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Abstract: We reveal a novel design for dye-doped liquid crystal (DDLC) microfluidic biosensing chips
in the polydimethylsiloxane material. With this design chip, the orientation of DDLCs was affected by
the interface between the walls of the channels and DDLCs. When the inside of a channel was coated
with an N,N-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) alignment layer,
the DDLCs oriented homeotropically in a homeotropic (H) state under cross-polarized microscopy.
After immobilization of antigens with antibodies on the alignment layer-coated microchannel walls,
the optical intensity of the DDLC change from the dark H state to the bright planar (P) state. Using
pressure-driven flow, the binding of antigens/antibodies to the DDLCs could be detected in an
experimental sequential order. The microfluidic DDLCs were tested by detecting bovine serum
albumin (BSA) and its immune-responses of antigens/antibodies. We proved that this immunoassay
chip was able to detect BSA antigens/antibodies pairs with the detection limit about 0.5 µg/mL. The
novel DDLC chip was shown to be a simple, multi-detection device, and label-free microfluidic chips
are presented.

Keywords: microfluidic; albumin; dye-doped liquid crystal; biosensing chips

1. Introduction

Small-volume, low-cost microfluidic chips have been widely applied due to their
rapid detection abilities [1,2]. Unfortunately, the signal of the microfluidic chip is too
weak because of the microscale of the biosample. To allow the signals of antigen and
antibody response to be more easily detectable, antigen or antibody was labeled with an
enzyme [3,4], fluorophore [5,6], or nanoparticle [7–15]. However, when the antigen and
antibody was binding with the label, the immunobinding response to enhance detectable
signals might be affected. Furthermore, the antibody/antigen binding pairs are influenced
by being conjugated with the labels [16,17].

Recently, liquid crystal (LC) biosensors have been developed as a new area. Biomolecules
cause the LCs to reorient themselves and thus affect their signals. The optical intensity
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changes from the LCs enable detection by the naked-eye of the label-free biosensors [18].
This reorientation of LCs demonstrates their sensitivity to immunobinding and changes
the LC signals [19,20]. In a previous study, LCs as microfluidic devices were also employed
to detect the bovine serum albumin (BSA) [21,22]. In addition, the cholesteric LCs (CLCs)
have unique optical properties such as Bragg reflection, bistability, and flexibility [23–25].
The first CLC biosensor was invented in 2015 [26] in which a high-sensitivity CLC biosensor
was shown. However, CLC biosensors require complicated fabrication processes [27–29].
To simplify the procedures, a single-substrate device was invented [30]. Furthermore, CLC
biosensors can also be integrated with a smartphone, allowing it to detect various diseases
at home or in the field [31].

In this paper, we present a dye-doped LC (DDLC)-based microfluidic biosensing chip.
The mechanism between antigen/antibody pairs and the DDLCs was investigated. We
prove that the DDLC-based multi-microfluidic biosensor differs from a typical biosensor.
The antigen/antibody pairs could be detected by measuring the signal intensity of DDLCs
in the channel under non-polarized microscopy. The highly sensitive Interface effect
between the DDLC molecules and the coated alignment layer composed of DMOAP (N,N-
dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride) was used to detect the BSA
antigens/antibodies pairs. The novelty of this paper is that we firstly attempt to design the
new DDLC biosensing chip with sensitive, inexpensive, multi-detection, color indicating
and non-polarizer properties. A schematic of the design multi-microfluidic DDLC chip is
demonstrated in Figure 1.
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Figure 1. Schematic of microfluidic dye-doped liquid crystal (DDLC) biosensor chips in the presence
of bovine serum albumin (BSA) biomolecules.

2. Materials and Methods

To generate single-layer cascading microchannels, a 25-µm-thick micro-channel mold
was made on a 4-inch (10.2 cm) silicon wafer by using a polydimethylsiloxane (PDMS) soft
lithographic fabrication process with a photoresistor. The PDMS was mixed with curing
agent and degassed for about 30 min. In addition, the mixture was poured into a master
and baked at 65 ◦C. Next, the PDMS was peeled off from the master and tightly bonded
with cleaned substrate by using oxygen plasma treatment. In addition, the nematic LC
(E7) mixed with a dichroic dye (PVA black) to form DDLCs was employed in this study.
In order to coat the aligned layer of DMOAP, a DMOAP aqueous solution was placed
in the microfluidic channels for 30 min, after which the coated channels were washed
with deionized water for 1 min. In the immobilization experiment, the BSA solution
(0–1 mg/mL) and BSA antibody (0–1000 µg/mL) were immobilized in the alignment
layer-coated microchannel. To produce DDLC microfluidic chips, the DDLC material was
used to fill empty microfluidic chips at a volume flow rate of 5 µL/min.
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3. Results and Discussion
3.1. BSA Detection Based on the Microfluidic DDLC Chips

The design of the DDLC microfluidic biosensor is shown in Figure 1. We first coated
the aligned layer of DMOAP inside the channel as shown in Figure 1a. The BSA and anti-
BSA was filled inside the channel, respectively, as demonstrated in Figure 1b,c. Ultimately,
the DDLCs were injected into the channel as shown in Figure 1d. The optical image
and mechanism of the DDLC microfluidic biosensor is exhibited in Figure 2. Different
states could be proposed with and without biomolecules. The vertical alignment layer
causes the DDLCs to orient vertically in a homeotropic (H) state to the wall surfaces;
the microchannel appeared bright without BSA. When the vertical alignment power was
diminished by biomolecules, the H state changed to the planar (P) state, near the channel.
The change in intensity could be observed with no polarizer. The DDLC microfluidic
biosensor is temperature-independent and can be employed in different situations with a
wide temperatures range. To evaluate the relationship between BSA concentrations and
images of the DDLC biosensor, BSA was dripped into the DDLC biosensor; the images
are demonstrated in Figure 3. The DDLC biosensor is bright with no BSA, and it became
darker with increasing BSA concentration. The experimental result shows that the DDLC
chips can be used to detect concentrations of BSA. To quantify the data results of the DDLC
biosensor, the intensities of the images were analyzed by using software (ImageJ). We used
ImageJ software to select the appropriate image range inside the channel and integrate the
intensity of pixels to get quantitative value. In Figure 4, the resulting data proved that the
intensity of DDLC chips exhibited a linear correlation. Moreover, the DDLC biosensor can
successfully be employed to measure BSA concentrations. In addition, volume flow rates
of fluids into the microfluidic DDLC chips are important. The different volume flow rates
of DDLCs injected into the chip channels have been well studied in the past [32]. A fast
volume flow rate (>10 µL/min) resulted in a disordered arrangement of LCs and induced
a defective optical texture. In our experiments, we employed a 5 µL/min volume flow rate
based on past results [32].
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Figure 4. The linear correlations of the intensity of dye-doped liquid crystal (DDLC) multi-
microfluidic chips at various concentrations of bovine serum albumin (BSA).

3.2. BSA Antibody Immobilized in the DDLC Biosensor Chip

To make the BSA DDLC microfluidic biosensor suitable for clinical use, a BSA anti-
body (at 0, 10, 100, and 1000 µg/mL) was initially immobilized onto the DDLC microfluidic
device. The experimental results show that DDLC microfluidic chips can also be used to
test immunocomplexes of BSA/anti-BSA pairs. In addition, the optical intensities of the
DDLC microfluidic immunoassay immobilized with 0~10 µg/mL BSA concentrations and
0~1000 µg/mL antibody BSA concentrations were used in the experiment as exhibited
in Figure 5. We mixed 0~1000 µg/mL BSA antibody and 0~10 µg/mL BSA antigen to
form immune complexes between specific antigen/antibody pairs. Too low of a concen-
tration of the anti-BSA of < 10 µg/mL was unable to induce immunocomplex formation
between antigen/antibody pairs. The strength of immune complexes with BSA concen-
trations of 1 and 10 µg/mL is similar. When the concentration of 100 and 1000 µg/mL of
anti-BSA antibodies are mixed, the immunocomplexes resulted in a much-brighter state.
Excess concentrations of the anti-BSA changed the orientations of the DDLCs, inducing
lower brightness levels. The resulting data show that, compared with the BSA antigen,
the BSA immune complex induces a more significant random arrangement of DDLC
(Figure 5). The lower concentrations of the anti-BSA for the immunocomplexes could not
easily compose the antigen/antibody. However, a higher concentration of the anti-BSA
will significantly change the LC arrangement. Therefore, 1 µg/mL of anti-BSA antibody
and BSA antigen is the more appropriate concentration. The DDLC biosensor chip can be
employed to detect immune complexes and unbound antigens and antibodies. In addition,
the linear correlation between the strength of the DDLC chip and the BSA/anti-BSA pairs is
shown in Figure 6. We have observed that DDLC has a detection limit of 0.01 µg/mL BSA
and 1 µg/mL BSA antibody of immunodetection. These experimental results show that
the linear correlation of DDLC-based microfluidic devices can be applied to quantitative
immunoassays in the linear range. Compared with well-known immunoassay methods,
our microfluidic DDLC chip has color indication, no labeling and is easier to use. Based on
the nature of naked-eye detection, this study shows that the DDLC microfluidic biosensor
has development potential as a portable biosensing technology for immune detection.
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4. Conclusions

The DDLC microfluidic biosensing chips are presented in this study. The orientations
of DDLCs are affected by the sensitive interface effect between the microchannels and a
biomolecule. The DMOAP alignment layer is also coated inside the microchannel. The
DDLCs were initially aligned vertically and exhibited a bright H state under the non-
polarized microscopy. After the BSA antigens had bound to the BSA antibodies in the
microchannel, the optical intensity of the DDLCs transform from bright H to dark P state
because of the interruption in the direction of DDLC. Using pressure-driven flow, the BSA
antigen/antibody immune complexes can be detected by microscopy. In addition, in the
DDLC device, the immunodetection limit of BSA antigen/antibody is 0.01 µg/mL of BSA
and 1 µg/mL of anti-BSA. We proved that this microfluidic DDLC immunoassay biosensing
chip can detect BSA and antigen/antibody BSA immune complexes through the label-
free DDLC immunoassay chip. The new design of this DDLC biosensing chip provides
a sensitive, inexpensive, multi-detection, color indicating and non-polarizer system for
DDLC-based immunoassays.
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