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Abstract

Background

Animal studies suggest vital roles of sphingolipids, especially ceramides, in the pathogene-

sis of type 2 diabetes (T2D) via pathways involved in insulin resistance, β-cell dysfunction,

and inflammation, but human studies are limited. We aimed to evaluate the associations of

circulating sphingolipids with incident T2D and to explore underlying mechanisms.

Methods and findings

The current study included 826 men and 1,148 women who were aged 50–70 years, from

Beijing and Shanghai, and without T2D in 2005 and who were resurveyed in 2011. Cardio-

metabolic traits were measured at baseline and follow-up surveys. A total of 76 sphingolipids

were quantified using high-coverage targeted lipidomics. Summary data for 2-sample Men-

delian randomization were obtained from genome-wide association studies of circulating

sphingolipids and the China Health and Nutrition Survey (n = 5,731). During the 6-year

period, 529 participants developed T2D. Eleven novel and 3 reported sphingolipids, namely

ceramides (d18:1/18:1, d18:1/20:0, d18:1/20:1, d18:1/22:1), saturated sphingomyelins

(C34:0, C36:0, C38:0, C40:0), unsaturated sphingomyelins (C34:1, C36:1, C42:3),

hydroxyl-sphingomyelins (C34:1, C38:3), and a hexosylceramide (d18:1/20:1), were posi-

tively associated with incident T2D (relative risks [RRs]: 1.14–1.21; all P < 0.001), after mul-

tivariate adjustment including lifestyle characteristics and BMI. Network analysis further
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identified 5 modules, and 2 modules containing saturated sphingomyelins showed the stron-

gest associations with increased T2D risk (RRQ4 versus Q1 = 1.59 and 1.43; both Ptrend <
0.001). Mediation analysis suggested that the detrimental associations of 13 sphingolipids

with T2D were largely mediated through β-cell dysfunction, as indicated by HOMA-B (medi-

ation proportion: 11.19%–42.42%; all P < 0.001). Moreover, Mendelian randomization evi-

denced a positive association between a genetically instrumented ceramide (d18:1/20:1)

and T2D (odds ratio: 1.15 [95% CI 1.05–1.26]; P = 0.002). Main limitations in the current

study included potential undiagnosed cases and lack of an independent population for

replication.

Conclusions

In this study, we observed that a panel of novel sphingolipids with unique structures were

positively associated with incident T2D, largely mediated through β-cell dysfunction, in Chi-

nese individuals.

Author summary

Why was this study done?

• Ceramides are members of the sphingolipid family that have been reported to be patho-

physiologically relevant for the development of impaired glucose homeostasis and type

2 diabetes (T2D) through inducing insulin resistance, impairing β-cell function, and

promoting inflammation.

• Sphingolipids represent a class of structurally and functionally diverse lipids that may

exert different impacts on T2D outcome. However, the majority of available studies cov-

ered only 4 to 15 species and may have missed certain T2D-associated sphingolipid spe-

cies or subclasses.

• To our knowledge, no epidemiological study has examined the relationships between

genetically predicted sphingolipids and T2D risk so far.

• Most previous studies of sphingolipid–T2D associations were conducted in Western

populations. It remains largely unknown whether the associations differ between West-

ern and Asian populations, and to what extent they are mediated by β-cell dysfunction

or insulin resistance.

What did the researchers do and find?

• By applying high-coverage targeted lipidomics to measure 76 sphingolipids in 1,974

Chinese men and women, 11 novel (3 monounsaturated ceramides, 7 sphingomyelins,

and 1 hexosylceramide) and 3 previously reported sphingolipids were identified to be

positively associated with incident T2D, independent of conventional risk factors

including lifestyle characteristics and BMI.

• We conducted a network analysis to determine the collective effects of the sphingolipids

on the onset of T2D. Of 5 identified groupings (modules) of sphingolipids, 2 modules
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containing saturated sphingomyelins showed the strongest associations with incident

T2D.

• Mediation analysis showed that the detrimental associations of 13 out of the 14 sphingo-

lipids with risk of T2D were largely mediated through β-cell dysfunction.

• We performed genome-wide association studies for the sphingolipids and also con-

ducted 2-sample Mendelian randomization analysis. A positive association between a

genetically instrumented ceramide (d18:1/20:1) and T2D was evidenced.

What do these findings mean?

• Our study is the first to our knowledge that simultaneously discovered the largest num-

ber of T2D-associated sphingolipid species—which covered 3 subclasses, including cer-

amides, sphingomyelins, and a hexosylceramide—and also identified predominantly

monounsaturated ceramides associated with T2D in the Chinese population, rather

than saturated ceramides as reported in Western populations.

• High-coverage targeted lipidomics in our study revealed comprehensive details about

how and to what extent altered absolute concentrations of sphingolipids with specific

structures were associated with T2D development, raising attention to structurally

diverse sphingolipids and the fact that they might have different associations with T2D.

• Our results highlight a stronger mediation effect of β-cell dysfunction than of insulin

resistance in the sphingolipid–T2D associations in Chinese individuals.

• We found a positive association between a genetically instrumented ceramide (d18:1/

20:1) and T2D. Together, our findings underscore potential applications of sphingoli-

pids as early biomarkers or intervention targets for prevention and control of T2D.

Introduction

The recent epidemic of type 2 diabetes (T2D) and related complications have contributed

enormously to global burdens of mortality and disability [1]. Though diabetes affects approxi-

mately 8.3% of the world population, a large fraction of patients is undiagnosed, accounting

for 21.4% out of 34.1 million and 63.5% out of 114.4 million American and Chinese adult dia-

betes cases, respectively [2]. Due to its heterogeneous nature, it is still not fully clear whether β-

cell dysfunction or insulin resistance plays a primary role in the pathogenesis of T2D, particu-

larly in Asian populations with relatively lower β-cell function [3]. In this regard, it is key to

restrain the progress of T2D long before clinical diagnosis through early prediction and

intervention.

Sphingolipids represent a class of structurally and functionally diverse lipid molecules (S1

Fig), including ceramides (Cers), sphingomyelins (SMs), and glycosphingolipids (GSLs) [4].

Cers, commonly combining a sphingoid base with a fatty acid residue, can be de novo synthe-

sized from dietary fatty acids and serine in the endoplasmic reticulum. Subsequently, Cers can

form SMs by adding a polar head group or form GSLs by introducing a sugar group in the

Golgi complex [5]. Recently, the pivotal roles of sphingolipids in a variety of metabolic disor-

ders have attracted growing attention [6–8]. Studies in animal models indicated that elevated
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Cer levels dysregulated glucose homeostasis and accelerated T2D progression by antagonizing

insulin-receptor-stimulated serine/threonine–protein kinase signaling [5,9], while high SM

levels in vivo induced insulin resistance via enhancing mitochondrial dysfunction, reactive

oxygen species production, and inflammation [9]. Moreover, GSLs in rodents could induce

metabolic toxicity [9].

With recently advanced lipidomic technology, over 600 sphingolipids were detected in

humans [4]. However, only a handful of human studies have investigated the effects of sphin-

golipids on fasting glucose [10], insulin resistance, and β-cell dysfunction [11]; even fewer pro-

spective cohorts have studied T2D per se, and these yielded controversial results [12–15]. For

instance, the association between SM(d18:1/18:0) and incident T2D was inverse in the PRE-

DIMED Trial [12], but positive in a Singapore cohort [13].Notably, Cers and SMs with distinct

chain lengths, numbers of double bonds, and numbers of hydroxyls on the sphingoid base

and/or fatty acid residue may influence metabolic outcomes differently, and distinctive struc-

tures may reflect genetic and dietary modifications in a given population [9,16,17]. However,

the majority of available studies generally covered 4 to 15 species and focused on sphingolipids

combining an unsaturated sphingoid base (e.g., d18:1) with a saturated fatty acid (SFA), not

those combining a saturated sphingoid base with a SFA or monounsaturated fatty acid

(MUFA) [12–15]. Thus, it is important to elucidate how sphingolipids with different structures

affect T2D susceptibility.

By adopting a high-coverage targeted lipidomic approach in a well-characterized Chinese

cohort, we aimed to investigate (1) the associations of different sphingolipids with incident

T2D, (2) specific sphingolipid networks linked to incident T2D, and (3) possible mediators

and relationships of genetically instrumented sphingolipids with T2D.

Methods

Study population

The current study was based on the Nutrition and Health of Aging Population in China

(NHAPC) study, a well-designed prospective cohort investigating environmental and genetic

factors and their interactions with cardiometabolic diseases. The study design has been

described in detail elsewhere [18,19]. Briefly, this cohort study was initiated in 2005, and a

total of 3,289 participants (1,458 men and 1,831 women) aged 50–70 years from Beijing and

Shanghai were enrolled by multistage sampling at baseline. In 2011, 2,529 participants were

revisited to complete the follow-up survey. At the baseline and 6-year surveys, a face-to-face

interview was conducted to collect information on demographics, lifestyle characteristics, and

health status using a standardized questionnaire with minor modification for the 6-year sur-

vey. Family history of diabetes was defined as a parent or sibling having diabetes [20]. Body

weight, height, waist circumference, and blood pressure were measured following a standard-

ized protocol [18]. Body mass index (BMI) was calculated as weight (kg)/height squared (m2).

Final analyses included 1,974 individuals (826 men and 1,148 women) after excluding those

with diabetes at baseline (n = 274) or without baseline sphingolipid profile (n = 281). The anal-

ysis plan was drafted in August 2018 (S1 Text), and our cohort study was reported according

to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)

guideline (S1 STROBE Checklist).

Ethics statement

The study protocol was approved by the Institutional Review Board of the Institute for Nutri-

tional Sciences. All participants provided written informed consent.
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Laboratory measurements

Peripheral venous blood samples were collected after overnight fasting at both the baseline and

follow-up visits. Fasting glucose, glycohemoglobin (HbA1c), insulin, total cholesterol, low-den-

sity lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycer-

ides (TGs), high-sensitivity C-reactive protein (hsCRP), and adiponectin were measured as

previously described [18,19]. Homeostatic model assessment of insulin resistance (HOMA-IR)

was calculated as fasting glucose (mmol/l) × fasting insulin (μU/ml)/22.5. Homeostatic model

assessment of β-cell function (HOMA-B) was calculated as 20 × fasting insulin (μU/ml)/(fast-

ing glucose [mmol/l] − 3.5).

Genotyping, quality control, and imputation

Genotyping was performed using Illumina Human660W [21]. Samples with call rate< 97% or

single nucleotide polymorphisms (SNPs) with call rate< 95% were excluded. Imputation was

conducted from the 1000 Genomes phase 3 reference panels using IMPUTE2. SNPs were fur-

ther removed by PLINK if minor allele frequency < 1%, Hardy–Weinberg equilibrium

P< 10−6, or info measure� 0.5. Finally, 7,118,257 SNPs were obtained for the following

genetic analyses.

Lipidomic measurement

Plasma lipid profiles were quantified by liquid chromatography electrospray ionization mass

spectrometry [22,23]. Details on lipid extraction, chromatographic separation, mass spectrom-

etry analysis, and data quantification are provided in S2 Text. Briefly, lipids were extracted fol-

lowing a modified methyl tert-butyl ether (MTBE) protocol and then analyzed on a Shimadzu

Nexera X2 LC-30AD system coupled to a SCIEX 5500 QTRAP mass spectrometer [4]. Analyst

1.6.3 software (Sciex, Foster City, CA) was used for data acquisition. Plasma samples were ana-

lyzed in random order, and quality control samples were inserted every 10 samples to ensure

repeatability. Finally, a total of 728 lipids were quantified.

Current analyses used data of 76 sphingolipid species, including 12 Cers, 9 dihydrocera-

mides (dhCers), 43 SMs, and 12 GSLs. dCer(d16:0) was used as the internal standard for Cers,

dhCers, and GSLs, while dSM(24:1) was used for SMs. As shown in S1 Table, the average coef-

ficient of variation was 18.3%. Eight out of 76 sphingolipids had missing values (<1%). The

SM subclass was further classified as (1) saturated SMs, with no double bond in the sphingoid

base and fatty acid; (2) unsaturated SMs, with 1 or more double bonds in the sphingoid base or

fatty acid; (3) hydroxyl-SMs having 1 additional hydroxyl; and (4) hydroxyl-SMs having 2

additional hydroxyls (S1 Fig).

Ascertainment of incident T2D

Incident T2D was defined as presenting 1 or more of the following: (1) self-reported doctor-

diagnosed diabetes, (2) taking antidiabetic medications, or (3) fasting glucose� 7.0 mmol/l in

the follow-up survey.

Statistical analyses

Baseline characteristics were compared between participants with and without incident T2D

by ANCOVA. Missing values for 8 sphingolipids were imputed as half of the minimum value,

due to their concentrations being below the detection limit [24]. Baseline sphingolipid concen-

trations (mg/l) were natural log transformed and scaled to SD of 1. Spearman correlation coef-

ficients (rs) were calculated among sphingolipids, as well as their associated cardiometabolic
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traits, adjusting for age, sex, region (Beijing or Shanghai), and residence (urban or rural). Due

to high T2D incidence in our cohort population, a log-Poisson model was used to calculate the

relative risk (RR) and 95% confidence interval (CI) for T2D according to quartile and per SD

increment of each sphingolipid, after adjustment for age, sex, region, residence, educational

attainment (0–6 years, 7–9 years, or�10 years), current smoking (yes or no), current alcohol

drinking (yes or no), physical activity (low, moderate, or high), family history of diabetes (yes

or no), and BMI in the full model [25]. Significance levels were corrected for multiple testing

with Bonferroni correction. In a sensitivity analysis, incident T2D was redefined by adding

HbA1c� 6.5%, and the log-Poisson model was used to estimate the RR (95% CI) of T2D asso-

ciated with the sphingolipids. Stratified analyses were performed for different baseline values

of age, sex, region, residence, smoking, alcohol drinking, physical activity, BMI, and

HOMA-B. Pinteraction was calculated by likelihood ratio test.

Network inference analysis. Weighted gene co-expression network analysis (WGCNA)

was used to determine modules of highly interconnected sphingolipids (R package WGCNA,

version 1.63). Neighborhoods of interconnected sphingolipids were defined by topological

overlap measure (TOM). The modules were represented by the first principal component of

the metabolites included in the modules. Finally, network plotting was performed using Cytos-

cape (version 3.7.1).

Multiple mediation analysis. Mediation models were performed using the SPSS macro

for simple and multiple mediation analysis by Preacher and Hayes (see [26]). Different paths

were produced in the model: Path a represents effects of sphingolipids and/or module eigen-

genes on mediators, path b represents effects of mediators on T2D, path c represents effects of

sphingolipids on T2D not through mediators, and path a�b represents effects of sphingolipids

on T2D through mediators. The bootstrapping method was applied, with coefficients esti-

mated from 1,000 bootstrap samples.

Mendelian randomization (MR). Before MR analysis, genome-wide association studies

(GWASs) for individual sphingolipids were conducted (S2 Text). The relationships of geneti-

cally predicted sphingolipids with T2D were analyzed using 2-sample MR analysis (R package

MendelianRandomization, version 0.3.0). Summary statistics of the relationships of SNPs with

T2D were from the China Health and Nutrition Survey (http://mohlke.web.unc.edu/data/)

[27]. The overall instrumental estimate of the effect of any given exposure on outcome was cal-

culated using the penalized robust inverse variance weighting (IVW) method. In sensitivity

analyses, the weighted median test, mode-based estimation, MR-Egger regression, and leave-

one-out validation were also conducted. More details are provided in S2 Text.

All analyses were performed with SPSS version 25.0 (IBM, Armonk, New York) and R ver-

sion 3.4.4 (http://www.R-project.org). Two-sided P value < 0.05 was considered statistically

significant unless specified otherwise.

Results

Baseline characteristics

Over 6 years, 26.8% (529/1,974) of participants developed T2D. Compared with non-cases,

cases were more likely to be Beijing residents and to have a family history of T2D. They also

had higher baseline values of BMI, waist circumference, blood pressure, fasting glucose,

HbA1c, insulin, and HOMA-IR, but lower HOMA-B (all P< 0.001), as well as unfavorable

profiles of LDL-C, HDL-C, TGs, hsCRP, and adiponectin (all P< 0.05; Table 1). Among the 3

sphingolipid subclasses, SMs had the highest concentrations. Within the Cer subclass, Cer

(d18:1/24:1) had the highest mean level and Cer(d18:1/26:1) had the lowest mean level (3.03

[95% CI 2.90, 3.15] versus 0.041 [95% CI 0.038, 0.045]; P< 0.001). Levels of saturated and
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unsaturated SMs were much higher than levels of hydroxyl-SMs. Compared with non-cases,

cases had significantly higher concentrations of 34 sphingolipids, including 6 Cers, 5 dhCers,

20 SMs, and 3 GSLs after Bonferroni correction (all P< 0.001; S2 Table).

Sphingolipids and cardiometabolic traits

Sphingolipids were highly intercorrelated (rs > 0.5) within the same subclasses. As precursors

of Cers, dhCers showed moderate to strong correlations (rs = 0.27 to 0.90; all P< 0.001) with

Cers and GSLs carrying the same fatty acid (S2 Fig). Regarding the cardiometabolic traits,

most Cers, dhCers, and SMs with long-chain fatty acids were positively correlated with fasting

glucose (rs = 0.11 to 0.54), HbA1c (rs = 0.09 to 0.22), insulin (rs = 0.10 to 0.16), HOMA-IR

(rs = 0.09 to 0.22), total cholesterol (rs = 0.11 to 0.49), LDL-C (rs = 0.11 to 0.50), and TGs (rs =

0.10 to 0.46), but inversely correlated with HOMA-B (rs = −0.26 to −0.09) (all P< 0.001;

S3 Fig).

Table 1. Baseline characteristics of study participants with and without incident T2D.

Characteristic Incident T2D P value

Non-cases (n = 1,445) Cases (n = 529)

Age (years) 58.0 (6.0) 58.3 (6.0) 0.13

Male 593 (41.0%) 230 (43.5%) 0.72

Beijing residents 617 (42.7%) 317 (59.9%) <0.001

Urban residents 596 (41.3%) 222 (42.0%) 0.63

Educational attainment� 10 years 263 (18.2%) 109 (20.6%) 0.92

Current smoking 400 (27.7%) 146 (27.6%) 0.15

Current alcohol drinking 343 (23.7%) 138 (26.1%) 0.82

High physical activity level 787 (54.5%) 290 (54.8%) 0.67

Family history of diabetes 138 (9.6%) 67 (12.7%) 0.05

BMI (kg/m2) 23.9 (3.3) 25.5 (3.7) <0.001

Waist circumference (cm) 81.7 (9.9) 86.5 (11.0) <0.001

Systolic blood pressure (mm Hg) 136.5 (21.3) 144.6 (22.6) <0.001

Diastolic blood pressure (mm Hg) 78.9 (10.5) 82.0 (10.6) <0.001

Fasting glucose (mmol/l) 5.2 (0.3) 5.7 (0.6) <0.001

HbA1c (%) 5.7 (0.4) 5.9 (0.5) <0.001

Fasting insulin (pmol/l) 91.2 (66.2, 125.4) 99.6 (73.1, 135.1) <0.001

HOMA-IRa 3.0 (2.2, 4.2) 3.5 (2.6, 4.8) <0.001

HOMA-Ba 155.0 (109.4, 218.4) 140.3 (101.0, 181.6) <0.001

Total cholesterol (mmol/l) 4.6 (0.9) 4.8 (1.0) 0.06

LDL-C (mmol/l) 3.2 (0.9) 3.3 (1.0) 0.04

HDL-C (mmol/l) 1.3 (0.3) 1.3 (0.3) <0.001

Triglycerides (mmol/l) 1.0 (0.7, 1.5) 1.1 (0.8, 1.8) <0.001

hsCRP (mg/l) 0.6 (0.3, 1.2) 0.8 (0.4, 1.7) 0.01

Adiponectinb (μg/ml) 14.9 (9.1, 23.3) 12.5 (8.0, 20.6) <0.001

Data are mean (SD), median (interquartile range), or n (%). Percentages may not sum to 100% because of rounding. P values were calculated adjusted for age, sex,

region (Beijing or Shanghai), and residence (urban or rural).
aData are missing for 2 participants.
bData are missing for 53 participants.

HbA1c, glycohemoglobin; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; HOMA-B, homeostatic model

assessment of β-cell function; hsCRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003451.t001
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Sphingolipids and incident T2D

As demonstrated in Tables 2 and S3, 14 sphingolipids (Cers: d18:1/18:1, d18:1/20:0, d18:1/

20:1, d18:1/22:1; saturated SMs: C34:0, C36:0, C38:0, C40:0; unsaturated SMs: C34:1, C36:1,

C42:3; hydroxyl-SMs: C34:1, C38:3; and a hexosylceramide [HexCer]: d18:1/20:1) were posi-

tively associated with incident T2D after multivariate adjustment including lifestyle character-

istics and BMI (RRper SD: 1.14–1.21; all P< 0.001). Of note, 3 out of 4 of the abovementioned

Cers were monounsaturated Cers (with MUFA in the acyl chain). The sphingolipid–T2D asso-

ciations did not change when BMI was replaced with waist circumference, but slightly attenu-

ated when baseline hsCRP and adiponectin were also adjusted for in the model. Further

controlling for fasting glucose abolished the significant associations (S4 Table).

In a sensitivity analysis of the log-Poisson model, longitudinal associations between the 14

sphingolipids and incident T2D were not materially altered (RRper SD: 1.11–1.22; all P< 0.001)

by additionally including HbA1c� 6.5% to define T2D (S4 Fig). In stratified analyses, the asso-

ciations were slightly stronger in individuals with overweight or obesity (BMI� 24 kg/m2)

and nonsmokers. No significant interactions were observed when analyses were stratified by

sex, smoking, alcohol drinking, physical activity, or BMI (all Pinteraction > 0.05; S5 Table).

Sphingolipids network analysis

WGCNA analysis generated 5 modules: module yellow contained very-long-chain SMs, mod-

ule turquoise was composed of long-chain Cers and SMs, module green included very-long-

chain Cers and dhCers, module brown comprised GSLs, and module blue consisted of

hydroxyl-SMs (Fig 1). As shown in S5 Fig, all modules were positively correlated with fasting

glucose (rs = 0.44 to 0.51; all P< 0.05). Compared with the lowest quartile, the highest quartile

Table 2. Associations (RRs [95% CIs]) between baseline sphingolipids and incident T2D.

Sphingolipid No. of carbons No. of dbs No. of -OHs Quartiles of sphingolipids Ptrend RR per SD P value

Q1 Q2 Q3 Q4

Cer(d18:1/18:1) 36 2 2 1 1.09 (0.87, 1.37) 1.20 (0.97, 1.49) 1.40 (1.14, 1.72) <0.001 1.14 (1.06, 1.22) <0.001

Cer(d18:1/20:0) 38 1 2 1 1.18 (0.94, 1.47) 1.24 (1.00, 1.54) 1.50 (1.22, 1.84) <0.001 1.14 (1.06, 1.22) <0.001

Cer(d18:1/20:1) 38 2 2 1 1.08 (0.86, 1.35) 1.18 (0.95, 1.47) 1.42 (1.16, 1.75) <0.001 1.18 (1.10, 1.26) <0.001

Cer(d18:1/22:1) 40 2 2 1 1.16 (0.90, 1.49) 1.35 (1.05, 1.73) 1.60 (1.25, 2.05) <0.001 1.17 (1.08, 1.27) <0.001

SM C34:0 34 0 2 1 0.97 (0.76, 1.24) 1.12 (0.88, 1.43) 1.38 (1.08, 1.76) <0.001 1.16 (1.06, 1.26) <0.001

SM C36:0 36 0 2 1 1.35 (1.07, 1.70) 1.39 (1.10, 1.75) 1.60 (1.28, 2.00) <0.001 1.17 (1.08, 1.26) <0.001

SM C38:0 38 0 2 1 1.37 (1.07, 1.76) 1.50 (1.17, 1.92) 1.69 (1.32, 2.16) <0.001 1.18 (1.10, 1.26) <0.001

SM C40:0 40 0 2 1 1.08 (0.84, 1.38) 1.27 (1.00, 1.62) 1.56 (1.23, 1.97) <0.001 1.14 (1.07, 1.22) <0.001

SM C34:1 34 1 2 1 1.20 (0.93, 1.56) 1.41 (1.09, 1.82) 1.64 (1.26, 2.13) <0.001 1.18 (1.09, 1.27) <0.001

SM C36:1 36 1 2 1 0.89 (0.71, 1.13) 1.05 (0.84, 1.31) 1.23 (1.00, 1.52) 0.01 1.17 (1.08, 1.26) <0.001

SM C42:3 42 3 2 1 1.06 (0.83, 1.36) 1.24 (0.97, 1.57) 1.40 (1.10, 1.79) 0.002 1.14 (1.06, 1.23) <0.001

SM (2OH) C34:1 34 1 4 1 1.24 (0.97, 1.59) 1.53 (1.20, 1.94) 1.65 (1.30, 2.08) <0.001 1.21 (1.12, 1.30) <0.001

SM (OH) C38:3 38 3 3 1 1.25 (0.97, 1.62) 1.38 (1.06, 1.80) 1.61 (1.24, 2.09) <0.001 1.19 (1.09, 1.29) <0.001

HexCer(d18:1/20:1) 38 2 2 1 1.05 (0.84, 1.32) 1.22 (0.98, 1.53) 1.46 (1.18, 1.80) <0.001 1.17 (1.08, 1.26) <0.001

Model was adjusted for age, sex, region (Beijing or Shanghai), residence (urban or rural), educational attainment (0–6 years, 7–9 years, or�10 years), current smoking

(yes or no), current alcohol drinking (yes or no), physical activity (low, moderate, or high), family history of diabetes (yes or no), and BMI. Only sphingolipids

associated with incident T2D after Bonferroni correction for multiple testing of the 76 metabolites are shown.

-OH, hydroxyl; Cer, ceramide; db, double bond; HexCer, hexosylceramide; No., number; RR, relative risk; SM, sphingomyelin; SM (OH), hydroxyl-sphingomyelin with

1 additional hydroxyl; SM (2OH), hydroxyl-sphingomyelin with 2 additional hydroxyls; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003451.t002
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of all modules except blue significantly increased the risk of incident T2D by percentages that

ranged from 30% to 59%. Among them, the modules turquoise and yellow, containing satu-

rated SMs, showed the highest associations with increased T2D risk (both P< 0.001; Table 3).

Similarly as for individual sphingolipids, the significant associations between the 4 modules

yellow, turquoise, green, and brown and incident T2D were abolished when fasting glucose

was additionally adjusted for in the model (S4 Table).

Fig 1. Weighted gene co-expression network analysis (WGCNA) of sphingolipid profile. (A) Cluster dendrogram and heatmap correlation of 76

sphingolipids. Color bars on the left and at the top represent 5 identified modules. Sphingolipids that could not be clustered to any 1 module are labeled gray. (B)

Correlation heatmap among the 5 modules. Color bars on the left and at the bottom represent modules, and grid squares indicate Pearson correlation coefficients

among module eigengenes. (C) Colors indicate the modules detected by topological overlap measure (yellow: very long-chain SMs, including saturated SMs;

turquoise: long-chain Cers and SMs, including saturated SMs; green: very-long-chain Cers and dhCers; brown: GSLs; blue: hydroxyl-SMs). (D) Five sub-

networks are shown as node and edge graphs. Sphingolipids are presented as nodes. Within each module, those nodes significantly associated with incident type

2 diabetes are labeled bold. Cer, ceramide; dhCer, dihydroceramide; GlcCer, glucosylceramide; GSL, glycosphingolipid; HexCer, hexosylceramide; LacCer,

lactosylceramide; SM, sphingomyelin; SM (OH), hydroxyl-sphingomyelin with 1 additional hydroxyl; SM (2OH), hydroxyl-sphingomyelin with 2 additional

hydroxyls.

https://doi.org/10.1371/journal.pmed.1003451.g001
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HOMA-B-mediated detrimental associations of sphingolipids with T2D

Thirteen out of the 14 abovementioned sphingolipids were inversely associated with HOMA-B

(all P< 0.001; S6 Table). Notably, adjustment for HOMA-B abolished significant associations

for 10 of the sphingolipids, while substituting HOMA-B with HOMA-IR also eliminated sig-

nificant associations for 5 of the sphingolipids (S4 Table). Mediation analysis further con-

firmed that significant associations of the 13 sphingolipids with T2D were largely mediated by

HOMA-B (mediation proportion: 11.19%–42.42%; Table 4), rather than HOMA-IR, hsCRP,

and adiponectin (S7 Table). Consistently, the module–T2D associations were also largely

mediated by HOMA-B (mediation proportion: 20.00%–36.84%).

In addition, GWASs for the 14 sphingolipids were performed among 1,976 participants of

Chinese ancestry. Significant genome-wide associations were identified for Cer(d18:1/20:0)

and Cer(d18:1/20:1) at CERS4, for SM C34:0 at LASP1, for SM C34:1 at PCDHGA12, for SM

C36:0 at LRRC4C, for SM C42:3 at MYRF, and for HexCer(d18:1/20:1) at ATP10D (S8 Table;

S6 Fig). Five significant SNPs (including 1 genome-wide significant and 4 less stringently sig-

nificant SNPs) for Cer(d18:1/20:1) were obtained, and the mean F-statistic was 24 (S8 Table).

The odds ratio for T2D per SD of genetically increased Cer(d18:1/20:1) was 1.15 (95% CI

1.05–1.26; P = 0.002). No strong evidence of heterogeneity and unbalanced pleiotropy existed

(Pheterogeneity = 0.28; intercept = −0.003, P = 0.80) (Fig 2; S9 Table). In a leave-one-out sensitiv-

ity analysis, the effect size of Cer(d18:1/20:1) on T2D ranged from 1.12 to 1.19, showing small

fluctuation (S7 Fig). However, nonsignificant associations with T2D were detected for other

Table 3. Associations (RRs [95% CIs]) between module eigengenes and incident T2D.

Module Quartiles of module eigengenes Ptrend RR per SD P value

Q1 Q2 Q3 Q4

Module yellow (very-long-chain SMs, including saturated SMs); number of molecules = 10

Cases/total 86/493 111/494 145/494 187/493

Model 1 1 1.26 (0.97, 1.63) 1.58 (1.24, 2.02) 1.85 (1.45, 2.37) <0.001 1.21 (1.13, 1.29) <0.001

Model 2 1 1.16 (0.90, 1.50) 1.40 (1.09, 1.79) 1.59 (1.24, 2.04) <0.001 1.15 (1.07, 1.24) <0.001

Module turquoise (long-chain Cers and SMs, including saturated SMs); number of molecules = 23

Cases/total 97/493 102/494 145/494 185/493

Model 1 1 0.97 (0.76, 1.25) 1.29 (1.02, 1.62) 1.60 (1.27, 2.00) <0.001 1.23 (1.14, 1.34) <0.001

Model 2 1 0.97 (0.76, 1.24) 1.22 (0.97, 1.54) 1.43 (1.14, 1.79) <0.001 1.18 (1.09, 1.27) <0.001

Module green (very-long-chain Cers and dhCers); number of molecules = 7

Cases/total 91/493 110/494 139/494 189/493

Model 1 1 1.15 (0.88, 1.50) 1.36 (1.04, 1.78) 1.78 (1.36, 2.34) <0.001 1.23 (1.12, 1.35) <0.001

Model 2 1 1.08 (0.83, 1.41) 1.20 (0.91, 1.58) 1.52 (1.16, 2.00) <0.001 1.16 (1.06, 1.27) 0.002

Module brown (GSLs); number of molecules = 11

Cases/total 105/493 110/494 149/494 165/493

Model 1 1 0.99 (0.78, 1.25) 1.23 (0.98, 1.53) 1.29 (1.03, 1.62) 0.006 1.13 (1.04, 1.22) 0.003

Model 2 1 1.01 (0.80, 1.27) 1.26 (1.01, 1.56) 1.30 (1.05, 1.63) 0.004 1.13 (1.05, 1.22) 0.002

Module blue (hydroxyl-SMs); number of molecules = 12

Cases/total 103/493 127/494 135/494 164/493

Model 1 1 1.05 (0.83, 1.34) 1.03 (0.80, 1.34) 1.19 (0.92, 1.55) 0.19 1.11 (1.01, 1.22) 0.03

Model 2 1 1.02 (0.81, 1.29) 1.00 (0.78, 1.28) 1.09 (0.85, 1.41) 0.50 1.08 (0.98, 1.18) 0.11

Model 1 adjusted for age, sex, region (Beijing or Shanghai), residence (urban or rural), educational attainment (0–6 years, 7–9 years, or�10 years), current smoking (yes

or no), current alcohol drinking (yes or no), physical activity (low, moderate, or high), and family history of diabetes (yes or no). Model 2 further adjusted for BMI.

Cer, ceramide; dhCer, dihydroceramide; GSL, glycosphingolipid; hydroxyl-SM, hydroxyl-sphingomyelin; RR, relative risk; SM, sphingomyelin; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003451.t003
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Table 4. Multiple mediation models of β-cell function and insulin resistance in the associations between sphingolipids and incident T2D.

Sphingolipid or module SP on mediator

(X!M)

P value Direct effect

(X!Y, adjusted M)

P value Indirect effect

(X!M!Y)

P value Proportion mediated (%)

HOMA-B

Cer(d18:1/18:1) −0.096 (−0.139, −0.054) <0.001 0.159 (0.051, 0.267) 0.004 0.030 (0.015, 0.050) <0.001 15.87

Cer(d18:1/20:0) −0.132 (−0.174, −0.090) <0.001 0.146 (0.038, 0.253) 0.008 0.040 (0.023, 0.064) <0.001 21.51

Cer(d18:1/20:1) −0.174 (−0.216, −0.132) <0.001 0.183 (0.075, 0.292) <0.001 0.051 (0.030, 0.077) <0.001 21.79

Cer(d18:1/22:1) −0.210 (−0.257, −0.162) <0.001 0.156 (0.034, 0.279) 0.01 0.062 (0.039, 0.092) <0.001 28.44

SM C34:0 −0.281 (−0.328, −0.235) <0.001 0.114 (−0.011, 0.238) 0.07 0.084 (0.049, 0.123) <0.001 42.42

SM C36:0 0.011 (−0.033, 0.054) 0.64 0.223 (0.111, 0.334) <0.001 −0.004 (−0.020, 0.011) 0.64 0.00

SM C38:0 −0.181 (−0.225, −0.136) <0.001 0.196 (0.086, 0.307) <0.001 0.053 (0.032, 0.079) <0.001 21.29

SM C40:0 −0.101 (−0.145, −0.056) <0.001 0.165 (0.056, 0.274) 0.003 0.031 (0.016, 0.048) <0.001 15.82

SM C34:1 −0.277 (−0.324, −0.229) <0.001 0.167 (0.044, 0.290) 0.008 0.079 (0.048, 0.115) <0.001 32.11

SM C36:1 −0.193 (−0.236, −0.149) <0.001 0.165 (0.050, 0.280) 0.005 0.057 (0.034, 0.087) <0.001 25.68

SM C42:3 −0.101 (−0.148, −0.053) <0.001 0.169 (0.051, 0.287) 0.005 0.031 (0.015, 0.052) 0.001 15.50

SM (2OH) C34:1 −0.098 (−0.142, −0.054) <0.001 0.238 (0.124, 0.352) <0.001 0.030 (0.014, 0.050) <0.001 11.19

SM (OH) C38:3 −0.194 (−0.243, −0.144) <0.001 0.189 (0.062, 0.317) 0.004 0.057 (0.035, 0.083) <0.001 23.17

HexCer(d18:1/20:1) −0.228 (−0.270, −0.186) <0.001 0.156 (0.046, 0.266) 0.005 0.065 (0.038, 0.094) <0.001 29.41

Module yellow −0.082 (−0.108, −0.055) <0.001 0.172 (0.058, 0.286) 0.003 0.043 (0.025, 0.068) <0.001 20.00

Module turquoise −0.131 (−0.156, −0.107) <0.001 0.165 (0.049, 0.282) 0.005 0.067 (0.040, 0.098) <0.001 28.88

Module green −0.090 (−0.120, −0.061) <0.001 0.150 (0.018, 0.282) 0.03 0.049 (0.027, 0.078) <0.001 24.62

Module brown −0.118 (−0.143, −0.094) <0.001 0.108 (−0.005, 0.221) 0.06 0.063 (0.039, 0.092) <0.001 36.84

HOMA-IR

Cer(d18:1/18:1) 0.066 (0.025, 0.108) 0.002 0.175 (0.068, 0.282) 0.001 0.010 (0.002, 0.026) 0.05 5.41

Cer(d18:1/20:0) 0.025 (−0.017, 0.066) 0.25 0.180 (0.073, 0.286) 0.001 0.004 (−0.003, 0.016) 0.31 2.17

Cer(d18:1/20:1) 0.047 (0.005, 0.089) 0.03 0.226 (0.119, 0.332) <0.001 0.007 (0.0004, 0.024) 0.10 3.00

Cer(d18:1/22:1) 0.099 (0.052, 0.147) <0.001 0.203 (0.082, 0.324) 0.001 0.015 (0.004, 0.035) 0.03 6.88

SM C34:0 0.072 (0.025, 0.120) 0.003 0.190 (0.070, 0.311) 0.002 0.011 (0.002, 0.028) 0.05 5.47

SM C36:0 0.101 (0.058, 0.144) <0.001 0.201 (0.090, 0.313) <0.001 0.015 (0.002, 0.032) 0.03 6.94

SM C38:0 0.144 (0.100, 0.188) <0.001 0.226 (0.116, 0.335) <0.001 0.020 (0.004, 0.041) 0.03 8.13

SM C40:0 0.168 (0.124, 0.212) <0.001 0.171 (0.061, 0.281) 0.002 0.024 (0.004, 0.049) 0.03 12.31

SM C34:1 0.133 (0.086, 0.181) <0.001 0.226 (0.107, 0.346) <0.001 0.019 (0.002, 0.040) 0.03 7.76

SM C36:1 0.052 (0.009, 0.095) 0.02 0.213 (0.101, 0.326) <0.001 0.008 (0.0004, 0.022) 0.09 3.62

SM C42:3 0.134 (0.087, 0.180) <0.001 0.177 (0.058, 0.295) 0.003 0.020 (0.003, 0.040) 0.04 10.15

SM (2OH) C34:1 0.073 (0.030, 0.116) 0.001 0.256 (0.142, 0.370) <0.001 0.011 (0.002, 0.026) 0.05 4.12

SM (OH) C38:3 0.164 (0.115, 0.213) <0.001 0.226 (0.099, 0.352) <0.001 0.023 (0.004, 0.050) 0.03 9.24

HexCer(d18:1/20:1) 0.060 (0.018, 0.103) 0.005 0.211 (0.104, 0.318) <0.001 0.009 (0.001, 0.024) 0.06 4.09

Module yellow 0.090 (0.066, 0.114) <0.001 0.189 (0.075, 0.303) 0.001 0.024 (0.003, 0.05) 0.03 11.27

Module turquoise 0.037 (0.013, 0.060) 0.002 0.221 (0.107, 0.335) <0.001 0.011 (0.002, 0.024) 0.05 4.74

Module green 0.066 (0.039, 0.093) <0.001 0.179 (0.047, 0.311) 0.008 0.019 (0.005, 0.040) 0.02 9.60

Module brown 0.023 (0.000, 0.046) 0.05 0.165 (0.054, 0.276) 0.004 0.007 (0.001, 0.020) 0.12 4.07

Model was adjusted for age, sex, region (Beijing or Shanghai), residence (urban or rural), educational attainment (0–6 years, 7–9 years, or�10 years), current smoking

(yes or no), current alcohol drinking (yes or no), physical activity (low, moderate, or high), family history of diabetes (yes or no), and BMI. In the model, X denotes the

sphingolipid, M denotes the mediator, and Y denotes incident T2D.

Cer, ceramide; HexCer, hexosylceramide; HOMA-B, homeostatic model assessment of β-cell function; HOMA-IR, homeostatic model assessment of insulin resistance;

SM, sphingomyelin; SM (OH), hydroxyl-sphingomyelin with 1 additional hydroxyl; SM (2OH), hydroxyl-sphingomyelin with 2 additional hydroxyls; SP, sphingolipid;

T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003451.t004
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sphingolipids, including Cer(d18:1/20:0), SMs (C34:0, C34:1, C36:0, C42:3), and HexCer

(d18:1/20:1).

Discussion

By applying a high-coverage targeted lipidomic approach to measure 76 sphingolipids out of

728 lipids, we observed that 11 novel and 3 previously reported sphingolipids were signifi-

cantly associated with elevated risk of T2D, independent of established risk factors. The delete-

rious associations of sphingolipids with T2D were largely mediated by β-cell function, and a

positive association between genetically instrumented Cer(d18:1/20:1) and T2D was also

evidenced.

To the best of our knowledge, this is the first study to show such a large number of T2D-

associated sphingolipid species, including 11 novel and 3 reported sphingolipids, implying

that sphingolipid perturbations could precede and precipitate the onset of T2D. Of the 14

identified sphingolipids, we confirmed the positive associations of SM C34:1 and SM C36:1

with T2D incidence as reported in a Singapore Chinese population [13], and of Cer(d18:1/

20:0) with T2D incidence as reported in a French population [28]. Beyond the associations for

individual species, our network analysis further supported collective effects: 4 modules con-

taining SMs, Cers, and GSLs were positively associated with T2D incidence, with the strongest

associations in the 2 modules containing saturated SMs. To date, only limited longitudinal

studies have investigated sphingolipid–T2D associations, and these were mainly conducted in

European and American populations and covered 4–15 sphingolipid species [12,14,15], except

the Singapore study [13]. The species of Cer and SM studied were predominantly those

Fig 2. Association between genetically instrumented level of Cer(d18:1/20:1) and type 2 diabetes. Odds ratio (OR) was scaled genetically per 1-SD increase in plasma

Cer(d18:1/20:1) level. Estimated effect size was calculated by inverse variance weighting (IVW) analysis using a fixed-effects or random-effects model. P for

heterogeneity between estimates from individual SNPs was 0.28 in the analysis including all 5 SNPs and 0.51 in the analysis excluding rs72897064 near LRRC4C. Chr,

chromosome; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003451.g002
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carrying the d18:1 sphingoid base and a SFA, and yielded mixed findings [12,14,15]. For

instance, when quantifying 4 Cers, Hilvo et al. reported a positive association of Cer(d18:1/

18:0) with incident T2D in a Finnish population [15], whereas the Dallas Heart Study found

null association in a multi-ethnic cohort [29]. Notably, only SM C34:1 and SM C36:1 out of 80

sphingolipids were found to be positively associated with T2D incidence in the Singapore

study among 2,302 ethnically Chinese individuals [13]. Though both the Singapore study and

our study were conducted in ethnically Chinese populations, the inconsistencies between the

studies might be ascribed to the differences in methodologies, such as lipid extraction (liquid–

liquid extraction versus protein precipitation extraction) and mass spectrometry setups, popu-

lation characteristics (older individuals with higher levels of BMI, glucose, and T2D incidence

in our study), statistical methods such as adjusted covariates, and dietary and lifestyle charac-

teristics. While waiting for further studies, the high-coverage lipidomics used in our study cer-

tainly provide a unique opportunity to explore the associations of more novel sphingolipids

with T2D development.

One of the important findings in our study was that monounsaturated Cers were signifi-

cantly associated with elevated risk of T2D, rather than saturated Cers, as reported in Western

populations [15,28]. The distinct fatty acids in Cers might reflect substrate abundancy during

Cer synthesis. Presumably, higher intake of SFAs in Western populations than in Chinese pop-

ulations (11.5%–11.9% versus 7.3%–7.5%) might enhance de novo synthesis of saturated Cers

[28,30,31], while the high carbohydrate-to-fat ratio of the diet (60.8%:27.0%) in our cohort was

correlated with upregulated levels of fatty acids in the de novo lipogenesis (DNL) pathway,

mainly 16:1n-7, 16:1n-9, and 18:1n-9, which are significantly associated with incident meta-

bolic syndrome and T2D [19]. Likewise, the plentiful DNL fatty acids might facilitate monoun-

saturated Cer synthesis, and this notion was further supported by positive correlations

between baseline Cers and DNL fatty acids (P< 0.001; S8 Fig). Notably, we also documented a

significant association between genetically instrumented Cer(d18:1/20:1) and T2D using the

CERS4 locus as a genetic instrument. CERS4 encodes LAG1 longevity assurance homologue 4,

which catalyzes sphinganine into dihydroceramide. A previous GWAS showed significant

association between CERS4 variants and Cer(d18:1/20:0) [32]. In addition, our study found

that adjustment for baseline fasting glucose removed significant Cer–T2D associations, sug-

gesting their glucose-dependent nature. Indeed, recent studies in mice indicated that

decreased Cer levels improved glucose homeostasis after genetic ablation of dihydroceramide

desaturase 1 (DES1) or ceramide synthase 6 (CerS6), 2 critical enzymes in the de novo Cer syn-

thesis pathway [7,8]. Collectively, our results, including genetic analysis, comprehensively shed

light on the detrimental associations of specific Cers with T2D, providing further supportive

evidence for Cers as early biomarkers or intervention targets in glycemic control and T2D

prevention.

Our study also highlighted another 2 subclasses, namely SMs (4 saturated, 3 unsaturated,

and 2 hydroxyl-SMs) and GSLs (1 HexCer), that were significantly associated with elevated

T2D incidence. As the most abundant subclass, SMs constitute roughly 87% of plasma sphin-

golipids and were reported to be associated with higher risks of atherosclerosis and coronary

heart disease [5]. However, the SM–T2D associations remained controversial. For instance,

both our study and the Singapore study found positive associations of SM C34:1 (or d16:1/

18:0; S2 Text) and SM C36:1 (or d18:1/18:0) [13], while a German cohort (EPIC-Potsdam) and

a Spanish cohort (PREDIMED Trial) showed inverse associations of SM(d18:1/16:1) and a SM

score derived from d18:1 SMs with T2D incidence [12,14]. These discrepancies could be

explained by the following: (1) distinct SM structures (saturated SMs in our study versus

unsaturated SMs in Western populations) that may exert distinctive impacts on T2D-related

traits [16], (2) the lack of saturated SM and hydroxyl-SM data [12,14], or (3) effects of age,
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vitamin D, and obesity status [33]. For instance, Lemaitre et al. reported in an American

cohort study that SMs (e.g., C36:1) were inversely associated with insulin, HOMA-IR, and

HOMA-B in individuals with BMI� 30 kg/m2, but the associations became positive with BMI

>30 kg/m2 [11]. Accordingly, the mean BMI in the aforementioned studies ranged from 25.9

to 30.8 kg/m2, BMI values at which SMs were more likely to be associated with lower T2D risk

[12,14,34]. In contrast, the mean BMI was 24.3 kg/m2 in our study population and 22.3 kg/m2

in the study of Singapore Chinese individuals, BMI values at which SMs were already associ-

ated with unfavorable metabolic traits, like increased levels of fasting glucose, HbA1c, and

HOMA-IR. East Asian populations are known to have relatively higher accumulation of vis-

ceral fat even at a relatively lower BMI than white populations [3], which might partially eluci-

date the different SM–T2D associations between East Asian and Western populations. In

terms of the effects of GSLs on T2D, studies in this regard were scarce owing to low circulating

GSL concentrations [13,28]; nonetheless, our study evidenced a novel association between

HexCer and incident T2D. Although the underlying mechanism is not entirely clear, studies

in animal models showed that lowering GSL levels using a pharmacological inhibitor signifi-

cantly improved glucose homeostasis [35]. Thus, the current findings suggested that the 2 sub-

classes SMs and GSLs were also associated with future T2D, and the effects of adiposity status

on the associations for SMs may need to be addressed in multi-ethnic populations.

Interestingly, we also found that the detrimental sphingolipid–T2D associations appeared

to be largely mediated by β-cell dysfunction instead of insulin resistance (mediation propor-

tion 11.19%–42.42% for HOMA-B versus 2.17%–12.31% for HOMA-IR), although the sphin-

golipids in these detrimental sphingolipid–T2D associations were also positively associated

with HOMA-IR, consistent with other studies [13,28]. In particular, this finding implies that

the observed association between genetically instrumented Cer(d18:1/20:1) and T2D is possi-

bly mediated by impaired β-cell function. Mechanistic studies in rodents revealed that stimu-

lating de novo Cer synthesis promoted reduced β-cell function via enhancing reactive oxygen

species production, mitochondrial dysfunction, and consequent β-cell apoptosis [36]. Interest-

ingly, we also observed positive associations between Cers and acylcarnitines, which may

reflect dysregulated fatty acid oxidation and mitochondrial stress (P< 0.001; S8 Fig). Our pre-

vious study showed that acylcarnitines were positively associated with incident T2D and con-

siderably improved predictive ability for T2D [20]. SMs were found to be involved in β-cell

apoptosis and regulating insulin secretion [37]. Sphingomyelin synthase 2 (SMS2)–deficient

mice had diminished plasma SM levels and attenuated nuclear factor kappa-B (NF-κB) activa-

tion, accompanied by improved insulin sensitivity and glucose tolerance [9]. Moreover, inhib-

iting GSL concentrations in Zucker rats with diabetes prevented β-cell function failure and

improved glycemic control [35]. Though impaired β-cell function and insulin resistance are

the 2 major causes in the pathogenesis of T2D, East Asian populations tend to display relatively

lower β-cell function and insufficient insulin secretion, so they are considered as having higher

T2D predisposition than white populations [3]. Overall, our findings highlighted a stronger

mediation effect of β-cell dysfunction than of insulin resistance in the sphingolipid–T2D asso-

ciations in Chinese individuals (S9 Fig).

The strengths of our study included the following: a prospective cohort design, collection of

a multitude of covariates to minimize confounding, application of a high-coverage targeted

lipidomic approach for a wide range of sphingolipids, and application of multi-omics to

underscore potential mechanisms underlying sphingolipid–T2D associations. Admittedly,

there were also some limitations. First, most of incident T2D cases were diagnosed by fasting

glucose in the follow-up visit; therefore, potentially undiagnosed cases may exist, and more

detailed information on the timing of the onset of T2D during the 6-year follow-up period

could not be obtained. Second, our findings could not be validated in an independent
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population, although we conducted a cross-region validation and obtained similar associations

in Beijing and Shanghai, subpopulations with somewhat different genetic background and life-

style characteristics (S5 Table) [38]. Third, about 23% of participants were lost in the follow-up

period, though this rate was comparable with that of other cohort studies [39,40]. Fourth, due

to its observational nature, our study cannot make causal inference for most of the identified

sphingolipids. Although we conducted a MR analysis and found a positive association of

genetically predicted Cer(d18:1/20:1) with T2D, replication in future studies is warranted,

given the relatively small number of summary-level data for the associations between genetic

variants and sphingolipids in the current study. Finally, our findings from the middle-aged

and elderly Chinese population may not be generalizable to other age and ethnic populations.

In conclusion, we identified a panel of novel sphingolipids with unique structures that were

significantly associated with elevated risk of T2D, and these associations appeared to be largely

mediated through β-cell dysfunction among Chinese individuals. Our findings suggested that

specific sphingolipids could be promising early biomarkers and intervention targets beyond

traditional ones in T2D prevention and control in future clinical settings. Certainly, more

studies are merited to confirm our findings and further identify their determinants and poten-

tial applications in other populations.

Supporting information

S1 STROBE Checklist.

(DOCX)

S1 Fig. Chemical structure of sphingolipids. For each graph, n denotes the number of sphin-

golipids identified in the current study. Sphingoid base denotes sphingosine, generally defined

as a carbon chain, di-hydroxylated at positions 1 and 3 and with a double bond at position 4,

which varies in chain length (C16–C19), number of double bonds (0–2), and number of

hydroxyls (0–3). The fatty acid residue also varies substantially with respect to chain length

(C14–C26), number of double bonds (saturated or unsaturated), and number of hydroxyl

groups (0–1).

(TIF)

S2 Fig. The Spearman correlations among baseline concentrations of sphingolipids.

(TIF)

S3 Fig. The Spearman correlations between sphingolipids and cardiometabolic traits

adjusted for age, sex, region (Beijing or Shanghai), and residence (urban or rural).

(TIF)

S4 Fig. Sensitivity analysis of T2D incidence including HbA1c� 6.5% as T2D definition.

M1: incident T2D was defined with self-reported doctor-diagnosed diabetes, taking antidia-

betic medications, or fasting glucose� 7.0 mmol/l. M2: further adding HbA1c� 6.5% to

define T2D. Model was adjusted for age, sex, region (Beijing or Shanghai), residence (urban or

rural), educational attainment (0–6 years, 7–9 years, or�10 years), current smoking (yes or

no), current alcohol drinking (yes or no), physical activity (low, moderate, or high), family his-

tory of diabetes (yes or no), and BMI.

(TIF)

S5 Fig. Weighted gene co-expression network analysis (WGCNA) of sphingolipid profile.

Scale-free topology parameters in WGCNA are shown in (A) and (B). The smallest soft power

(7) with R2� 0.80 was chosen. (C). Spearman correlations were calculated between module
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eigengenes and metabolic traits.

(TIF)

S6 Fig. Manhattan plots and Q-Q plots for genome-wide associations with circulating

sphingolipids (n = 1,976). The −log10 P values calculated using linear regression analysis

under an additive genetic model are presented in the figure. (A) Cer(d18:1/20:0); (B) Cer

(d18:1/20:1); (C) SM C34:0; (D) SM C36:0; (E) SM C34:1; (F) SM C42:3; (G) HexCer C20:1.

The red lines in Manhattan plots represent genome-wide significant level (P< 5 × 10−8).

(TIF)

S7 Fig. Forest plot of sensitivity analysis.

(TIF)

S8 Fig. The Spearman correlations of sphingolipids with acylcarnitines and fatty acids in

the de novo lipogenesis pathway.

(TIF)

S9 Fig. Sphingolipid metabolism and underlying mechanisms in relation to T2D. Cer-

amides can be produced by (a) a de novo pathway initiated from serine and palmitoyl precur-

sors, (b) synthesis via sphingosine-1-phosphate (S-1-P), namely the “salvage pathway,” and (c)

degradation of sphingomyelins through sphingomyelinase. As important signal molecules,

ceramides can (d) induce pancreatic β-cell apoptosis through increasing endoplasmic reticu-

lum stress, producing reactive oxygen species, (e) promote the development of insulin resis-

tance via activating either protein phosphatase 2 or protein kinase C z, leading to attenuated

serine/threonine protein kinase, and (f) activate NLR family 3 inflammasome and produce

more cytokines. Solid lines represent a 1-step or certain process, whereas dotted lines represent

multiple-step or uncertain processes. CDase, ceramidase; CS, ceramide synthase; DES, dihy-

droceramide synthase; GlcCer, glucosylceramide; GCase, glucosylceramidase; GCS, glucosyl-

ceramide synthase; HexCer, hexosylceramide; LacCer, lactosylceramide; S1PP, S-1-P

phosphatase; SK, sphingosine kinase; SMase, sphingomyelinase; SMS, sphingomyelin

synthase; T2D, type 2 diabetes.

(TIF)

S1 Table. Tandem mass spectrometry parameters for analyzing human plasma sphingoli-
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S2 Table. Baseline sphingolipids in incident T2D cases and non-cases.
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S4 Table. Conditional analysis of plasma sphingolipids with incident T2D.
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S5 Table. Stratified analyses of the associations between plasma sphingolipids and incident

T2D.
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and adiponectin.
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