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Abstract: The interactions between cells and molecules in the tumor microenvironment can give
insight into the initiation and progression of tumors and their optimal treatment options. In this
paper, we developed an ordinary differential equation (ODE) mathematical model of the interaction
network of key players in the clear cell renal cell carcinoma (ccRCC) microenvironment. We then
performed a global gradient-based sensitivity analysis to investigate the effects of the most sensitive
parameters of the model on the number of cancer cells. The results indicate that parameters related to
IL-6 have high a impact on cancer cell growth, such that decreasing the level of IL-6 can remarkably
slow the tumor’s growth.

Keywords: clear cell renal cell carcinoma (ccRCC); immune infiltration; ordinary differential equations;
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1. Introduction

Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer that makes up 80%
of kidney cancer cases [1]. Surgery is the most common treatment for ccRCC, although it is
not effective when the tumor metastasizes to other parts of the body [1–3]. Other treatment
options, such as immunotherapy and targeted therapy, are used to regulate the growth
of the tumor, and radiation therapy, thermal ablation, and cryosurgery are used to kill
cancer cells [1]. However, not all patients respond well to these treatments, leading to more
complications [1,2].

Mathematical models can provide valuable information about the complex interactions
in biological systems, such as cancer [4–13]. For example, Pillis et al. created a mathematical
model on the effects of regulatory T-cells (Tregs) on ccRCC treatment via a drug called suni-
tinib, which resulted in an improvement in controlling cancer in 40% of patients compared
to patients without treatment [14]. Since vascular endothelial growth factor (VEGF) helps
in angiogenesis in tumors, another study by Sharma et al. studied the effectiveness of the
VEGF receptor 2 (VEGFR2) inhibitor in renal cell carcinoma (RCC) patients and found that
an inhibitor compound named SCHEMBL469307 is the most effective [15]. In addition, com-
plex data-driven mathematical models of other cancers, such as breast cancer, osteosarcoma,
and colon cancer, were developed by Mohammad Mirzaei et al., Kirshtein et al., and Le et al.
to investigate the interactions between the important immune cells and cytokines involving
many key cells and molecules corresponding to the particular type of cancer and found that
the interactions between the cells and molecules are important to understand the dynamics
of cancer growth [16–18].

The tumor microenvironment, including its cytotoxicity, plays an essential role in
inhibiting cancer proliferation [19]. Many classical studies focused on combination treat-
ments, including cytokines, such as interferon-γ (IFN-γ), and IL-2 [20–22]. However, these
approaches are becoming rather obsolete [23]. More recently, treatments using anti-PD-
1/PD-L1 have shown great promise in treating patients [24] by increasing the cytotoxicity
of the tumor microenvironment. The programmed cell death proteins (PD-1 or PD-2)
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can bind with programmed cell death ligands (PD-L1 or PD-L2) and inhibit the killing
effects of cytotoxic and natural killer cells [25–27]. PD-1 and PD-2 proteins are expressed
by cytotoxic cells, and PD-L1 and PD-L2 are expressed in cancer cells in the ccRCC mi-
croenvironment as adaptation mechanisms to cope with cytotoxicity [25–27]. On the other
hand, CD8+ T-cells are promoted by helper T-cells, dendritic cells, interleukin-2 (IL-2),
and interleukin-12 (IL-12), which could negate the blockade created by the bonding of
PD-1/2 with PDL-1/2 [27,28]. IFN-γ is another molecule secreted by CD8+ T-cells, helper
T-cells, and dendritic cells, which can inhibit cancer cell proliferation [29]. When tumor
cells die, many of them go through cell necrosis and release damage-associated molecu-
lar pattern molecules (DAMPs), such as high mobility group box-1 (HMGB1) [19,30–32].
HMGB1 is known as a nuclear weapon in the tumor microenvironment as it can do many
things, such as induce inflammation, interact with dendritic cells to promote anti-tumor
T-cells, and so on [19,30,32–34]. Although metastasis can happen throughout the human
body, metastatic tumors resemble their corresponding primary tumors [35].

The ccRCC microenvironment has the highest levels of immune cell infiltration among
all epithelial cancer types, making it a pro-inflammatory environment [36].
Infiltrating T-cells, such as cytotoxic and helper T-cells, play essential roles in control-
ling the tumor by targeting antigenic tumor cells [37]; thus, treatments (such as sunitinib
and pazopanib), which directly target these T-cells in ccRCC, have been dominant for a
long time. However, it has been observed that tumor microenvironment heterogeneity
can significantly affect the outcomes of these treatments. A study on patients in the phase
III trial receiving sunitinib or pazopanib shows poor outcomes for a cluster of patients
with a high immune infiltration (especially macrophages) and significantly higher PD-L1
expression on tumor cells compared to the other clusters [38]. Another study based on
VEGFR TKI therapy on 53 metastatic ccRCC patients revealed undesirable outcomes in a
group of patients whose tumors had an intense Th1-oriented inflammatory and suppressive
immune environment, with high levels of PD-1/PD-L1 [39]. These observations emphasize
the sensitivity of clinical treatment responses to tumors’ immune profiles.

This paper investigates the dynamics of tumors based on their immune patterns by
developing an ODE model that considers the interaction network of key players that we
mentioned above (see Figure 1). We clustered the tumors based on their immune patterns
and compares their dynamics. More importantly, we found the most sensitive parameters
for each cluster of tumors. The parameters in this model were estimated using the steady
state assumptions and data acquired from gene expression data from The Cancer Genome
Atlas (TCGA), separately for each cluster of tumors. The result was a data-driven patient-
specific ODE model aimed at understanding the impacts of immune patterns and their
interaction network in tumor progression. Moreover, regarding its capability to extend to a
treatment model, one can treat the immune cells as boundary variables and integrate this
model as a compartment for larger-scale models. Furthermore, by including metabolites,
such as nutrients and oxygen, one can extend the model to incorporate angiogenesis.
However, at this stage, we avoid introducing more complexity to this model.
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Figure 1. Tumor microenvironment interaction network of ccRCC.
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2. Materials and Methods
2.1. Variables and Network

As mentioned in the introduction, ccRCC has the highest infiltration of cytotoxic cells,
dendritic cells, Th1, and macrophages among all of the other epithelial cancers, and low
levels of regulatory T-cells and Th2 [36]; the response to treatments are associated with
the percentage of these cells in the tumors. Therefore, including Th1 and Th2 together as
helper T-cells, we used these key cells in addition to cancer and necrotic cells, and the most
important cytokines secreted by them as our model variables.

Helper T-cells, interleukin-12 (IL-12), and interleukin-2 (IL-2) help the proliferation of
cytotoxic cells, but regulatory T-cells (T-reg cells) inhibit both helper T-cells and cytotoxic
cells [28,32,40–43]. Furthermore, the cytokine interleukin-10 (IL-10) inhibits both helper T-
cells and cytotoxic cells, limiting their ability to grow while promoting macrophages [44–46].
Cytotoxic cells express programmed cell death proteins (PD-1 or PD-2) and cancer cells as
adaptation mechanisms express programmed cell death ligands (PD-L1 or PD-l2) [25–27,47].
When PD-1 or PD-2 on cytotoxic cells bind to the ligands PD-L1 or PD-L2, this initiates
apoptosis in cytotoxic cells, reducing their ability to kill cancer cells [25–27,47]. Cancer cells
also adapt to the environment by secreting interleukin-6 (IL-6), which also promotes cancer
cells [48–50].

In addition, both cancer and necrotic cells release relatively large portions of HMGB1
that helps promote dendritic cells and helper T-cells [30,31,33,51]. Dendritic cells then pro-
mote both helper T-cells and cytotoxic cells [19,30,31,51,52]. To demonstrate the interactions
among the immune cells, cytokines, cancer, and necrotic cells, we developed an interaction
network in Figure 1 and provide the list of variables and how we derived them in Table 1.

2.2. Mathematical Model

We derived an ordinary differential equation (ODE) for each variable in the model
using λ to denote the growth/promotion rates and δ to denote the decay/inhibition rates
of the associated cells and molecules. In the case of promotion and inhibition, the second
subscript refers to the promoter or inhibitor, and the first subscript is the cell or molecule
subjected to promotion or inhibition.

Table 1. Variables and their correspondence to data.

Variables Names Combinations from Data

Th Helper T-cells Activated memory CD4 T-cells and follicular helper T-cells

Tc Cytotoxic cells CD8 T-cells and activated NK cells

Tr Regulatory T-cells Regulatory T-cells

TN Naive T-cells Naive CD4 T-cells, memory resting CD4 T-cells
and resting natural killer (NK) cells

DN Naive dendritic cells Naive dendritic cells

D Dendritic cells Mature dendritic cells

MN Naive Macrophages M0 macrophages and monocytes

M Macrophages M1 and M2 macrophages

C Cancer cells Estimated from the data

N Necrotic cells Estimated from the data

Iγ IFN-γ Interferon-γ from gene expression data

H HMGB1 HMGB1 from gene expression data

IL10 IL-10 IL10 from gene expression data

I2 IL-2 and IL-12 IL2 and IL12 from gene expression data

IL6 IL-6 IL6 from gene expression data
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2.2.1. Cells

Helper T-cells (Th): Helper T-cells are activated by macrophages, dendritic cells,
HMGB1, and IL-12 [34,53–55]. All of the T-cells in the model differentiate from naive
T-cells. However, this differentiation happens mostly outside of the microenvironment.
For simplicity, we added naive T-cells to the model to prevent blow-ups in the population of
active T-cells without having to introduce nonlinearity in their corresponding ODEs [16,56].
Regulatory T-cells inhibit helper T-cells, and IL-10 [45,46]. Therefore, the dynamics of
helper T-cells are modeled by the following equation.

d[Th]

dt
=
(
λTh M[M] + λThD[D] + λTh H [H] + λTh I2 [I2]

)
[TN ] (1)

−
(
δThTr [Tr] + δTh IL10 [IL10] + δTh

)
[Th].

Cytotoxic cells (Tc): Cytokines, such as IL-2 and IL-12 activate CD8+ T-cells and
promote NK cells [57,58]. Dendritic cells also promote the cytotoxic cells [53,59], and so do
helper T-cells [60]. On the other hand, interferon-γ can either kill cancer cells or promote
CD8+ T-cells [25,29,58,61]. T-reg cells control the population of CD8+ T-cells [19,41,62],
and IL-10 reduces the cytotoxicity of CD8+ T-cells [44–46]. Hence, we have the following
equation for the dynamics of cytotoxic T-cells.

d[Tc]

dt
=
(

λTcTh [Th] + λTc I2 [I2] + λTcD[D] + λTc Iγ [Iγ]
)
[TN ] (2)

−
(
δTc IL10 [IL10] + δTcTr [Tr] + δTc

)
[Tc].

Regulatory T-cells (Tr): IL-12 and IL-2 activate regulatory T-cells [28,41,43,55,63].
We only assume natural death for the regulatory T-cells since the model has no major
inhibitors for this cell type. Thus, we model the dynamics of T-reg cells by

d[Tr]

dt
=
(
λTr D[D] + λTr I2 [I2]

)
[TN ]− δTr [Tr]. (3)

Naive T-cells (TN): As mentioned earlier, naive T-cells are not a part of the tumor
microenvironment. They differentiate into other T-cell types mostly before the microen-
vironment immune infiltration [34,56]. We modeled naive T-cells starting with a constant
growth rate and then deducted the differentiation rate of other T-cells.

d[TN ]

dt
= ATN −

(
λTh M[M] + λThD[D] + λTh H [H] + λTh I2 [I2]

)
[TN ]

−
(

λTcTh [Th] + λTc I2 [I2] + λTcD[D] + λTc Iγ [Iγ]
)
[TN ] (4)

−
(
λTr D[D] + λTr I2 [I2] + δTN

)
[TN ].

Macrophages (M): Tumor-associated macrophages have M1 and M2 phenotypes [44,64,65].
However, since the phenotypes can change between one another, for simplicity, we com-
bined them into one variable M [44]. Macrophages are activated by interferon-γ and
IL-10 [64–67] and helper T-cells [61].

d[M]

dt
=
(

λMTh [Th] + λMIγ [Iγ] + λMIL10 [IL10]
)
[MN ]− δM[M]. (5)

Naive macrophages (MN): Since macrophages are derived from naive macrophages [44],
we used an approach similar to the naive T-cells to model naive macrophages.

d[MN ]

dt
= AMN −

(
λMTh [Th] + λMIγ [Iγ] + λMIL10 [IL10] + δMN

)
[MN ]. (6)
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Dendritic cells (D): Dendritic cells are activated by HMGB1 [19,68,69]. Moreover,
dendritic cells can be activated or suppressed by cancer cells [51,68].

Naive dendritic cells (DN): Mature dendritic cells are derived from naive dendritic
cells [68–70]. So, we modeled naive dendritic cells similar to naive T-cells and naive macrophages.

d[D]

dt
= (λDH [H] + λDC[C])[DN ]− (δDC[C] + δD)[D] (7)

d[DN ]

dt
= ADN −

(
λDH [H] + λDC[C] + δDN

)
[DN ] (8)

Cancer cells (C): Although cancer cells grow rapidly, their growth can be affected by
the lack of space or nutrients. Therefore, we added a logistic model term [C](1− [C]

C0
) to

control the population of cancer cells corresponding to a carrying capacity C0. Cancer cells
are also activated by IL-6 [49,71] and deactivated by CD8+ T-cells, NK cells [47,50,56], and
interferon-γ [29,61]. Moreover, cytotoxic cell apoptosis happens when the programmed
cell death proteins (PD-1 and PD-2) expressed by CD8+ T-cells attach to the programmed
cell death ligands (PD-L1 and PD-L2) expressed by cancer cells [26,27]. This way, cancer
cells can avoid CD8+ T-cell cytotoxicity. We combined the concentrations of PD-1 and
PD-2 and denote them by [PD]; we denote PD-L1 and PD-L2 together as [PDL]. We
make their concentrations proportional to the cells they are expressed by. So, we assume
that the concentrations of PD-1/PD-2 and PDL-2 are proportional to cytotoxic and cancer
cells, respectively.

[PD] = αTc [Tc], and [PDL] = βC[C]. (9)

We model the cancer cell population by the following.

d[C]
dt

= (λC + λCIL6 [IL6])

(
1− [C]

C0

)
[C] (10)

−
(

δCTc [Tc] ·
(

1
1 + αTc [Tc] · βC[C]

)
+ δCIγ

[Iγ] + δC

)
[C]

Necrotic cells (N): Necrosis is a process in which the dead cells are not cleared out of
the body or the system, unlike apoptosis, autophagy, etc. [30,33]. In a tumor site, necrosis
happens mostly through cancer cell death; thus, we modeled the necrotic cell populations
by taking a proportion of cancer cell death and a much smaller decay rate [35].

d[N]

dt
= αNC

(
δCTc [Tc] ·

(
1

1 + αTc [Tc] · βC[C]

)
+ δCIγ

[Iγ] + δC

)
[C]− δN [N] (11)

2.2.2. Molecules and Proteins

IFN-γ (Iγ): Interferon-γ is mainly secreted by cytotoxic and NK cells, helper T-cells,
and dendritic cells [16,29,57].

d[Iγ]

dt
= λIγTc [Tc] + λIγTh [Th] + λIγD[D]− δIγ [Iγ] (12)

HMGB1 (H): The molecule HMGB1 is produced by helper T-cells, cytotoxic cells, NK
cells, regulatory T-cells, necrotic cells, and macrophages [30,31,34,52].

d[H]

dt
= λHTc [Tc] + λHTr [Tr] + λHTh [Th] + λHN [N] + λHM[M] + λHC[C]− δH [H] (13)
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Interleukin-10 (IL10): IL-10 is produced by helper T-cells, cytotoxic cells, dendritic
cells, and macrophages [44–46].

d[IL10]

dt
= λIL10Th [Th] + λIL10Tc [Tc] + λIL10D[D] + λIL10 M[M]− δIL10 [IL10]. (14)

Interleukin-2 and interleukin-12 (I2): IL-2 is mainly produced by CD4+ helper T-
cells [58,72] and NK cells [57]. Moreover, IL-12 is secreted by helper T-cells, cytotoxic
cells, dendritic cells, and macrophages [18,43,57]. As both IL-2 and IL-12 have the same
functionalities, we combine them into one variable, such as I2.

d[I2]

dt
= λI2Tc [Tc] + λI2Th [Th] + λI2D[D] + λI2 M[M]− δI2 [I2] (15)

Interleukin-6 (IL6): IL-6 is mainly secreted by cancer cells [48,49,64]. CD4+ helper
T-cells, macrophages, and dendritic cells [16,18,48–50,65].

d[IL6]

dt
= λIL6C[C] + λIL6 M[M] + λIL6Th [Th] + λIL6D[D]− δIL6 [IL6] (16)

Hence, we have 15 ODEs in the system and 67 parameter values to determine to solve
the system.

2.3. Data Preparation

We used gene expression data of ccRCC from The Cancer Genome Atlas (TCGA)
along with the immune classification by Su et al. [2] where the TCGA gene expression was
normalized, and CIBERSORTx B-mode was used to derive the cell fractions [73]. The patient
classification was conducted using unsupervised K-means clustering, resulting in four
groups based on each cell type proportion, such as T-cells, B-cells, macrophages, dendritic
cells, etc. [2]. Due to the lack of time course data, we represent each cluster of patients as
one virtual patient as their immune patterns are similar. We consider the smallest tumor in
each cluster to represent the first stage and the largest tumor to represent the last stage of
progression over time. After clustering, the cell proportions from the CIBERSORTx result
and the protein and molecule concentrations from the normalized gene expression data
were derived from [2], according to the variable combination in the model described in
Table 1. We only considered patient data with less than 0.5 p-values from the CIBERSORTx
result. The cell frequencies derived from CIBERSORTx for each cluster are given in Figure 2,
produced by TumorDecon software [74].

Figure 2. Immune cell frequencies of each cluster.
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We determined the actual cell population based on the intermediate tumor size de-
scribed in the TCGA clinical data of renal cell carcinoma patients [73]. We chose the
ratios of immune cells to cancer cells to necrotic cells as 0.3:0.6:0.1, as was done in [18].
We assume that the epithelial cell density is 4.5× 104 cell/cm3 in the cancer microenviron-
ment [16–18,75]. We also let the average cell density scale be α = 4.5× 104 across all ccRCC
patients. We calculate the total cell number (TCN) of each patient P by

TCN = α
tumor size of P

1
K ∑all P tumor size of P

(17)

where K = 346 is the total number of patients having primary tumors from the original
data. Then the total immune cell (TIC) population is calculated by,

TIC = 0.3α
∑all cell Immune cell ratio of P
1
K ∑all P Immune cell ratio of P

(18)

so

C =
6
7
(TCN − TIC), and N =

C
6

. (19)

We let the cells and cytokines of the smallest tumor in each cluster be the initial
conditions of the system and nondimensionalized the variables by dividing them by their
steady state values. The nondimensional initial conditions are given in Table 2 and the
steady state values are given in Table 3.

Table 2. Nondimensionalized initial conditions of each cluster.

Cells and
Cytokines Cluster 1 Cluster 2 Cluster 3 Cluster 4

[Th] 6.41 1.33 3.24 · 10−1 4.40 · 10−1

[TC] 9.99 · 10−1 9.90 · 10−1 2.33 8.65 · 10−1

[Tr] 4.66 · 10−1 8.80 · 10−1 1.42 7.53 · 10−2

[TN ] 1.33 1.35 · 10−3 8.21 · 10−1 2.71

[M] 1.04 2.20 1.29 1.42

[MN ] 8.26 · 10−1 1.21 6.89 · 10−1 2.62 · 10−1

[D] 4.27 · 101 1 4.65 · 10−2 1.56 · 101

[DN ] 5.98 · 10−1 1.97 · 101 5.17 · 101 1

[C] 6.19 · 10−4 7.20 · 10−2 9.57 · 10−5 4.92 · 10−3

[N] 6.19 · 10−4 7.20 · 10−2 5.74 · 10−4 4.92 · 10−3

[Iγ] 4.82 · 10−1 2.17 1.06 2.11 · 10−1

[H] 8.95 · 10−1 1.15 9.91 · 10−1 9.12 · 10−1

[IL10] 2.31 · 10−1 6.03 1.28 4.31 · 10−1

[I2] 4.95 · 10−1 2.69 5.88 · 10−1 7.78 · 10−1

[IL6] 4.08 · 10−1 8.82 · 10−1 2.45 · 10−1 9.15 · 10−1
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Table 3. Steady state values of the cells and cytokines.

Cells and
Cytokines Cluster 1 Cluster 2 Cluster 3 Cluster 4

[Th] 2.36 · 102 6.85 · 102 1.44 · 103 4.85 · 103

[Tc] 1.12 · 104 2.50 · 104 3.99 · 103 1.93 · 104

[Tr] 2.52 · 103 2.73 · 103 1.17 · 103 2.50 · 103

[TN ] 1.31 · 104 7.41 · 103 8.80 · 103 3.65 · 103

[M] 1.25 · 104 6.57 · 103 1.47 · 104 1.16 · 104

[MN ] 1.42 · 103 3.21 · 103 1.39 · 104 5.05 · 103

[D] 1.00 · 101 1.00 · 101 2.15 · 102 1.00 · 101

[DN ] 3.38 · 103 1.00 · 101 3.06 · 101 1.00 · 101

[C] 1.18 · 105 1.04 · 105 1.05 · 105 1.03 · 105

[N] 1.97 · 104 1.73 · 104 1.74 · 104 1.72 · 104

[Iγ] 3.85 · 10−2 6.12 · 10−2 1.92 · 10−2 1.50 · 10−1

[H] 3.63 · 10−1 3.25 · 10−1 3.28 · 10−1 3.34 · 10−1

[IL10] 4.13 · 10−2 1.24 · 10−2 1.02 · 10−1 6.84 · 10−2

[I2] 5.14 · 10−2 1.36 · 10−2 3.72 · 10−2 4.86 · 10−2

[IL6] 6.07 · 10−2 2.74 · 10−2 2.74 · 10−1 2.54 · 10−1

2.4. Parameter Estimation

We have 15 ODEs and 67 parameters, but there is not enough biological information to
estimate all of the parameter values specific to ccRCC. However, we collected and derived
some of the decay rates, such as δTh , δTc , δTr , δTN , δM, δD, δIγ , δH , δIL10 , δI2 , and δIL6 by using

the formula δX =
log(2)

tX
1/2

where δX is the decay rate of the corresponding variable X and tX
1/2

is its half-life [16–18]. We took the average for the variables referring to combined quantities
and then computed δX . For instance, the half-life of IL-2 is approximately 7 min [76] and
the half-life of IL-12 is almost 3.6 h [16], so we took the average of these half-lives to form
the half-life of I2 (i.e., tI2

1/2 = 7.743 × 10−2 days), which gives us δI2 = 2.238 molecules
day .

The following are the decay rate values that were either collected from [16,18] or calculated
based on half-lives of the variables,

δTh = 0.231 δTc = 0.406 δTr = 0.231 δTN = 9.49 · 10−4

δM = 1.98 · 10−2 δD = 0.277 δIγ = 33.3 δH = 18

δIL10 = 4.62 δI2 = 2.238 δIL6 = 1.07.

We estimate the remaining parameters of the model by assuming the large tumors
are at a steady state and utilize their data. The ODEs in Section 2.2 provide 15 algebraic
equations with 67 unknowns at the steady state. Given the 11 decay rates determined
above, we need to find the values for 41 unknown parameters. This system is heavily
under-determined, and it is impossible to extract a unique parameter set in its current state.
However, we can add some biologically feasible mathematical assumptions to remedy this
issue. These assumptions simply describe a relationship between activation or inhibition of
a certain cell or cytokine by other cells or molecules. This will create a system of algebraic
equations at the steady state, uniquely solvable for the parameter values. See Appendix A.1
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for more details on this process. We included the nondimensional parameter values in
Table A3. Furthermore, given that our extra assumptions are mostly of a mathematical
nature, we will assess their effects on the model dynamics by scaling them.

2.5. Sensitivity Analysis

Since there is not enough biological evidence to estimate all of the parameter values
of the ccRCC model, the limitations of unknown parameter estimations must be con-
sidered when using the result of the dynamics. We performed a global gradient-based
sensitivity analysis to assess our estimations by scaling the 34 parameter assumptions in
Appendix A.1. We carried out 5000 scalings for each parameter, leaving us with
34× 5000 = 170,000 variations of parameters, which is significant but still a limited num-
ber. When performing the sensitivity analysis, we used the nondimensionalized system
explained in Appendix A.2 to keep the computations stable. The sensitivity level of an
ODE system, such as dX

dt = F(X, θ̂, t), where θ̂ = 〈θ1, θ2, . . . , θN〉 represents the parameter
vector, is calculated by,

si =
dX∗

dθi
for i = 1, 2, . . . , N,

where X∗ is the solution of the system at the steady state. In this paper, we calculated the
sensitivity of cancer and total cells to all the parameters at their steady states. For each
variable X∗, we obtained the sensitivity vector for the system by differentiating it with
respect to θi and setting F(X∗, θ̂) = 0. We obtain the formula

s =
dX∗

dθ̂
= −(∇F(X, θ̂)−1)

(
∂F(X∗, θ̂)

∂θ̂

)

where ∇F(X, θ̂)−1 is the numerically approximated inverse Jacobian of F with respect to X
[18]. Then, we followed the methodology for global sensitivity given in [18].

3. Results
3.1. Dynamics

The dynamics of the cells and molecules over 5000 days are presented in Figure 3.
The helper T-cell population decreases at the beginning and eventually increases to

reach a steady state in clusters 3 and 4. In cluster 2, it increases, and in cluster 1, it decreases
to reach a steady state within the first few days. As a result, the helper T-cell populations in
clusters 1 and 2 remain constant almost all of the time.

Cytotoxic cells in all clusters decrease in the first few days but eventually increase in
population to reach a steady state. Furthermore, cytotoxic cells in cluster 2 start with the
highest population and achieve the highest saturation level. This is followed by cluster 4,
with the second highest saturation level, where the cells grow faster and reach a steady state
in around 1500 days. In cluster 3, cytotoxic cells reach the lowest saturation level, leaving
cluster 1 with the second lowest saturation level. Overall, the steady state populations and
the time points that each cluster reaches steady states are noticeably different in each cluster.

T-reg cells in clusters 1, 2, and 4 increase quickly from their initial conditions and
decrease to reach a steady state. T-reg cells in cluster 4 reach a steady state at around
1500 days and clusters 1 and 2 reach a steady state at around 3000 days. In cluster 3, T-reg
cells decrease and reach a steady state faster than in any other cluster. Furthermore, the slow
increase in cytotoxic cells in clusters 1 and 2 could be due to regulations by T-reg cells that
slowly decrease in these clusters. Similarly, the faster growth in cluster 4 of cytotoxic cells
could be related to the fast decrease of T-reg cells in cluster 4.
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Figure 3. Dynamics of all variables over 5000 days.

Naive T-cells in cluster 1 attain the highest steady state population, followed by 3, 2,
and 4, respectively. In clusters 1 and 2, naive T-cells increase slowly and reach a steady
state of around 2000 days, whereas clusters 3 and 4 stabilize before and after 1000 days.

Macrophages (Mφ) in clusters 1 and 3 initially increase and then soon start to decrease
to reach a steady state, but in clusters 2 and 4, they decrease to reach a steady state.
Naive macrophage growth in all clusters does almost the opposite of macrophages, which
could be because macrophages are derived from naive macrophages. The overall trend
for macrophages is that they decrease to reach a steady state in all clusters, while naive
macrophages increase to reach a steady state.

The overall trend for both mature and naive dendritic cells is to decrease to reach a
steady state. However, dendritic cells in cluster 3 initially increase quickly and drastically
and then suddenly decrease. The same happens to naive dendritic cells in cluster 1.
Moreover, cluster 1 stands out in naive dendritic cells by achieving comparatively higher
steady state values than the others.

Cancer and necrotic cells exhibit exponential growth until they reach a steady state
and have similar curves, as necrotic cells are produced at a rate proportional to cancer
cell decay. Cancer cells in cluster 1 attain the highest steady state population. Cluster 3
stands out by growing the fastest and requiring less time to reach a steady state, which
could be related to its low level of cytotoxic cells (especially since cytotoxic cells also reach
a steady state at around 1000 days in this cluster). Cluster 2 has the slowest growth despite
having the highest initial population. Clusters 2, 3, and 4 all achieve a similar steady state
population sooner or later within 5000 days. The slow growth in cluster 2 can also be
attributed to the significantly high cytotoxic levels. Overall, we can see a clear correlation
between cancer progression and cytotoxicity levels.
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Interferon-γ initially increases but starts to decrease to reach a steady state in all
clusters. HMGB1 concentration drops at the beginning and then increases to reach a similar
steady state in all clusters. Cluster 1, as with cancer and necrotic cells, achieves the highest
steady state concentration in HMGB1. It is consistent with our assumptions of parameters,
as HMGB1 is mainly secreted by cancer and necrotic cells in the cancer microenvironment.
IL-10 concentrations in clusters 1, 3, and 4 increase initially but decrease within a few days.
However, cluster 3 concentration of IL-10 increases rapidly to a higher concentration than
other clusters and decreases to reach a similar steady state concentration. The cluster 1
concentration of IL-10 reaches a steady state later than other clusters (around 700 days).
Cluster 2’s IL-10 concentration decreases to reach the lowest steady state concentration
among all clusters. IL-2 and IL-12 concentrations in clusters 1, 3, and 4 also increase at the
beginning, then decrease to reach a steady state. As with IL-10, cluster 3 concentration
I2 attains its maximum concentration very fast and decreases to reach a steady state
concentration. In cluster 1, it follows a similar trend as IL-10 and slowly reaches a steady
state at around 2000 days. Finally, the concentration of IL-6 in clusters 1, 3, and 4 increases
and then decreases to reach a steady state. However, the concentration of IL-6 in cluster 2
remains constant for the most part.

Since we assume that the concentrations of PD− 1/2 are proportional to cytotoxic
cells and the concentration of PDL − 2 is proportional to cancer cells, we refrain from
including their dynamics.

3.2. Sensitivity

The sensitivity analysis reveals that the parameters directly involved in the cancer ODE
are the most sensitive parameters for cancer cells and total cells. Additionally, macrophage-
related parameters, such as λMTh , λMIL10 , and λMIγ , and T-reg cell-related parameters, such
as λTr D and λTr I2 , and an IL-6-related parameter, λIL6D, also show significant sensitivity
values. The sensitivity plots for the most varying parameters on cancer cells and total cells
are shown in Figures 4 and 5.
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Figure 4. Sensitivity analysis results for cancer and total cells.
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Figure 5. More sensitivity analysis results for cancer and total cells.

We could say that a quantity is positively sensitive to a parameter when an increase in
the parameter causes the quantity to become larger. A quantity is negatively sensitive to a
parameter when an increase in the parameter causes a decrease in the quantity. According
to the sensitivity plot in Figure 4, cancer cells in all clusters are negatively sensitive to their
decay rates and then positively sensitive to their growth rates. For all clusters, the most
sensitive parameters for total cells are the decay/inhibition rates of cancer and macrophages
and cancer cell growth/promotion rates.

In addition, Figure 5 illustrates more sensitive parameters for cancer cells and total
cells. For sensitivity to cancer and total cells, we see a significant emphasis on macrophage-
related parameters in all clusters, especially clusters 1 and 2. Additionally, regulatory T-cell
promotion and decay rates play more significant parts in the cancer sensitivity results for
clusters 3 and 4. Finally, we see λIL6D as the sixth sensitive parameter for cancer in cluster 1.

The sensitivity analyses of the parameters show that the direct and indirect interactions
between the variables impact cancer or total cell growth in the cancer microenvironment.
For instance, the inhibition of cancer cells by cytotoxic T-cells, IFN-γ, or natural decay, and
its promotion by IL6 and natural growth, are direct pathways that increase or decrease
the number of cancer cells. On the other hand, we notice that cancer cells are negatively
sensitive to the decay rate of macrophages (Figure 4) and positively sensitive to their
promotion rates (Figure 5). This is because the macrophages secrete IL-6, and then IL-6
helps promote cancer. So, decay in macrophages would lead to less secretion of IL-6,
leaving cancer cells with fewer resources and vice versa. Moreover, T-reg cell parameters
play an important role in cancer development by negatively impacting cancer with their
growth and positively affecting cancer with their decay, especially in clusters 3 and 4. Let
us only consider that T-reg cells inhibit helper-T cells and cytotoxic cells. This correlation
does not seem reasonable as helper T-cells promote cytotoxic cells and cytotoxic cells kill
cancer cells. However, T-reg cells secrete HMGB1, which promotes dendritic cells, and both
HMGB1 and dendritic cells promote helper T-cells, which help promote cytotoxic cells that
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kill cancer cells. Thus, through this pathway, T-reg cells negatively impact cancer cells with
their growth and positively impact cancer cells with their decay rate.

3.3. Varying Dynamics of Cancer Cells with Scaled Assumptions

Appendix A.1 shows that most of the parameters (except possibly some decay rates),
including the sensitive ones, were derived from restrictive assumptions. To assess the
validity of these assumptions, we scaled them using factors of 1, 0.2, and 5. These scalings
created a new set of parameters with significantly different values. Then from these sets,
we perturbed the most sensitive parameters illustrated in Figures 4 and 5 by 5% to create
an interval of confidence for the new dynamics. After scaling all the assumptions in
Appendix A.1, only 3 caused significant changes to cancer dynamics. These assumptions
are as follows.

Scale× δDC[Cmax] = 50δD, (20)

Scale× λIL6D[Dmax] =
2
3

λIL6C[Cmax]. (21)

Scale× λIL6Th [T
max
h ] =

2
3

λIL6C[Cmax], (22)

These three scalings cause significant changes in the parameters as illustrated in
Figure 6. We can see that assumption (20) causes a significant deviation from the original
values for parameters ADN , δDC, λDC, and λDH . Moreover, scaling assumptions (21)
and (22) causes parameters, such as λIL6D, λIL6Th , λIL6 M, and λIL6C to change but not as
drastically as the changes imposed by assumption (20). What is interesting is that none
of these parameters (except for λIL6D in cluster 1) are among the sensitive parameters.
However, the changes caused by the scaling of the assumptions were so large that the
effects were tangible. We emphasize that none of the other assumptions left such an
impact after scaling. Figure 7 shows the cancer dynamics with the original parameter
values next to the dynamics acquired by scaling the assumptions (20)–(22) by 0.2 and 5,
respectively. The shaded regions are the regions of confidence acquired from perturbing
the most sensitive parameters in Figures 4 and 5 by 5%. We see slight changes in clusters
2, 3, and 4, and a more significant change in cluster 1. Moreover, the width of the shaded
regions remained the same in all cases. We saw that by changing the assumptions (20)–(22),
significant deviations occurred to the parameter values mainly involved in the dendritic
cells and IL6 production. Cluster 1, which was more impacted, was the only cluster
sensitive to the parameter λIL6D. Even though the assumptions are mostly modeling
artifacts for parameter estimations (and one must be cautious when using them), these
results suggest interesting control potentials for IL6.

Although the parameters αTc and βC were not among the most sensitive parameters,
to make sure that the assumptions on these parameters were reasonable, we scaled αTc with
0.2 and 5 with 5% variations to the most sensitive parameters to see their impacts on cancer
cells (Figure 8). Since αTc is multiplied by βC in the ODE system, we did not scale it as
our goal was to keep the scaling of the term that involved these parameters similar to αTc .
Thus, the scaled equation for αTC becomes,

Scale× αTc = 8.9 · 10−5[Cmax].

As a result, the term involving αTC in the cancer cell equation becomes,

Scale× αTC [TC]βC[C].

The figure indicates that the dynamic of the cancer cell population remains unchanged
after varying the term αTC [TC]βC[C]. Moreover, the perturbation of the sensitive parameters
causes similar variations in all three cases.
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Figure 6. Deviations in parameter values from their baseline due to scaling assumptions (20)–(22).
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Figure 7. Cancer cell population after using scales 1, 0.2, and 5 in (A) assumption (20), (B) assump-
tion (21), and (C) assumption (22) with the transparent region corresponding to 5% perturbation of
all of the most sensitive parameters.

Figure 8. Cancer cell dynamics after scaling αTc with 1, 0.2, and 5 from left to right. The transparent
regions are acquired from 5% perturbation of the most sensitive parameters.

4. Discussion

Cancer is a diverse and complex disease that cannot be understood with a unified
approach. Each cancer patient is unique in his/her immune infiltration profile and cancer
type. In this paper, we proposed a model describing the critical interactions in the ccRCC
tumor microenvironment. The model was inspired by the emerging clinical model of
targeted therapy efficacy within distinct ccRCC subgroups. These models consider the
infiltrating immune cells, such as cytotoxic, helper, and regulatory T-cells, macrophages,
and dendritic cells (see Figure 1 in [36]). Therefore, we clustered four immunologically
different virtual patients and observed the development of their tumors through their
tumor microenvironment interactions. One of the main challenges in this study is the
shortage of biological data for estimating the parameters in the model. So we added some
mathematical (yet biologically reasonable) steady state assumptions to circumvent this
issue. We then assessed the validity of these assumptions and the acquired parameter
values in two ways. (1) By performing a global sensitivity analysis and observing the
effects of varying the most sensitive parameters on cancer dynamics, and (2) by scaling our
assumptions and studying their effects on cancer dynamics.

Despite the limitations of the model, we could infer interesting pathways in ccRCC
and its microenvironment development. For instance, pathways that directly or indirectly
affect the cytotoxicity of the microenvironment seemed to affect the cancer dynamics.
We saw that a higher population of cytotoxic cells in cluster 2 is correlated to slower
cancer cell growth. This could indicate that environments with initially higher cytotox-
icity have a better shot at controlling ccRCC. Furthermore, the slow cancer growth in
cluster 1 at the beginning can be related to naive dendritic cell growth patterns. More
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naive dendritic cells result in more mature dendritic cells that promote helper T-cells,
aiding in more cytotoxicity in the environment [68]. Although cytotoxic cells were higher
in population cluster 4, macrophages started to deplete soon for this cohort of patients,
which caused faster growth in cancer cells via helper T-cell and cytotoxic cell pathways.
Similar behavior can be justified for cluster 3. Another important relationship we observed
in cluster 3 was that the dynamics of dendritic cells, INF-γ, IL-10, IL-6, and IL-2 and IL-12
looked very similar. Dendritic cells secreted all of the cytokines mentioned above, indicating
that they played an important role in leading the dynamics of these cytokines in cluster 3.
While increased IFN-γ may inhibit cancer cells or IL-2 and IL-12 may promote cytotoxicity,
the inhibition of cytotoxic cells and helper T-cells by IL-10 or the promotion of cancer
cells by IL-6 may have impacted more in aiding cancer cells to grow very fast in cluster 3.
Therefore, although cancer cells are not directly impacted by macrophages or dendritic cells,
cancer cell interaction with the cells and cytokines that macrophages and dendritic cells
promote reveal potential pathways for better understanding the ccRCC microenvironment.

We performed a global sensitivity analysis on the parameters of the model to see their
impacts on cancer and total cell growth. We saw that the most sensitive parameters were
the production/promotion and decay/inhibition rates directly involved in cancer ODE,
which was expected. In addition, we noticed a lot of macrophage-related production and
inhibition rates as the second most sensitive parameters. Specifically, the sensitivity values
hinted that more macrophages lead to worse prognoses. It has been shown that macrophage
polarization into anti- and pro-tumor subtypes can have different implications for cancer
progression and prognosis [77,78]. The patient data and the parameter sensitivity analysis
of the model reveal that the macrophages act as pro-tumors in all patients, suggesting
them as targets to suppress via therapy. Additionally, cytokines and cells act as promoters
or inhibitors in sensitive parameters, such as IFN-γ, CD8+ T-cells, IL6, IL10, regulatory
T-cells, dendritic cells, IL2, and IL12 can be potential targets. We also assessed the validity
of our assumptions by scaling them. Almost all the assumptions led to no significant
changes in the dynamics of cancer cells, except for three. These three assumptions, directly
or indirectly, contributed to the significant production or inhibition of IL6. Numerous
studies focus on controlling the IL-6 as a therapeutic option to control the progression of
ccRCC [79–82].

As with all the other mathematical models, our model is not without limitations. Many
assumptions were used here, even though biologically feasible, but they were of mere
mathematical nature. Some examples of such assumptions are: (1) the estimation of initial
conditions by the small tumors in each cluster and assuming the largest tumors to give us
the steady state values, and (2) the specific scales used to enforce the dominant activator or
inhibitor of certain cells or cytokines. We tried our best to assess the sensitivity of our model
to these assumptions and justify their robustness. However, none of these attempts can
replace a direct validation using time-course data, and we acknowledge this limitation of
the study. Moreover, for simplicity, we ignored important factors, such as angiogenesis and
metabolites. We acknowledge this as another limitation of our model. However, this model
provides a basis for future computational models of the ccRCC tumor microenvironment
and can be extended to include new biological and biomedical discoveries and find optimal
treatment options for ccRCC patients.
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Appendix A. Derivation of Sample Parameters

Appendix A.1. Parameter Assumptions Based on Steady States

The average doubling time for renal cell carcinoma is 460.01 ± 182.45 days [83].
Thus, we considered the doubling rate to be the difference between the growth and decay
rate of cancer cells, as was done in [16–18]. The faster doubling rate includes the rate of
cancer cells’ natural proliferation and proliferation by IL-6, resulting in

ln 2
278

= (λC + λIL6 [CILmean
6 ])− δC. (A1)

Then, we consider the slower doubling rate to be only the natural cancer cell prolif-
eration while the decay rates of cancer cells include the decay rates by all the inhibitors,
including cancer’s natural decay rate,

ln 2
642

= λC −
(

δCTc [T
mean
c ] ·

(
1

1 + αTc [T
mean
c ] · βC[Cmean]

)
+ δCIγ

[Imean
γ ] + δC

)
. (A2)

The mean values of the variables used in Equations (A1) and (A2) are given in Table A1.

https://github.com/ShahriyariLab/Patient-Specific-Mathematical-Model-of-Clear-Cell-Renal-Cell-Carcinoma-Microenvironme
https://github.com/ShahriyariLab/Patient-Specific-Mathematical-Model-of-Clear-Cell-Renal-Cell-Carcinoma-Microenvironme
https://github.com/ShahriyariLab/Patient-Specific-Mathematical-Model-of-Clear-Cell-Renal-Cell-Carcinoma-Microenvironme
https://events.cancer.gov/cbiit/dtwin2020
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Table A1. Mean values of the variables from the data.

[ILmean
6 ] [Tmean

c ] [Cmean] [Imean
γ ]

9.751 · 10−2 1.363 · 104 4.50 · 104 5.004 · 10−2

Since we assume the parameter relations based on the steady states of each variable,
the parameters should all be positive.

The steady states are derived from the largest tumor across all patients. See Table A2.

Table A2. Steady state values of the variables derived from the largest tumors from each cluster.

[Tmax
h ] [Tmax

c ] [Tmax
r ] [Tmax

n ] [Mmax]

2.360 · 102 1.119 · 104 2.522 · 103 1.306 · 104 1.245 · 104

[Mmax
N ] [Dmax] [Dmax

N ] [Cmax] [Nmax]

1.425 · 103 10 3.384 · 103 1.182 · 105 1.971 · 104

[Imax
γ ] [Hmax] [ILmax

10 ] [Imax
2 ] [ILmax

6 ]

3.853 · 10−2 3.630 · 10−1 4.132 · 10−2 5.143 · 10−2 6.071 · 10−2

We assume that helper T-cells are mainly activated by macrophages and dendritic
cells,

λTh M[Mmax] = λThD[Dmax] = 200λTh H [Hmax] = 25λTh I2 [I
max
2 ]. (A3)

Moreover, for helper T-cells, we assume that the natural inhibition is smaller than
inhibition by T-reg cells and IL-10, so that

δThTr[Tmax
r ] = δTh IL10 [ILmax

10 ] = 20δTh (A4)

For cytotoxic cells, we assume that the activation or proliferation is mainly done by
helper T-cells, dendritic cells, and IL-2 since IL-2 has been described as an effective media
to treat cancer [28,76], and we assume that the inhibitions are mainly done by T-reg cells
and IL-10.

λTcTh [T
max
h ] = λTc I2 [I

max
2 ] = λTcD[Dmax] = 100λTc Iγ [I

max
γ ] (A5)

δTc IL10 [ILmax
10 ] = δTcTr [T

max
r ] = 20δTc (A6)

For T-reg cells, we assume that dendritic cells mainly activate them,

λTr D[Dmax] = 100λTr I2 [I
max
2 ]. (A7)

For macrophages, we assume proliferation scales of helper T-cells, IFN-γ, and IL-10
are similar, so we have,

λMTh [T
max
h ] = λMIγ [I

max
γ ] = λMIL10 [ILmax

10 ]. (A8)

We further assume that the decay rates of naive macrophages are similar to the decay
rates of macrophages,

δM = δMN . (A9)
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Similarly, we assume that the proliferation rates for dendritic cells are similar, and their
inhibition rate by cancer cells is larger than their natural decay rate. Moreover, we take the
decay rate of naive dendritic cells to be the same as that of dendritic cells.

λDH [Hmax] = λDC[Cmax], (A10)

δDC[Cmax] = 50δD, (A11)

δDN = δD. (A12)

We calculate the parameter αTc based on the average fraction of PD− 1 and PD− 2
among all the genes and then multiply it by the maximum of cytotoxic cells. Similarly, we
calculate βC based on the average of PDL− 2 among all genes(as it was the only available
ligand in the data) and then multiply it with the cancer cell maximum. Since cancer cells
grow rapidly, we let

C0 = 2.5[Cmax], αTc = 8.9 · 10−5[Tmax
c ], (A13)

βC = 3.3 · 10−5[Cmax], δCIγ
[Imean

γ ] = δCTc [T
mean
C ] (A14)

and δC = δCTC [T
mean
C ]. (A15)

For necrotic cells, we assume that

αNC = 0.5. (A16)

We assume that IFN-γ is secreted mostly by cytotoxic cells,

λIγTc [T
max
c ] = 5λIγTh [T

max
h ] = λIγD[Dmax]. (A17)

Since HMGB1 is mainly produced by cancer cells and necrotic cells, we let the HMGB1
production rate by cancer and necrotic be larger,

10λHTc [T
max
c ] = 10λHTr [T

max
r ] = 10λHTh [T

max
h ] = 10λHM[Mmax]

= λHN [Nmax] = λHC[Cmax]. (A18)

For IL-10, we assume that it is secreted on a similar scale by helper T-cells, T-reg cells,
cytotoxic cells, dendritic cells, and macrophages;

λIL10Tc [T
max
c ] = λIL10Th [T

max
h ] = λIL10D[Dmax] (A19)

= λIL10 M[Mmax]. (A20)

Since helper T-cells mainly produce IL-2, we let the rate of IL-2 secretion by helper
T-cells be larger [28]. We then let other cell production rates of IL-12 be similar.

2λI2Tc [T
max
c ] = λI2Th [T

max
h ] = 2λI2 M[Mmax]. (A21)

Lastly, since IL-6 is mainly produced by cancer cells, we let

λIL6C[Cmax] = 1.5λIL6 M[Mmax] = 1.5λIL6Th [T
max
h ] = 1.5λIL6D[Dmax]. (A22)

Appendix A.2. Nondimensionalization of Parameters and Variables

First, consider the variables at a steady state as,

T∞
h , T∞

c , T∞
r , T∞

N , M∞, M∞
N , D∞, D∞

N , C∞, N∞, I∞
γ , H∞, IL∞

10, I∞
2 , and IL∞

6 .

To avoid complexity in parameter estimations, numerically solving the ODEs, and an-
alyzing the sensitivity of parameters, we nondimensionalize the variables and parameters
based on their steady state values. We denote the nondimensional variables by [X] = [X]

[X∞ ]
,
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where X represents each variable and [X] = 1 when it is in a steady state. However, we
do not nondimensionalize the time variable since it does not introduce any complexity
to the problem. Thus, the system consisting of Equations (1)–(16) (except (9)) would be
nondimensionalized, as follows:

d[Th]

dt
=
(
λTh M [M] + λTh D [D] + λTh H [H] + λTh I2 [I2]

)
[TN ]

−
(
δTh Tr [Tr ] + δTh IL10 [IL10] + δTh

)
[Th] (A23)

d[Tc]

dt
=
(

λTc Th [Th] + λTc I2 [I2] + λTc D [D] + λTc Iγ [Iγ]
)
[TN ]

−
(
δTc IL10 [IL10] + δTc Tr [Tr ] + δTc

)
[Tc] (A24)

d[Tr ]

dt
=
(
λTr D [D] + λTr I2 [I2]

)
[TN ]− δTr [Tr ]. (A25)

d[TN ]

dt
= ATN −

(
λTh M [M] + λTh D [D] + λTh H [H] + λTh I2 [I2]

)
[TN ]

−
(

λTc Th [Th] + λTc I2 [I2] + λTc D [D] + λTc Iγ [Iγ]
)
[TN ]

−
(
λTr D [D] + λTr I2 [I2] + δTN

)
[TN ] (A26)

d[M]

dt
=
(

λMTh [Th] + λMIγ [Iγ] + λMIL10 [IL10]
)
[MN ]− δM [M] (A27)

d[MN ]

dt
= AMN −

(
λMTh [Th] + λMIγ [Iγ] + λMIL10 [IL10] + δMN

)
[MN ] (A28)

d[D]

dt
=
(
λDH [H] + λDC [C]

)
[DN ]−

(
δDC [C] + δD

)
[D] (A29)

d[DN ]

dt
= AD −

(
λDH [H] + λDC [C] + δDN

)
[DN ] (A30)

d[C]
dt

= (λC + λCIL6 [IL6])

(
1− [C]

C0

)
[C]

−
(

δCTc [Tc] ·
(

1
1 + αTc [Tc] · βC [C]

)
+ δCIγ [Iγ] + δC

)
[C] (A31)

d[N]

dt
= αNC

(
δCTc [Tc] ·

(
1

1 + αTc [Tc] · βC [C]

)
+ δCIγ [Iγ] + δC

)
[C]− δN [N] (A32)

d[Iγ]

dt
= λIγ Tc [Tc] + λIγ Th [Th] + λIγ D [D]− δIγ [Iγ] (A33)

d[H]

dt
= λHTc [Tc] + λHTr [Tr ] + λHTh [Th] + λHN [N] + λHM [M] + λHC [C]− δH [H] (A34)

d[IL10]

dt
= λIL10Th [Th] + λIL10Tc [Tc] + λIL10 D [D] + λIL10 M [M]− δIL10 [IL10] (A35)

d[I2]

dt
= λI2Tc [Tc] + λI2Th [Th] + λI2 D [D] + λI2 M [M]− δI2 [I2] (A36)

d[IL6]

dt
= λIL6C [C] + λIL6 M [M] + λIL6Th [Th] + λIL6 D [D]− δIL6 [IL6] (A37)

Since the dimension of the time variable remains unchanged, the decay rates in
Table A3 also remain unchanged. We nondimensionalize the assumptions in Appendix A.1
as follows:
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ln 2
278

= (λC + λIL6

[ILmean
6 ]

[IL∞
6 ]

)− δC, (A38)

ln 2
642

= λC −

δCTc

[Tmean
c ]

[T∞
c ]

·

 1

1 + αTc
[Tmean

c ]
[T∞

c ]
· βC

[Cmean]
[C∞ ]

+ δCIγ

[Imean
γ ]

[I∞
γ ]

+ δC

, (A39)

λTh M
[Mmax]

[M∞]
= λTh D

[Dmax]

[D∞]
= 200λTh H

[Hmax]

[H∞]
= 25λTh I2

[Imax
2 ]

[I∞
2 ]

, (A40)

δThTr
[Tmax

r ]

[T∞
r ]

= δTh IL10

[ILmax
10 ]

[IL∞
10]

= 20δTh , (A41)

λTcTh

[Tmax
h ]

[T∞
h ]

= λTc I2

[Imax
2 ]

[I∞
2 ]

= λTc D
[Dmax]

[D∞]
= 100λTc Iγ

[Imax
γ ]

[I∞
γ ]

, (A42)

δTc IL10

[ILmax
10 ]

[IL∞
10]

= δTcTr

[Tmax
r ]

[T∞
r ]

= 20δTc , (A43)

λTr D
[Dmax]

[D∞]
= 100λTr I2

[Imax
2 ]

[I∞
2 ]

, (A44)

λMTh

[Tmax
h ]

[T∞
h ]

= λMIγ

[Imax
γ ]

[I∞
γ ]

= λMIL10

[ILmax
10 ]

[IL∞
10]

, (A45)

λDH
[Hmax]

[H∞]
= λDC

[Cmax]

[C∞]
, (A46)

δDC
[Cmax]

[C∞]
= 50δD, (A47)

λIγTc

[Tmax
c ]

[T∞
c ]

= 5λIγTh

[Tmax
h ]

[T∞
h ]

= λIγ D
[Dmax]

[D∞]
, (A48)

10λHTc

[Tmax
c ]

[T∞
c ]

= 10λHTr

[Tmax
r ]

[T∞
r ]

= 10λHTh

[Tmax
h ]

[T∞
h ]

= 10λHM
[Mmax]

[M∞]

= λHN
[Nmax]

[N∞]
= λHC

[Cmax]

[C∞]
, (A49)

λIL10Tc

[Tmax
c ]

[T∞
c ]

= λIL10Th

[Tmax
h ]

[T∞
h ]

= λIL10D
[Dmax]

[D∞]
= λIL10 M

[Mmax]

[M∞]
, (A50)

2λI2Tc

[Tmax
c ]

[T∞
c ]

= λI2Th

[Tmax
h ]

[T∞
h ]

= 2λI2 M
[Mmax]

[M∞]
, (A51)

λIL6C
[Cmax]

[C∞]
= 1.5λIL6 M

[Mmax]

[M∞]
= 1.5λIL6Th

[Tmax
h ]

[T∞
h ]

= 1.5λIL6D
[Dmax]

[D∞]
, (A52)
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C0 = 2.5
[Cmax]

[C∞]
, αTc = 8.9 · 10−5 [T

max
c ]

[T∞
c ]

, (A53)

βC = 3.3 ∗ 10−5 [C
max]

[C∞]
, (A54)

δCIγ

[Imean
γ ]

[I∞
γ ]

= δCTc

[Tmean
c ]

[T∞
c ]

, (A55)

δC = δCTC

[Tmean
c ]

[T∞
c ]

. (A56)

In addition, we nondimensionalize independent production rates, such as ATN , AMN ,

and AD by
ATN
[T∞

N ]
,

AMN
[M∞

N ]
, and AD

[D∞ ]
, respectively. According to the above nondimensionaliza-

tion of the system and assumptions, we have the nondimensional parameters in Table A3.

Table A3. Nondimensionalized parameters.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

λTh M 4.71 2.28 7.16 · 10−1 5.98

λTh D 4.71 4.32 1.30 · 101 6.41

λTh H 2.36 · 10−2 1.93 · 10−2 2.74 · 10−3 2.95 · 10−2

λTh I2 2.36 · 10−2 5.72 · 10−3 2.19 · 10−3 3.03 · 10−2

δThTr 4.62 5.00 2.15 4.57

δTh IL10
4.62 1.38 1.14 · 101 7.65

δTh 2.31 · 10−1 2.31 · 10−1 2.31 · 10−1 2.31 · 10−1

λTcTh
5.53 8.07 5.21 2.00 · 101

λTc I2 5.53 7.38 · 10−1 6.16 · 10−1 9.18 · 10−1

λTc D 5.53 2.78 1.83 · 101 9.71 · 10−1

λTc Iγ
5.53 · 10−2 4.42 · 10−2 4.25 · 10−3 3.78 · 10−2

δTc IL10
8.12 2.43 2.00 · 101 1.34 · 101

δTC Tr 8.12 8.79 3.78 8.04

δTc 4.06 · 10−1 4.06 · 10−1 4.06 · 10−1 4.06 · 10−1

λTr D 2.29 · 10−1 2.30 · 10−1 2.31 · 10−1 2.29 · 10−1

λTr I2 2.29 · 10−3 6.11 · 10−4 7.76 · 10−5 2.16 · 10−3

δTr 2.31 · 10−1 2.31 · 10−1 2.31 · 10−1 2.31 · 10−1

ATN 2.63 · 101 1.85 · 101 3.81 · 101 3.46 · 101

δTN 9.49 · 10−4 9.49 · 10−4 9.49 · 10−4 9.49 · 10−4

λMTh 6.60 · 10−3 1.20 · 10−2 1.33 · 10−2 1.56 · 10−2

λMIγ
6.60 · 10−3 6.57 · 10−3 1.09 · 10−3 2.95 · 10−3

λMIL10 6.60 · 10−3 1.24 · 10−3 5.37 · 10−3 1.26 · 10−3
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Table A3. Cont.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

δM 1.98 · 10−2 1.98 · 10−2 1.98 · 10−2 1.98 · 10−2

AMN 3.96 · 10−2 3.96 · 10−2 3.96 · 10−2 3.96 · 10−2

δMN 1.98 · 10−2 1.98 · 10−2 1.98 · 10−2 1.98 · 10−2

λDH 7.06 6.28 6.33 6.35

λDC 7.06 6.17 6.19 6.03

δDC 1.39 · 101 1.22 · 101 1.22 · 101 1.21 · 101

δD 2.77 · 10−1 2.77 · 10−1 2.77 · 10−1 2.77 · 10−1

ADN 1.44 · 101 1.27 · 101 1.28 · 101 1.27 · 101

δDN 2.77 · 10−1 2.77 · 10−1 2.77 · 10−1 2.77 · 10−1

λC 4.02 · 10−3 3.80 · 10−3 1.03 · 10−2 9.93 · 10−3

λCIL6 8.80 · 10−4 3.97 · 10−4 3.96 · 10−3 3.68 · 10−3

C0 2.50 2.84 2.83 2.86

δCTc 2.16 · 10−7 2.00 · 10−7 6.76 · 10−7 6.49 · 10−7

αTc 8.90 · 10−5 3.99 · 10−5 2.50 · 10−4 5.16 · 10−5

βC 3.30 · 10−5 3.75 · 10−5 3.73 · 10−5 3.77 · 10−5

δCIγ
2.02 · 10−7 1.33 · 10−7 8.87 · 10−7 1.37 · 10−6

δC 2.94 · 10−3 2.72 · 10−3 9.22 · 10−3 8.85 · 10−3

αNC 3.00 3.00 3.00 3.00

δN 8.82 · 10−3 8.17 · 10−3 2.77 · 10−2 2.66 · 10−2

λIγTc 1.51 · 101 1.95 · 101 5.15 · 10−1 8.40

λIγTh
3.03 5.07 1.77 2.00 · 101

λIγ D 1.51 · 101 8.73 3.10 · 101 4.87

δIγ
3.33 · 101 3.33 · 101 3.33 · 101 3.33 · 101

λHTc 7.50 · 10−1 1.65 2.49 · 10−1 7.44 · 10−1

λHTr 7.50 · 10−1 8.01 · 10−1 3.25 · 10−1 4.27 · 10−1

λHTh 7.50 · 10−1 2.15 4.27 8.88

λHN 7.50 6.51 6.17 3.77

λHM 7.50 · 10−1 3.90 · 10−1 8.25 · 10−1 4.03 · 10−1

λHC 7.50 6.51 6.17 3.77

δH 1.80 · 101 1.80 · 101 1.80 · 101 1.80 · 101

λIL10Th
1.16 2.01 9.69 · 10−1 3.92

λIL10Tc 1.16 1.55 5.65 · 10−2 3.29 · 10−1

λIL10D 1.16 6.94 · 10−1 3.41 1.91 · 10−1

λIL10 M 1.16 3.66 · 10−1 1.87 · 10−1 1.78 · 10−1

δIL10 4.62 4.62 4.62 4.62

λI2Tc 4.48 · 10−1 5.23 · 10−1 2.26 · 10−2 8.62 · 10−2
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Table A3. Cont.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

λI2Th 8.95 · 10−1 1.36 7.76 · 10−1 2.06

λI2D 4.48 · 10−1 2.34 · 10−1 1.36 5.00 · 10−2

λI2 M 4.48 · 10−1 1.23 · 10−1 7.50 · 10−2 4.66 · 10−2

δI2 2.24 2.24 2.24 2.24

λIL6C 3.57 · 10−1 2.46 · 10−1 4.71 · 10−2 5.89 · 10−2

λIL6 M 2.38 · 10−1 9.82 · 10−2 4.20 · 10−2 4.20 · 10−2

λIL6Th 2.38 · 10−1 5.40 · 10−1 2.17 · 10−1 9.24 · 10−1

λIL6D 2.38 · 10−1 1.86 · 10−1 7.64 · 10−1 4.50 · 10−2

δIL6 1.07 1.07 1.07 1.07
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