0.09 1.0 ± 0.03 1.3 ± 0.04 1.3 ± 0.04
B. pumilus 3.0 ± 0.09 2.2 ± 0.06 1.9 ± 0.05 1.9 ± 0.05
B. subtilis 3.0 ± 0.09 1.6 ± 0.04 1.5 ± 0.04 1.0 ± 0.03

Mean 3.0 ± 0.09 1.6 ± 0.04 1.5 ± 0.04 1.4 ± 0.03
All values in rows do differ significantly (p < 0.05) as assessed by the post hoc test (Tukey test). Data presented as
a mean ± SD (n = 3).

Table 2. Antimicrobial activity (zone of inhibition, cm) of the A. platensis lipid complex.

Strain Control (Ampicillin)
Lipid Complex

100.0 mg/mL 10.0 mg/mL 1.0 mg/mL

E. coli 3.0 ± 0.09 1.0 ± 0.03 1.0 ± 0.03 1.0 ± 0.03
B. pumilus 3.0 ± 0.09 0.7 ± 0.02 0.7 ± 0.02 0.7 ± 0.01
B. subtilis 3.0 ± 0.09 0.3 ± 0.01 0.3 ± 0.01 0.3 ± 0.01

Mean 3.0 ± 0.09 0.6 ± 0.01 0.6 ± 0.01 0.6 ± 0.01
All values in rows do differ significantly (p < 0.05) as assessed by the post hoc test (Tukey test). Data presented as
a mean ± SD (n = 3).

Table 3. Antimicrobial activity (zone of inhibition, cm) of thse C. vulgaris carbohydrate complex.

Strain Control (Ampicillin)
Carbohydrate Complex

100.0 mg/mL 10.0 mg/mL 1.0 mg/mL

E. coli 3.0 ± 0.09 3.0 ± 0.09 3.3 ± 0.09 3.3 ± 0.09
B. pumilus 3.0 ± 0.09 3.5 ± 0.10 3.2 ± 0.09 3.2 ± 0.09
B. subtilis 3.0 ± 0.09 2.2 ± 0.16 * 2.2 ± 0.06 * 3.5 ± 0.10

Mean 3.0 ± 0.09 2.9 ± 0.11 2.9 ± 0.08 3.3 ± 0.10
Values in rows followed by the symbol “*” do differ significantly (p < 0.05) as assessed by the post hoc test (Tukey
test). Data presented as a mean ± SD (n = 3).
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Table 4. Antimicrobial activity (zone of inhibition, cm) of the A. platensis carbohydrate complex.

Strain Control (Ampicillin)
Carbohydrate Complex

100.0 mg/mL 10.0 mg/mL 1.0 mg/mL

E. coli 3.0 ± 0.09 3.0 ± 0.09 2.4 ± 0.07 2.0 ± 0.06 *
B. pumilus 3.0 ± 0.09 3.7 ± 0.11 2.4 ± 0.10 2.0 ± 0.06 *
B. subtilis 3.0 ± 0.09 4.2 ± 0.12 * 3.6 ± 0.10 2.5 ± 0.07

Mean 3.0 ± 0.09 3.6 ± 0.09 2.8 ± 0.08 2.1± 0.06 *
Values in rows followed by the symbol “*” do differ significantly (p < 0.05) as assessed by the post hoc test (Tukey
test). Data presented as a mean ± SD (n = 3).

Figures 1–3 depict the zones of inhibition of B. subtilis and E. coli by C. vulgaris and
A. platensis lipid and carbohydrate complexes.
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Figure 3. Effect of the purified (a) carbohydrate and (b) lipid complexes isolated from C. vulgaris
on the B. subtilis: 1—Control (without complex); 2—concentration 100.0 mg/mL; 3—concentration
10.0 mg/mL; 4—concentration 0.1 mg/mL.

Figures 4 and 5 demonstrate FTIR spectra of the C. vulgaris and A. platensis lipid
and carbohydrate complexes. The most intense characteristic oscillation frequencies are
indicated in the spectra of Figures 4 and 5.

Tables 5 and 6 shows the theoretical interpretation of the IR spectra of the C. vulgaris
and A. platensis lipid and carbohydrate complexes (Figures 4 and 5).

Table 5. Theoretical interpretation of the IR spectra of the C. vulgaris and A. platensis lipid complexes.

No.
C. vulgaris A. platensis

Theoretical Interpretation
Wavenumber, cm−1

1 665 - Deformation vibration of the hydroxyl group

2 760 760 Out of plane vibrations of C–H bonds of unsaturated fragments and pendulum
vibrations of CH2

3 870 - Vibrations of molecules in the C=CH2 group

4 965 - Stretching vibration of C–C bonds between carbons of CH2 groups and carbons
related to unsaturated bonds

5 1065 1070 Stretching vibrations of C–C bonds of chains; C–O–P stretching vibrations

6 1095 1090 Deformation vibrations (angular) of glycerol crosslink

7 1185 1183 Stretching vibrations of C–O glycerol crosslink

8 1225 1224 Wagging vibrations of CH2 groups

9 1283 1258 Deformation vibrations –C–O– bonds

10 1350 - Deformation vibrations of CH3 groups

11 - 1450 Scissoring vibrations of CH2 groups

12 1448 - Deformation vibrations of C–H

13 1474 1450 Scissoring vibrations of CH2 groups

14 1523 1515 Conjugation of two or more –C=C– bonds vibrations of the hydrated carboxyl group

15 1630 1648 Stretching vibrations of C=C bonds

16 2910 2900 Stretching C–H vibrations of CH2 groups

17 3400 3400 Stretching vibrations of the hydroxyl group



Life 2022, 12, 1395 8 of 18Life 2022, 12, x FOR PEER REVIEW 8 of 19 
 

 

 

(a) 

 

(b) 

Figure 4. FTIR spectra of the (a) C. vulgaris and (b) A. platensis lipid complex. 
Figure 4. FTIR spectra of the (a) C. vulgaris and (b) A. platensis lipid complex.



Life 2022, 12, 1395 9 of 18
Life 2022, 12, x FOR PEER REVIEW 9 of 19 
 

 

 

(a) 

 

(b) 

Figure 5. FTIR spectra of the (a) C. vulgaris and (b) A. platensis carbohydrate complex. Figure 5. FTIR spectra of the (a) C. vulgaris and (b) A. platensis carbohydrate complex.



Life 2022, 12, 1395 10 of 18

Table 6. Positions of the IR absorption bands in the C. vulgaris and A. platensis carbohydrate complexes.

No.
C. vulgaris A. platensis

Theoretical Interpretation
Wavenumber, cm−1

1 - 750–850 Out-of-plane deformation vibrations of C–H bonds

2 1044 1050 Stretching vibration of C–C

3 1193 1190 Stretching vibration of carbonyl C–O groups

4 - 1200 Plane deformation vibrations of C–H

5 - 1253 Stretching vibration of O–H groups

6 1400–1700 1400–1650 Stretching vibrations of C=O, C=C bands, deformation vibrations of NH (δ(N–H))

7 - 2852 Symmetrical stretching vibrations of –CH2– (νs(CH2))

8 - 2925 Asymmetric stretching vibrations of –CH2– (νas(CH2))

9 2915,2940 - Stretching vibrations of –CH– (ν(CH))

10 3400 - Stretching vibrations of the hydroxyl group

11 - 3735 Stretching vibrations of N–H (ν(NH))

4. Discussion

Moderate antimicrobial activity was detected when three concentrations of organic
complexes that were isolated and purified from microalgae were analyzed. Taking into
account the revealed activity only in the carbohydrate and lipid complexes, tests were
carried out with various concentrations of these substances.

Sea microalgae were selected based on morphological features characteristic of the
edible microalgae A. platensis and C. vulgaris, which were additionally identified using DNA
sequences. Only edible microalgae were studied because, in accordance with the proposed
hypothesis, the authors intended to obtain a feed additive based on these microalgae for
livestock and poultry if the antibacterial activity of the lipid and carbohydrate complexes is
confirmed. It is not possible to feed animals with inedible microalgae species.

Lipids play an important role in the metabolism and growth of microalgae, acting as a
reservoir of energy and carbon [28,29]. Microalgae contain both polar and neutral lipids.
Polar lipids such as phospholipids and glycolipids generated by chloroplasts dominate the
cell wall and organellar membranes, while neutral lipids (mono-, di-, and triacylglycerol)
are stored in cell organelles [29,30]. The lipid profile of microalgae is wide and ranges
from 2 to 77% depending on the species and environment. In C. vulgaris, it ranges from
5 to 58% of dry matter. C. vulgaris produces more lipids (60–68%) when cultivated under
mixotrophic conditions [29,31].

Arthrospira platensis was grown on Zarrouk medium, and Chlorella vulgaris was grown
on Tamiya medium. The biomass yield of each microalga after 7–14 days of cultivation
was 30–40 million cells/mL. Protein extraction from Arthrospira platensis biomass was
60.03 ± 1.80%; from Chlorella vulgaris biomass, 56.20 ± 1.68%; the extraction of lipids from
the biomass of Arthrospira platensis was 7.23 ± 0.21%; from the biomass of Chlorella vulgaris,
16.24 ± 0.48%; the extraction amounts of carbohydrates from microalgae biomass were
11.44 ± 0.34% and 11.22 ± 0.83% for Arthrospira platensis and Chlorella vulgaris, respectively.

The purified lipid complex isolated from C. vulgaris demonstrated antimicrobial activ-
ity against a Gram-negative strain of the bacterium E. coli, as evidenced by the zones of
inhibition results shown in Table 1. The maximum effective inhibitory concentration of the
lipid complex samples against E. coli was observed at a concentration of 10.0–1.0 mg/mL;
the area of the zone was 1.3± 0.06 cm2. At a higher concentration (100.0 mg/mL), inhibition
was less pronounced and amounted to 1.0 ± 0.05 cm (Figure 1a). C. vulgaris lipid com-
plex samples also inhibited the growth of Gram-positive B. subtilis and B. pumilus strains;
the maximum zone of inhibition was 2.2 ± 0.11 cm at a concentration of 100.0 mg/mL
(Table 1). Table 2 shows the results of measuring zones of inhibition at different con-
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centrations of the purified lipid complex obtained from A. platensis samples. The lipid
complex was found to be effective against E. coli across the entire concentration range ex-
amined, 100.0–10.0–1.0 mg/mL. The lipid complex of microalgae samples also suppressed
the growth of the Gram-positive strain B. subtilis; the maximum zone of inhibition was
0.7 ± 0.03 cm at all concentrations used. No increase in the inhibition zone area was found
with increasing concentration of the extract (Figure 1b).

Carbohydrates such as starch, glucose, sugar, and polysaccharides are commonly
used as energy and carbon storage in microalgae. The most common polysaccharides of
C. vulgaris are starch, composed of amylose and amylopectin, followed by polysaccharide
cellulose in the cell wall. The total carbohydrate content of C. vulgaris can reach 12–55%
of dry weight when grown under unfavorable conditions, especially those with limited
nitrogen [29,32]. Arthrospira platensis contains proteins (60%), carbohydrates (15%), lipids,
phycobiliproteins, carotenoids, vitamins, and minerals [33].

Table 3 shows the zones of inhibition results of various concentrations of purified
carbohydrate complex derived from C. vulgaris. Samples of the purified carbohydrate
complex were effective against E. coli at concentrations of 100.0–10.0–1.0 mg/mL. Samples
of the purified carbohydrate complex of C. vulgaris exhibited antibacterial activity against
the Gram-positive B. subtilis strain; the maximum zone of inhibition was 3.5 ± 0.17 cm
at a concentration of 1.0 mg/mL (Figure 3a). A similar effect was also observed against
B. pumilus; the maximum zone of inhibition was 3.5 ± 0.17 cm at a concentration of
100.0 mg/mL. Table 4 shows the zones of inhibition results of various concentrations of
purified carbohydrate complex obtained from A. platensis. Antimicrobial activity against E.
coli, B. pumilus, and B. subtilis was revealed. The greatest inhibitory effect of samples of the
carbohydrate complex of microalgae was observed at a concentration of 100.0 mg/mL, and
the inhibition zone was 3.0–4.2 cm.

Other studies have also shown the antimicrobial activity of various extracts from
C. vulgaris biomass [34,35]. In this study [34], an aqueous extract of C. vulgaris showed
antibacterial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus)
bacteria. It was found that an aqueous extract at a concentration of 150 mg/mL exhibited
antimicrobial activity against E. coli, and the diameter of the inhibition zone was 2.4 cm. The
highest antimicrobial activity against E. coli had a protein fraction obtained by TCA from an
aqueous extract, with MICs in the range of 32.5–65 mg/mL [34]. In other studies, extracts
of green unicellular algae showed pronounced antagonistic activity against numerous
opportunistic and pathogenic bacteria [33–37].

It has been established that Chlorella vulgaris synthesizes silver nanoparticles in the
dark, for which antimicrobial activity was studied on three pathogenic microorganisms:
Gram-negative bacterium Erwinia, Gram-positive bacterium Bacillus sp. and pathogenic
fungus Candida. The specific antibiotics penicillin (10 mg), tetracycline (30 mg), and
streptomycin (10 mg) were used as controls. The synthesized AgNP solutions had an
inhibitory effect on all tested microorganisms, with the following order of Bacillus, Erwinia,
Candida in terms of increasing the radius of the zone of inhibition. The effect of nanoparticles
on all test organisms was more pronounced than the effect of silver nitrate and penicillin.
This effect can be explained by the fact that silver nanoparticles penetrated the bacterial cell
wall and damaged them due to their interactions with compounds containing phosphorus
and sulfur, including DNA [38].

Previous studies have reported that chlorellin (a mixture of fatty acids) from C. vulgaris
exhibited inhibitory activity against both Gram-positive and Gram-negative bacteria [29,39].
Linolenic acid in ethanolic extracts of C. vulgaris also showed antibacterial activity against
Staphylococcus aureus (a common cause of skin infections) and Salmonella typhi (causative
agent of typhoid fever). This property suggests there is a possibility to use C. vulgaris as a
natural antibiotic and that that it could be a promising alternative to traditional synthetic
drugs with a wider spectrum of action against pathogenic infections [29,40]. One of the
most important polysaccharides found in C. vulgaris samples, β-1,3-glucan, has recently
gained popularity among researchers due to its dietary qualities and therapeutic properties
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on human health, such as scavenging free radicals and lowering blood lipids [29,41].
C. vulgaris polysaccharides have also been found to exhibit other health benefits, such as
antitumor, antiviral, and strong immunomodulatory effects, indicating potential medical
applications [42].

In this regard, our results confirm and reveal the potential of C. vulgaris extracts for
the production of natural fungicides and bactericides. The use of C. vulgaris extracts with
antimicrobial properties as an alternative to antibiotics in animal husbandry reduces the
risk of emergence of antibiotic-resistant bacteria and transmission of antibiotic-resistant
pathogens to humans [43–45]. Moreover, C. vulgaris is a source of valuable biomass suitable
for use in the production of various bioproducts [46].

It is also known that A. platensis has the potential to act as an antimicrobial agent.
The antimicrobial activity of Arthrospira platensis against four types of Gram-positive
(Micrococcus luteus, Staphylococcus aureus, Bacillus cereus, Listeria monocytogene sp.) and
two Gram-negative (Salmonella typhi, Pseudomonas aeruginosa) bacteria was shown by deter-
mining zones of inhibition. A. platensis showed antibacterial potential against all the studied
microorganisms. The inhibition zones of the tested strains varied from 0.9 to 1.3 cm [33].

Extracts of A. platensis can be effectively used in aquaculture to combat bacterial
diseases [47]. Cyanobacteria (blue-green algae) have unique biochemical properties and
are a potential source of biologically active secondary metabolites. Cyanobacteria produce
intracellular and extracellular metabolites with antialgae, antibacterial, antifungal, and
antiviral activity [33,47]. Spirulina is an ideal bioresource due to its richness in protein,
phycocyanin, essential amino acids, polysaccharides, carotenoids, minerals, vitamins, and
essential fatty acids [33,47]. It is also rich in vitamins, minerals, carbohydrates, and gamma-
linolenic acid. Spirulina is of interest not only because of its nutritional value, but also
because it has the potential to be used in the development of pharmaceutical preparations.
Spirulina has therapeutic effects as a growth promoter, probiotic, and immune system
enhancer in animals, including fish [47]. Phycocyanin is the main biologically active
substance in spirulina, and its content ranges from 10 to 15% of dry weight. Spirulina
samples exhibit antiviral and antioxidant properties against human pathogens [47].

Thus, algae and cyanobacteria, in addition to their nutritional value, have a wide range
of other properties and characteristics, including antimicrobial ones. The study [35] showed
that Ascophyllum nodosum had the highest inhibitory effect on the growth of E. coli compared
to other algal species. The inhibitory effect of A. nodosum on the growth of E. coli is most
likely due to functional algae compounds such as phlorotannins, which are polyphenols
with bacteriostatic and bactericidal activity [35,48]. Lithothamnium calcareum also showed
antimicrobial activity due to the ability of algae to produce metabolites of antimicrobial
drugs, such as diterpenes [49], monoterpenes [50], phenolic compounds [51], sterols [52],
polysaccharides [53], and fatty acids [52,54]. Studies have confirmed the antimicrobial
activity of natural extracts derived from algae and cyanobacteria [55]. A. nodosum and
C. vulgaris, at the highest concentration tested (1:4), have been found to have significant
antibacterial activity.

According to Figures 4 and 5, the bands correspond to asymmetric and symmet-
ric stretching vibrations of the methylene groups in the range from 2938 to 2835 cm–1.
Asymmetric and symmetric bands were designated as
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ester bond between fatty acids and glycerol in lipid molecules. However, this type of bond
can also be formed by the peroxidation of fatty acid chains. Therefore, it can be assumed
that an increase in the intensity of this band indicates an increase in lipid oxidation in
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The analysis of the IR spectra of the C. vulgaris and A. platensis lipid complexes confirms
the presence of neutral lipids, glyco- and phospholipids, as well as unsaturated fatty acids,
such as γ-linolenic acid, in the composition. As shown in Figure 5a,b, spectrum peaks
are typical of saccharides. Absorption in the region of 1200–650 cm−1 is attributed to the
stretching vibrations of the C–O-group of carbohydrates, a number of authors consider the
bands at 1090 and 1044 cm−1 to be absorption bands of cellulose, and bands at 2940 cm−1

are attributed to starch. The band at 850 cm−1 indicates type I glycosidic bonds [57].
Absorption in the region 1040–1200 is associated with the presence of pyranose rings
(configurations) [58].

The peaks recorded at 3400 cm−1 and 2940 cm−1 indicate the stretching vibrations of
the hydroxyl groups that make up carbohydrates, and the asymmetric stretching vibrations
–CH2– of their molecules, respectively. The identified organic compounds showed good
antimicrobial activity. In the present study, both algae contained phenolic and alcohol
compounds that were responsible for antibacterial activity [59]. Our results correlate well
with data reported in other studies [60–62].

The study [60] used Fourier transform infrared spectroscopy (FTIR) to analyze a lipid
extract from a natural isolate of C. vulgaris. To assess the productivity of the strain, a
reference strain was obtained. Lipids were extracted using the Bligh and Dyer method, and
the samples were subjected to FTIR analysis to examine the absorption spectra in the range
from 2000 to 3000 cm−1 to confirm the presence of lipids. For a natural C. vulgaris isolate,
lipid samples were analyzed using FTIR. As a result, they had eight clear bands in the range
of wavenumbers from 4000 to 5000 cm−1. These bands were previously identified based
on reference standards [61] and published FTIR spectra for specific molecular groups. The
results were interpreted. The absorption peak at 3949.70 cm−1 and 3840.10 cm−1 indicates
the presence of primary amines and very weak secondary amines. Peaks at 3383.39 cm−1,
which indicate OH group absorption, reveal the presence of a strong alcohol group.

The absorption of C–H appearing at 2144.99 cm−1 indicated the presence of lipids. Ab-
sorption at 2920 cm−1 indicated an alkyne group, and that at 1638.05 cm−1 and 1523.62 cm−1

indicated C=C absorption, which is an alkene group.
In particular, the absorption at 1273.16 cm−1 indicated the presence of a strong acid.

An absorption at 1149.44 cm−1 indicates an ester group; the remaining absorption range
at 589.99 cm−1, 699.12 cm−1, and 1032.75 cm−1 indicates the presence of a strong alkyl
halide. The presence of peaks at 3383.39 cm−1, indicating the absorption of OH groups and
indicating the presence of a strong alcohol group, determines the presence of antimicrobial
properties of the C. vulgaris lipid complex under study.

All Chlorella microalgae species are very important for lipid and biomass production,
are adaptable to a variety of environmental conditions, are tolerant of high CO2 concentra-
tions, and are useful in industrial wastewater treatment and wastewater treatment systems
due to the phenolic compounds found in the microalgae lipid fraction exhibiting significant
antimicrobial activity [20].

The study [62] showed that the FTIR profile of the C. vulgaris lipid fraction revealed
various chemical functional groups. The FTIR spectrogram of the lipid complex is domi-
nated by a broad strong absorption band at 3465 cm−1 attributed to the hydroxyl group
(-OH absorption), whereas the spectral peaks located in the range of 4000–3400 cm–1 can
be attributed to alcohol and acids [62], which exhibit the highest antimicrobial properties.
Strong peaks in the range from 1628 to 1428 cm−1 indicate asymmetric and symmetric
stretching vibrations, which are related to carboxylate anions (COO-) [62]. These significant
spectral peaks may help in elucidating the structure of microalgae lipid complexes for
recognizing metal–carboxylate interactions, according to Flórez-Fernández et al. [63]. The
spectral band at about 2923–2854 cm–1 is consistent with the band obtained by Aprilliza [64]
and is associated with aliphatic –CH absorption, as well as symmetric and asymmetric
absorption (C–H) CH2, in addition to aromatic and/or vinyl C–H absorption and (CH)-
anomer absorption [65].
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The FTIR spectrogram of the C. vulgaris lipid complex also illustrates the peak of
C–H stretching vibrations recognizing alkanes, C=O indicates a carbonyl group, and COO-
stretching vibrations are attributed to carboxylate, as well as C–O-C stretching vibrations.
Peaks reaching the range of 1090–1030 cm−1 are related to the C–O absorption of the
pyranosyl ring, asymmetric C–O-C absorption (glycosidic bond), and C–C absorption,
which are attributed to the structure of the alginate saccharide [66,67]. In addition, ab-
sorbances of the C=O group were recorded at 1734 cm−1, as reported by Carpenter and
Saharan [67]. The present results are consistent with those of Cardenas-Jiron et al. [68] and
Bouissil et al. [69]. According to Gomaa et al. [70], the spectral band at 848 cm−1 confirms
the presence of sulfate groups in the fucoidan of phenolic compounds. Peaks at around
600 cm−1 may be associated with symmetric and asymmetric O=S=O deformation, as
reported by Flórez-Fernández et al. [63].

Noura El-Ahmady El-Naggar et al. investigated the production and properties of
Chlorella vulgaris carbohydrates (polysaccharides) [71]. FT-IR analysis of the extracted
polysaccharides showed the presence of N–H, O–H, C–H, –CH3,>CH2, COO–1, S=O, and
C=O functional groups. Spectral analysis showed the presence of proteins, nucleic acids,
and chemical groups (ether, carbonyl, carboxyl, and amine) [72].

The study [72] used the IR spectrum to identify the functional group of active com-
ponents based on the peak value in the infrared region. The crude powder of U. lactuca
was passed through an IR spectrometer, and the functional groups of the components were
separated based on the ratio of their peaks. The results of the FTIR analysis of microalgae
showed different peaks at 620.15 and 848.99, with the functional group being alkyl halides;
928.18—the functional group is carboxylic acid; 1086.14 and 1144.12—the functional group
is aliphatic amine; 1384.42—the functional group is nitromethane; 1428.88—the functional
group is a group representing aromatic compounds; 1634.33—the functional group is amide;
2295.04—the functional group is nitrile; 3406.60—the functional group is alcohol. U. lactuca
sample contained phenols. Similarly, crude G. corticata powder was passed through the IR
spectrum and the functional groups of the components were separated based on the ratio
of their peaks. The results of FTIR analysis showed, as in G. corticata, different peak values:
3321.46—the functional groups are alcohols and phenols; 2925.49—the functional groups
are alkanes; 2084.83—the functional groups are allenes, ketenes, cyanates, and isothio-
cyanates; 1647.84—the functional groups are isamides; 1471.30—the functional groups are
isaromatic compounds. The G. corticata sample contained isaliphatic amines with the func-
tional group (1116.62), primary and secondary amines with the functional group (874.41),
and alkyl halides with the functional group (750.98, 712.56, 657.10, and 617.26) [72].

5. Conclusions

As part of our studies, we established, for the first time, that samples of the lipid and
carbohydrate complexes of the Baltic Sea microalgae (Chlorella vulgaris and Arthrospira platensis)
exhibit pronounced antimicrobial activity against three pathogens at once: the Gram-positive
bacteria Bacillus subtilis and Bacillus pumilus and a Gram-negative strain of Escherichia coli. The
zone of pathogen inhibition under the action of separately isolated lipid and carbohydrate
complexes of the studied microalgae was up to 4.2 cm. For comparison, other researchers,
as a rule, study the complex effect of microalgae extracts on any one pathogen or on other
types of pathogens, and the maximum zone of inhibition is less (2.4 cm). Moreover, in
none of the publications we reviewed did we find results confirming the antibacterial
activity of separate lipid and carbohydrate complexes through the use of IR spectroscopy,
which makes it possible to identify the active groups of these complexes, identify them
and prove the effect of certain chemically active groups on pathogenic and opportunistic
microorganisms. None of the studies described the antibacterial activity of two biologically
active complexes (carbohydrates and lipids) of microalgae isolated from the Baltic Sea at
once. New data on the effect of different concentrations of isolated complexes on their
antibacterial activity was obtained, and rational concentrations of lipid and carbohydrate
complexes, at which they exhibit the greatest activity, was established.
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Thus, the marine algae extracts have demonstrated various biopotential activities, such
as antibacterial activity [19]. Numerous researchers have demonstrated the antibacterial
activity of red, brown, and green algae against both Gram-positive and Gram-negative
bacteria [73]. The marine environment contains a source of functional materials, including
polyunsaturated fatty acids, polysaccharides, essential minerals, vitamins, antioxidants,
enzymes, and bioactive peptides [74]. FTIR is a useful tool for measuring a wide range
of chemical components in plants and algae, as well as for revealing some qualitative
aspects of organic compounds [72]. This study used FTIR to identify the functional groups
of algae. Alcohols are commonly found to have antimicrobial properties against both
Gram-positive and Gram-negative bacteria [19]. Phenolic compounds demonstrated good
antimicrobial activity [75]. Both algae contained phenolic and alcohol compounds, which
were responsible for antibacterial activity. C. vulgaris was compared to A. platensis in
this study, with C. vulgaris being more active. Microalgae hold great potential for use as
biologically active food additives, with effective forms with a highly antagonistic effect
against opportunistic microorganisms in animal husbandry, and for use as a substitute for
antibiotics in animal feed.
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