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Abstract

The vast amount of experimental data from recent advances in the field of high-throughput biology begs for integration into
more complex data structures such as genome-wide functional association networks. Such networks have been used for
elucidation of the interplay of intra-cellular molecules to make advances ranging from the basic science understanding of
evolutionary processes to the more translational field of precision medicine. The allure of the field has resulted in rapid
growth of the number of available network resources, each with unique attributes exploitable to answer different biological
questions. Unfortunately, the high volume of network resources makes it impossible for the intended user to select an
appropriate tool for their particular research question. The aim of this paper is to provide an overview of the underlying
data and representative network resources as well as to mention methods of integration, allowing a customized approach to
resource selection. Additionally, this report will provide a primer for researchers venturing into the field of network
integration.
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Introduction
Modern experimental techniques in high-throughput biology
e.g. next-generation sequencing (NGS), microarrays and yeast-
2-hybrid (Y2H) [1] systems, etc. are generating astronomical
2–40 exabytes of data every year [2]. In these data lie potential
keys to unlocking mechanisms behind many complex diseases.
Unfortunately, the accuracy of the produced information is
not improving at the same pace as its accelerated generation,
resulting in high rates of false positives and technique-specific
biases [3–5]. Additionally, current coverage of the genome,

transcriptome or proteome varies greatly between the exper-
imental approaches [6]. Coverage can be dramatically improved
by integration of data from different experimental techniques
[7, 8]. This approach has also the ability to minimize technique-
and source-specific biases and increase signal to noise ratio,
since the constant signal of true interactions is more likely to be
enhanced [8] while the uniformly distributed noise is averaged
out. Integration of data from heterogeneous types and sources
is also required for mapping the underlying biological network
responsible for the observed complex phenotypes like diseases
[9]. The reason for this is that molecular interactions composing
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Figure 1. Typical evidence types. The evidence typ es’ data are generated using different experiments or computational techniques for different levels of biological

information, i.e. DNA (yellow), RNA (turquoise) or proteins (red). There are different techniques for evaluating the information content of each data type e.g. correlation

measures such as MI and Pearson correlation for mRNA co-expression.

the underlying biological network stem from diverse modes
of communication at genetic, genomic and proteomic levels
such as genetic interactions, transcription factor (TF) binding,
signaling cascades, etc.

To capture the complex interplay between molecules, net-
works of functional association can be used. Such networks,
with nodes representing genes or proteins and links depicting
interactions, present a flexible model for capturing the com-
plexity of the underlying data [10]. A great number of net-
work resources has been constructed and are being used for
applications ranging from gene prioritization [11] and functional
annotation [12] to comparative interactomics [13] and precision
medicine [14]. A comprehensive, but incomplete database of
network resources, pathguide.org [15], currently contains infor-
mation about 702 resources. Although many of the resources are
specialized, the volume of available resources makes it difficult
to select the correct tool for the research question at hand. In
order to make an informed decision it is important to know
the underlying data and algorithms used in construction of
the candidate tools. Knowledge about the inner workings of
the resources allows for consideration of strengths and weak-
nesses of the different approaches from the perspective of the
research question at hand. Additionally, the staggering number
of resources, integration techniques and different types of data
can make it overwhelming to get in to the growing field of
genome-wide multi-omics networks. However, it is imperative
that new researchers are able to understand and improve upon
available resources, as well as develop new ones, to continue
addressing the challenging questions of mechanisms behind
complex phenotypes.

The aim of this paper is to describe the underlying data in
functional association networks, as well as the most widely
used integration algorithms. Techniques used in integration
of sequencing data for construction of patient similarity

networks are covered elsewhere [16]. There is also a review
of two main algorithms used for patient data integration on
a smaller scale [17], hence we will not cover those topics
either. There is, however, no up-to-date report on genome-scale
network integration that includes a comprehensive description
of underlying data types and sources—a shortage we aim to
address. Our main focus will therefore be the genome-wide
functional association networks of genes and proteins. There
are other intra-cellular molecules, e.g. metabolites and non-
coding RNA, with important roles in the underlying biological
networks [18]. Similar integration techniques could potentially
be applied to these other molecules, but this and the description
of the data to be used remain outside of the scope of this
work.

This review will start by presenting the most widely used
types and sources of data, as well as explaining their strengths
and weaknesses. In the following section different types of
genome-wide data integration techniques will be introduced.
The final section, before Discussion, will describe a selection of
representative examples of network resources.

Data types for network integration
Data stemming from different levels of biological organization
e.g. DNA, RNA, protein and different experiments such as DNA
sequencing, RNA-seq, Y2H, etc. needs to be evaluated prior to
integration. A metric tailored to the specifics of each data type
is therefore necessary to assess the strengths of the discov-
ered interactions. The information content and the quality of
individual data sets also need to be assessed and accounted
for. Below is an overview of the majority of the most common
data types and how they can be evaluated prior to integration
(Figure 1; Table 1).



1226 Guala et al.

Table 1. Overview of strengths, weaknesses and scoring approaches of different data types for network construction

Data type Strengths Weaknesses Evaluation metric

Co-citation High coverage and availability High rate of false positives and false
negatives

Term co-occurrence

Co-evolution Flexible version of gene neighborhood
with higher coverage

Noise due to e.g. gene duplications;
influenced by the number and distribution of
available complete genomes; cannot be used
on essential proteins

Phylogenetic profile* similarity

Co-expression High coverage and availability of mRNA
co-expression data; protein
co-expression is more reliable and direct

A proxy for co-regulation; low coverage for
protein co-expression

Correlation-based

Co-localization High coverage Can miss inter-compartmental interactions. Localization profile* similarity
Genetic
interaction

Valuable source of indirect interactions Lack of coverage. Mutation profile* similarity

Gene
neighborhood

High accuracy; available for all complete
genomes

Not always robust due to complex structure
of genomes; challenging with promiscuous
domains and interactions of distantly located
genes; fusion events are scarce

Constant score for gene fusion,
distance & order of genes

Co-regulation Provides indirect evidence of association Lack of coverage and availability. TF or miRNA profile* similarity
DDI Lower false positive rate than PPI Lack of coverage Domain profile correlation
PPI Direct evidence High FPR and varied quality of evidence. Correlation-based

∗‘Profile’ is defined as a binary vector indicating the presence or absence of a trait.

Co-citation

Co-citation is based on the idea that two proteins mentioned
in the same scientific text likely stem from an experiment
demonstrating a functional association. Instead of direct exper-
imental evidence, co-citation-based evidence uses the scientific
literature, describing protein interaction findings. Scientific lit-
erature can be mined using natural language processing and
other techniques [19]. Such text mining involves finding gene or
protein names, in abstracts or full texts of scientific literature
databases such as Medline, and determining if an interaction
between these genes or proteins exists. Gene or protein name
pair co-occurrence, i.e. how often the terms are present in the
same text, contrasted with frequency distributions of individual
gene or protein names can be used for scoring of this data type.

Despite a clear advantage in coverage, co-citation data bring
challenges diluting the true signal. The abundance of differ-
ent identifier sources and gene synonyms increases the risk of
false positives. If only abstracts are screened for co-occurrence,
instead of full texts, the risk of false negatives may increase.
Although most of the scientific literature is focused on posi-
tive interactions, distinguishing between positive and negative
interactions purely by studying co-occurrence is impossible and
may be another source of false positives. Finally, identifying the
species of the detected gene or protein pair is nontrivial and may
add additional false positives to the results.

Co-evolution

During the process of species evolution, molecular changes in
interacting proteins tend to occur in concert [20]. Co-evolution
can therefore be used to identify functionally associated pro-
teins. Co-evolution of a protein pair can be scored using the
‘mirror tree’ [21] method that relies on the Pearson correlation
of distance matrices for the studied proteins. Another scoring
technique is to first construct binary vectors showing presence
and absence of a protein across a collection of species i.e. a
phylogenetic profile [20] and then compare the similarity of such
profiles for different proteins. A more elaborate but still com-
putationally efficient method relies on identification of present

and absent sub-trees in the species trees of studied proteins [22].
The species trees can be constructed using orthologs from an
orthology database such as InParanoid [23]. Other more complex
and computationally expensive techniques are also available.
The size of phylogenetic profiles grows larger with the number
of available sequenced genomes. This increases the sensitivity
and robustness of this data type. However, noise is unavoidable
due to gene duplications and other genomic events [24].

Co-expression

Since regulation affects expression, co-expression can be viewed
as a proxy for co-regulation, making it suitable for prediction
of functional association between proteins coding for the co-
expressed genes. Two co-expressed genes are assumed to be
functionally associated if they have similar expression profiles
across various conditions. This feature is supported by the
fact that genes with similar co-expression profiles have been
observed to interact more frequently than would be expected
by chance [25–27]. Similarity of co-expression profiles across
multiple experimental conditions and time points assessed by
Pearson correlation, Spearman’s rank correlation or mutual
information (MI) can be used as a measure of association
between genes.

The most common experimental technique to obtain gene
expression data is microarray technology that relies on the
hybridization ability of complementary nucleotide strands.
Microarrays are chips of short, unique DNA fragments—so-
called ‘probes’— attached, in a predetermined arrangement, to a
surface of glass or silica. mRNA from cells, fluorescently marked
and often transcribed to complementary DNA (cDNA), is applied
to the chip for hybridization with complimentary strands.
All unbound fragments are washed away. The competitive
binding produces signal strengths proportional to the levels
of the available fragments. The raw signal strengths need to
be normalized and preprocessed before the intensities of the
different probes can be presented. The cross-hybridization
of transcripts to probes for genes of high similarity can
inflate expression values and poses a particular concern
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mitigated by removing genes of high sequence similarity. The
most comprehensive sources of microarray data are the gene
expression omnibus (GEO) [28] and ArrayExpress [29].

When shotgun sequencing is applied to RNA in order to deter-
mine its quantity in a sample, it is called ‘RNA sequencing’ (RNA-
seq). RNA-seq is another promising source of gene expression
data that has evolved tremendously during the recent years
[30]. RNA-seq usually involves a step where RNA is extracted
from the sample, then either fragmented directly or converted
to cDNA before the fragments are sequenced. The reads pro-
duced by shotgun sequencing are then either first aligned to a
reference genome before assembly or assembled into de novo
transcripts and then aligned to a reference genome. All these
steps involve sophisticated statistical techniques due to the
short read lengths and combinatorial complexity of read align-
ment. A more detailed description of this process can be found in
[31], but RNA-seq technology is evolving so rapidly that many of
the analysis steps are constantly updated. Since RNA-seq is not
constrained by specifically synthesized probes limited to certain
sequences, it provides a more unbiased and complete coverage
of the genome than microarrays. This can be seen in its supe-
rior ability to detect post-translational modifications, alterna-
tive splicing, gene fusions, single-nucleotide variants (SNPs) and
small RNAs such as micro-RNA (miRNA), ncRNA, tRNA, etc. [32]. It
also lacks the cross-hybridization issues inherent to the microar-
ray technology. Besides the inherent limitations common to all
NGS techniques, like variation in read depth across the genome
[33], RNA-seq is still a relatively expensive technique that has
some additional biases e.g. the short read lengths produce a high
uncertainty of read assignment for sequences of low complexity
or high similarity.

Due to post-translational modifications and regulation, the
levels of mRNA expression do not always correlate with the
levels of protein expression [34]. Studying protein expression
directly can therefore be a more reliable way of detecting func-
tional association. mRNA expression data have much higher cov-
erage and are therefore still necessary for completeness. Protein
expression can be assessed by various proteomic techniques
such as quantitative mass spectrometry (MS) [35] or antibody-
based protein microarrays [36]. Two relatively comprehensive
data source containing protein expression is the PRIDE Archive
[37] and the human protein atlas (HPA) [38]. The latter one
covers in 32 human tissues and 36 human cell lines. Another
large collection of protein abundance data for several species
in various tissues and cell types is stored in PaxDB [39]. As
with mRNA expression data, protein expression data can be
used to construct protein profiles based on tissues, cell types
and experimental conditions. Pairwise similarity between such
profiles of different proteins can be assessed using MI or adapted
Jaccard index [22], providing a score for this data type.

Co-localization

In order for proteins to interact physically they need to co-
localize to the same sub-cellular compartment at the time of
interaction. This trait can be utilized to determine functional
association of proteins [40]. Both experimentally determined
and predicted sub-cellular localization of proteins is available
through various resources [38, 41–43] with the Gene Ontology
(GO) being one of the largest (Table 2).

In order to increase reliability of scoring of co-localization it is
prudent to consider as many cellular compartments as possible.
The size of each compartment i.e. the number of proteins anno-
tated with it, is also of importance since larger compartment

increases the chance of spurious co-localization of any proteins
in that compartment. A profile based on presence/absence of
a protein in all sub-cellular compartments can be constructed
for each protein. MI between profiles or co-occurrence across
different compartments, for a protein pair, weighted by the
compartment size can be a suitable metric for this data type [44].

Co-regulation

To facilitate regulation of genes involved in the same cellular
processes their transcription may be linked via TFs. Patterns
of TF binding can therefore be used as evidence of functional
association. This data type is often referred to as co-regulation
and means that functionally associated proteins will likely be
regulated in the similar fashion yielding similar TF patterns.

Chromatin immunoprecipitation-on-chip (ChIP-chip) and
chromatin immunoprecipitation sequencing (ChIP-seq) are two
of the most widely used techniques for elucidating patterns of TF
binding. Both techniques start by cross-linking the DNA-bound
proteins with their DNA targets. The DNA is then shredded and
the proteins of interest are tagged with antibodies, which are
used to separate out the protein-bound DNA fragments. After
this step, the cross-linking is reversed, and the DNA fragments
are purified and amplified. Finally, the DNA fragments can either
be sequenced directly (ChIP-seq) or denatured, fluorescently
labeled and applied to a microarray for sequence identification
(ChIP-chip) [45].

Changes in gene expression as a result of changes in expres-
sion of TFs can be analyzed to get more indirect evidence of
TF regulation. Both the direct binding detected by ChIP-chip
and ChIP-seq and the indirect analysis are stored in databases
[45–47].

Regulatory control within the cell is also excreted by var-
ious non-coding RNA, e.g. miRNA, small interfering RNA, etc.
Regulatory patterns for these molecules can also be utilized for
prediction of functional association. Owing to a large number
of specific targets and its ability to completely alter protein
expression, miRNA has been the more utilized molecule in this
field. It is a short (23 nucleotides) RNA that folds into hairpin-
like structures, which can base pair to the mRNA of its targets,
affecting post-transcriptional levels of targeted genes [48]. It
is still challenging to determine regulatory relationships for
miRNA and its targets using experimental techniques so most
of the data come from sequence complementarity predictions
of miRNA and target mRNA [49].

Scoring for both TF and miRNA co-regulation can be done by
comparing of regulation profiles (TF or miRNA) for a gene pair
using some measure of similarity e.g. shared fraction of target
sites of a gene pair in relation to all target sites of the two genes,
or Pearson correlation of profiles, etc.

Domain-domain interaction

A structurally and functionally well-defined section of a protein
is referred to as a protein domain. It is able to demonstrate a dis-
tinct folding independent from the folding of other parts of the
protein. Due to their functional independence, protein domains
exhibit higher conservation over time compared to full length
proteins, making domain–domain interactions (DDIs) more reli-
able for inference of functional association than protein–protein
interactions (PPIs) [50, 51]. Unfortunately, the amount of experi-
mental DDI data is vastly surpassed by that of PPI, and computa-
tional DDI prediction techniques are usually involved to increase
coverage. Both experimentally determined and computationally
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predicted DDIs are available from databases like InterPro [52] and
can be mapped to their corresponding proteins using databases
such as Pfam [53].

One approach to evaluating DDIs compares the observed
and the expected co-occurrence of a domain pair, where the
latter is calculated from the individual frequencies of domains
[54]. Another approach calculates the MI [55] between domain
profiles based on domain occurrence in the genome [27].

Genetic interaction

The term ‘genetic interaction’ was first discussed in detail in
2008 by Ramamurthy et al. [56]. However, genetic interaction,
in the context of functional association networks, indicates
that two mutated genes with known phenotype can produce
an unexpected phenotype when the mutations happen at
the same time. The mechanism behind this phenomenon is
often described as genetic interaction and it can sometimes
be as extreme as two, on their own benign mutations causing
cell death when inflicted at the same time [57, 58]. The
‘synthetic genetic array’ analysis [59] is an automated technique
to systematically test pairwise mutations in Saccharomyces
cerevisiae [60]. Scoring of this data type is based on similarity
of mutation profiles of two genes, calculated using Pearson
correlation.

Gene neighborhood

Genes giving rise to interacting proteins or domains can some-
times fuse in a process called ‘gene fusion’ [61]. The discovery
of fused genes has therefore been used as so-called gene neigh-
borhood evidence of functional association [62]. Naturally, not
all interacting proteins or domains will give rise to fused genes,
limiting the coverage of this data type. Some false positives can
also be produced since protein or domain interaction is not the
only reason leading to gene fusion. Therefore, a constant score
reflecting the limitations of this data type can be assigned to the
interactions identified through gene fusion.

Organization into jointly transcribed regions, i.e. operons is
another way that functionally associated genes stay in proxim-
ity. This feature facilitates transcriptional regulation in prokary-
otes since all the genes in the operon can be regulated by a single
promotor. Thus, membership in the same operon can be utilized
as evidence for functional association [63]. Due to recombination
events in eukaryots, operons are not commonly observed there.
However, regulation at the chromatin level forces clustering of
genes with similar expression patterns [64] enabling the use
of gene neighborhood as evidence of functional association.
Scoring is usually based on both the intergenic distance and the
gene order.

Whole-genome comparisons give rise to information about
spatial organization of genes e.g. gene fusion and order, with
results stored in the previously mentioned protein domain
databases.

Protein-protein interaction

A plethora of automated experimental techniques e.g. Y2H,
affinity purification (AP) or tandem AP (TAP) followed by MS
i.e. AP or TAP-MS, co-immunoprecipitation (coIP), can be utilized
to produce large-scale PPI data [65]. The output of these high-
throughput experiments is captured in databases such as
biomolecular interaction network database (BIND) [66] and
database of interacting proteins [67]. Such primary databases

can in turn be combined into more comprehensive databases
aggregating resources e.g. iRefIndex [68].

The Y2H system is intended to study PPIs in vivo, where one of
the interacting proteins is fused with the DNA-binding domain
and the other with the activation domain of a TF for a reporter
gene. If proteins interact, the reporter gene is successfully tran-
scribed and the transcript can be detected. In coIP, antibodies
for proteins of interest are added to a whole cell extract and
the immune complex is precipitated. Any unbound proteins are
washed away while the interacting partners of the antibody-
tagged protein can be separated and analyzed. In the in vitro
purification method AP-MS, the target protein, also known as
‘bait’, is immobilized on a surface and washed over by a mixture
of proteins, referred to as ‘prey’, in a liquid phase. The interacting
proteins are captured by the ‘bait’, digestedand identified using
MS. TAP-MS is an in vivo technique where the ‘bait’ is double
tagged and undergoes two consecutive steps of purification,
followed by the separation and digestion of caught ‘prey’ and
subsequent identification by MS.

There is certainly evidence of functional association in the
form of direct physical binding between proteins, i.e. PPIs [69].
Such evidence is sometimes used directly, fully relying on the
underlying experimental techniques [70] in PPI networks of
model organisms e.g. S. cerevisiae [71], Drosophila melanogaster
[72], etc. Unfortunately, all experimental techniques, especially
the large-scale ones, have intrinsic biases, yielding high rates of
false positives (e.g. 25–40% for Y2H [73]) and lacking coverage.
Because AP-MS is done in vitro, it can falsely suggest an
interaction between proteins never present in the same sub-
cellular compartment or because of non-native protein folding
[74]. TAP-MS can correct for this, but is unable to detect low-
affinity or transient interactions as well as interactions sterically
hindered by the tag or mediated by a 3rd protein. Another
limitation of this type of evidence is the mixed quality of the
tested interactions. Due to the use of different experimental
techniques, e.g. Y2H producing only binary interactions or coIP
with one-to-many interactions, the reliability of interactions
with respect to functional association varies. One should
therefore exercise caution when using PPI evidence from a single
type of large-scale experiments.

Evaluation of PPI data is usually based on the observed num-
ber of interactions between a pair of proteins in relation to the
number of interactions that each individual protein has in total.
The studied, direct ‘bait–prey’ interactions have been shown to
be more reliable than the indirect ‘prey–prey’ ones [75]. Because
of this, the ‘prey–prey’ interactions are sometimes excluded or
down-weighted.

Orthology transfer

Orthologs are genes in different species that stem from the same
gene in an ancestral species. It has been shown that orthologs
remain functionally conserved [76]. This feature can be utilized
to map functional associations in one species to another via
‘orthology transfer’. This increases the genome coverage up to
the point of reconstructing an entire interactome of a species
without large-scale experimental evidence [44].

The 1st step in orthology transfer is the mapping of orthologs
using orthology databases, e.g. InParanoid, eggNOG [77], Homolo-
Gene [78], etc. The transfer of interactions can then be done
either by only considering the reciprocal best hits or all orthologs
above a certain threshold or by taking into account the entire
clusters of orthologs. If something other than reciprocal best hit
is considered, the scores associated with the links need to be
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combined either by averaging across all the scores or by only
considering the ‘best’ values, e.g. maximum Pearson correlation,
maximum MI, etc.

Other data types

Copy number variations [79], SNPs [80] and small Insertion-
s/Deletions [81] are examples of genetic variations that are com-
monly used in cancer network integration and for other disor-
ders. Additionally, epigenetic variations [82] in the form of DNA
methylations are common for disease-specific data integration.
Disease-specific variations are rarely used for genome-wide net-
work integration and since they are already well covered in other
reviews [16, 83, 84], we will not dwell on them here.

Network inference
Prediction of genome-scale biological networks from a single
experiment or type of experiment is prone to biases and
offers only partial view of the underlying complex network [85]
(Figure 1). Both coverage and quality of the predicted network
can be dramatically improved by integrating different types of
data across multiple experiments [85–87]. The collected data
are, however, not intended for integration, resulting in a number
of challenges that need to be addressed before and during the
integration. The pure volume of data intended for integration
can be overwhelming. Different amount of data is generated by
different experiments where one type of experimental data, if
not properly managed, could overwhelm the network inference
algorithm drowning out the signal from all the other data
sources. Heterogeneity in terms of quality, sparsity and biases
e.g. toward more studied genes also needs to be accounted
for [24].

Following data collection, the integration into one cohesive
network can be accomplished by producing networks from indi-
vidual data sets and using e.g. the unweighted sum of individual
inferred networks [88]. Another approach is to perform integra-
tion at the data level, inferring a cohesive network after all the
collected data are integrated.

The ways to infer networks and integrate the data has
evolved during the past decades (Figure 2). One of the earlier
attempts used a simple majority-voting approach, retaining only
the interactions seen in the majority of the data sets [89]. More
sophisticated machine learning techniques e.g. linear [57] or
non-linear regression models [90], random forest [91], support
vector machines [92] and Gaussian random fields [93] performed
weighted integration of the underlying data. Most state-of-the-
art network resources rely on a naïve Bayesian classification
approach (see Box 1) [94–99]. This is mainly due to the fact that
it is essential to know where the evidence of an association
originated, which can be easily tracked down using Bayes. One
assumption of Bayes is the conditional independence of the data.
This is rarely valid because many of the studied interactions
reoccur in different data sets and increases the risk of false
positives. Therefore, it is necessary to correct for the redundant
evidence decreasing the risk of false positives [22, 99, 100].

Box 1: Naïve Bayesian classification

The most popular approach for integration of multiple
heterogeneous types of data is naïve Bayesian classifica-

tion. For genome-sized networks it has been demonstrated
to outperform other statistical classifier-based techniques
[54]. It is also practically unbiased and tolerant to missing
values and noise. Bayesian classification in the context of
data integration for construction of genome-wide associ-
ation networks applies Bayes’ factor (1) to determine if
an association A is present or absent given the observed
experimental data E.

P(A | E)

P(A′ | E)
= P(E | A)

P(E | A′)
P(A)

P(A′)
(1)

The Bayes’ factor provides the odds of the posterior of an
association and its complement, i.e. P(A | E)/P(A′ | E). From
n data sets, multiple pieces of evidence {e1, e2, . . . , en} ∈ E
can be combined for an association using the likelihood
ratios between the marginal probabilities for each piece of
evidence (2). Assuming that each piece of evidence is unre-
lated to all the other pieces constitutes a naïve Bayesian
classifier.

P(A | E)

P(A′ | E)
= P(A)

P(A′)

n∏

i

P(ei | A)

P(ei | A′)
(2)

When naïve Bayesian classification is used for network
integration in network resources such as FunCoup [101] a
more convenient form of the classifier is obtained by taking
the logarithm of both sides resulting in the log-posterior
odds being equal to the sum of log-prior odds and the
natural logarithm of the likelihood ratios (LLRs) (3).

ln
P(A | E)

P(A′ | E)
= ln

P(A)

P(A′)
+

n∑

i

ln
P(ei | A)

P(ei | A′)
(3)

Example: In a 1st step, each piece of evidence, E, is scored
using the evidence type-specific metric e.g. Pearson corre-
lation for mRNA expression or MI for DDI. In the following
training step, all scores of a data set n are used to gener-
ate two score distributions, representing all positive and
negative gold standard associations. During a prediction
step these distributions are used to estimate P(ei |A)

P(ei |A′) of a new
score ei. Finally, the sum of LLRs represents a measure of
strength of the predicted association.

Gold standards

All of the above mentioned data integration approaches rely
on the availability of positive and sometimes negative training
examples, so-called gold standards. Suitable positive gold stan-
dards consist of verifiable aka ‘true’ functionally associated gene
pairs of different classes, e.g. physical protein interactions, mem-
bership in the same protein complex or the same operon, etc.
Training on each of these classes produces a network enriched
for that class of interaction. Combination of networks produced
using training on different gold standards allows for detection of
a wider definition of functional association. [24]
Typical sources of positive gold standard training sets are BioGrid
[102] or iRefIndex for PPIs, Kyoto Encyclopaedia of Genes and
Genomes (KEGG) (Table 2) or GO for co-membership in curated
pathways and OperonDB [103] for co-membership in operons.

Ideally, also the negative gold standard examples should
be verifiable and of high quality. However, it is challenging
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Figure 2. Example workflow to infer a functional association network. All supervised inference methods use a diverse collection of gold standard set. These sets

represent known interactions between genes or protein. For example, proteins that physically interact or genes that are present in the same tissue or pathway. Once

these homogeneous sets are defined, they can be applied separately as labels to an assemblage of input data spanning from co-expression over domain interaction

to phylogenetic profiles. The labeled data are further used to train supervised methods and predict interactions between genes that have been not known so far.

Each prediction is still specific to the gold standard used for labeling the data to begin with. To increase the power and coverage most methods summarize all

networks in a ensemble network, incorporating all interaction types. Since the interaction loses its gold standard specific meaning it is newly defined as functional

association.

to find anything, but small sets of experimentally validated
non-interacting proteins [104]. This exemplifies how challenging
it is to find reliable evidence of absence of interactions forc-
ing researchers to use other approaches. One such approach
is assigning protein pairs with different locations in the cell
e.g. nucleus and mitochondria, to the negative gold standard
class. Another way is to look for lack of co-citation in pathways
or terms of either KEGG or GO [54, 70]. Neither of these is a
guarantee that a functional association is truly absent, which
may result in a negative gold standard set potentially polluted by

positive examples. Hence, techniques utilizing sets of randomly
selected genes from the network can be used to simulate a base
level of random interaction in the data [44].

Unsupervised approaches

There are unsupervised network prediction methods that do not
require gold standards. Instead they may use some of the topo-
logical properties of the network, such as modularity, to assign a
confidence score to an interaction [110]. Such techniques present
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Table 2. Primary data sources for network construction

Short name Description Reference

BioGRID A database of PPIs and genetic interactions for all major model organisms and Homo sapiens. Consists of
manually curated interactions retrieved from peer-reviewed medical literature. Version 3.5.166 contains 1 623
645 protein and genetic interactions among 69 440 unique proteins/genes.

[102]

GO GO aims to provide a controlled vocabulary for consistent, species-agnostic descriptions of proteins. The GO
consists of three ontologies: molecular function (MF), biological process (BP) and cellular compartment (CC)
each with hierarchically structured protein annotating terms. The MF ontology describes protein or protein
complex activities at the molecular level without providing the context in which an activity takes place e.g.
adenylate cyclase activity or Toll receptor binding. The BP ontology contains terms describing grouped series
of activities at the molecular level e.g. histone phosphorylation. The CC ontology contains terms describing
sub-cellular location of proteins.

[105]

KEGG KEGG is a collection of 15 manually curated databases of pathways, chemical reactions and drugs. The
information in KEGG is divided into four categories: ‘system’ e.g. pathways, ‘genomic’ e.g. orthology,
‘chemical’ e.g. reaction and enzyme and ‘health’ e.g. disease. KEGG performs functional annotation of genes,
constructs pathways based on literature mining and biological networks based in interaction data.

[106]

Pathway
Commons

A database of biological concepts including biochemical reactions, GRNs, genetic interactions, transport and
catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes.
Data are gathered from 22 partner databases including WikiPathways, Reactome, KEGG, etc. The data are
mapped, normalized and merged using the BioPAX format. The current version (November 2018) contains
over 37 600 pathways in multiple species.

[107]

Reactome An ordered network of biological processes with GO-like hierarchical structure. Reactions e.g. classical
biochemical, bindings, etc. with experimental evidence are mined from literature, grouped into pathways
based on temporal and other connections, curated and peer-reviewed. The current version (62) annotates
pathways in 19 species including human with 2244 human pathways incorporating 10 719 genes, small
molecules and 11 823 complexes.

[108]

Wiki-Pathways WikiPedia-style community-curated and dynamically updated resource for models of biological pathways.
The current version (November 2018) consists of pathways in 29 different species.

[109]

a good alternative whenever gold standard data are scarce or
biased. However, they are unable to represent the full range of
complexity of functional associations and depend heavily on the
underlying module discovery algorithms [111] and are therefore
not commonly used for prediction of genome-scale networks.

Other popular unsupervised techniques include non-
negative matrix factorization (NMF) [112]. NMF is readily used
for dimensionality reduction and clustering [17], but belongs to
a class of matrix completion methods with many other appli-
cations. NMF in data integration uses the raw data adjacency
matrix representing the sparse interaction network to find two
(or three) low-rank non-negative factor matrices that approx-
imate the input. The factors can then be multiplied to predict
network links from the initial, incomplete and noisy input [113].
NMF is mostly used for clustering of heterogeneous networks,
such as gene-patient networks in cancer [114] or for gene
prioritization [115]. Since NMF is rarely used for data integration
of genome-scaled networks and due to the fact that it has been
covered in other reviews e.g. [17], we will not go into its details.

Network resources
The selection of up-to-date widely used resources described
below provides examples of how data can be integrated to pre-
dict genome-sized networks of functional association (Table 3).
A more comprehensive collection can be accessed at pathguide.
org.

FunCoup (http://funcoup.sbc.su.se) The framework of
Functional Couplings (FunCoup) [12, 13, 22, 44] is a resource
of genome-wide functional association networks of H. sapiens
and 17 model organisms containing 49 122 943 interactions.
FunCoup uses naïve Bayesian integration of various types of

data. Furthermore, InParanoid is used for orthology transfer
of interaction data between species. The FunCoup framework
applies a unique scoring function for each data source producing
raw metric scores that are mapped to LLRs for functional
association of each data set, species and type. Mapping is done
using gold standard data of following types: metabolic and
signaling pathways, confirmed protein interactions pairwise
and in complex, as well as co-transcriptional regulation using
operons. The summed LLRs from individual data sets are
converted into a confidence score for each link in the network.

Since the FunCoup resource is based exclusively on data from
experimental evidence the use of FunCoup can be of particular
interest to users wanting to avoid text mining-related data types.
The resource forms the base for different network analysis tools
[11, 101] and for understanding the function or neighborhood of
gene targets of interest [116, 117].

GeneMANIA (https://genemania.org) Multiple association
network integration algorithm (GeneMANIA) provides functional
association networks for H. sapiens and 8 model organisms and
covers almost 600 million interactions between 164 000 genes
[97]. PPI and genetic interactions from iRefIndex and BioGRID
together with interactions predicted using DDI from InterPro, co-
expression from selected GEO data sets and manually curated
data sets are used to create weighted, data set-specific networks.
Regularized ridge regression [118] is applied for weighting
and co-annotation in GO is used as the gold standard. Links
from the data set-based networks are normalized by degree
and multiplied to produce a weighted composite network.
GeneMANIA also supports a user-friendly Cytoscape add-on
[119] and furthermore focuses on single gene and gene set
function prediction [120–122].

GIANT (giant.princeton.edu) Genome-scale Integrated Anal-
ysis of gene Networks in Tissues (GIANT) [123] uses a Bayesian

pathguide.org
pathguide.org
http://funcoup.sbc.su.se
https://genemania.org
giant.princeton.edu
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Table 3. Network resources.

Resource Data types Attributes Reference
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FunCoup X X X X X X X Focus on experimental data and comparative
interactomics

[101]

GeneMANIA X X X X Integration at the network level and gene
function prediction

[97]

GIANT X X Tissue- and cell line-specific networks for
H. sapiens

[124]

HumanNet X X X X X X Built-in gene prioritization and advanced GUI [98]
IID X X Tissue-specific networks for six species [129]
IMP X X X X Developmental time points of H. sapiens [99]
STRING X X X Xa X X1 X X Exhaustive collection of prokaryotes; major

contribution from co-annotation
[70]

aEvidence imported from other resources.

approach to integrate data from BioGRID, IntAct, GEO, etc. into
144 tissue and cell line-specific networks. The tissue-specific
gold standards are based on experimentally produced GO terms
selected by expert as well as BRENDA Tissue Ontology [124].
This naturally qualifies the resource for identification of tissue
specific H. sapiens sub-networks for a gene of interest [125, 126].

HumanNet (http://www.functionalnet.org/humannet/) The
human gene functional interaction network (HumanNet) [98]
employs a naïve Bayesian approach with redundancy reduction
to integrate a collection of co-expression, PPI, genetic interaction
and DDI data sets with co-citation into a network for H. sapiens
with orthology transfer using three model organisms, i.e. fly,
worm and yeast. Co-annotation in an expert curated set of GO
terms from the Biological Process ontology are used as the gold
standard. The network harbors 476 399 links between 16 243
protein coding genes and offers an advanced graphical interface
with built-in gene prioritization capabilities. It has been used for
prediction of cancer driver genes [127] and as the starting point
for network structure optimization [128].

IID (http://iid.ophid.utoronto.ca/iid) Integrated Interactions
Database (IID) [129] incorporates PPI networks of 30 different tis-
sues and six species. The database discriminates between three
different kind of protein interactions, experimental validated,
high-confidence predicted interactions and orthologous interac-
tions. The orthologous interactions are transferred interactions
between orthologous proteins. Tissue specificity is assigned to
the interactions by mapping the proteins to data obtained from
the HHPA [130] and PaxDb [39].

IMP (imp.princeton.edu) Integrative Multi species Predictions
database [131], contains networks of H. sapiens and six model
organisms. The networks are inferred via integrating data of
several experiments covering various developmental time points
and tissues. Therefore, the authors used a regularized Bayesian
method [132]. The web service utilizes orthology information
to provide functional annotation with cross-species annotation
terms.

STRING (https://string-db.org) The Search Tool for the
Retrival of Interacting Genes/Proteins (STRING) is one of the
most widely used resources of genome-wide functional asso-
ciations [70]. It combines interactions from primary databases

such as BIND and PID as well as data from curated databases
e.g. GO, KEGG, etc. together with predicted interactions using
conserved gene neighborhood, phylogenetic co-occurrence, co-
citation and mRNA co-expression. KEGG pathways are used
as a source of gold standard data where each data set gets
a score that represents the probability of finding the tested
interacting partners within the same KEGG pathway. Orthology
transfer is performed and adjusted by the evolutionary distance
between species in a phylogeny. Scores for each interaction in
different data sets are combined into a final score assuming
independence between data sets. STRING has an application
programming interface access and incorporates all GEO
microarray platforms and experiments. It contains networks
for over species. However, the vast majority of species are
prokaryotic where species definitions are not always clear,
which may increase the number of false positive interactions.
Additional source of false positives is the fact that some data
sets are added without benchmarking against a gold standard,
thereby propagating the FPRs of the underlying experimental
methods. Since the most dominant data type incorporated into
the network is co-citation, additional noise and unintentional
bias stemming from text mining [133] may be included in the
database.

Discussion
The vast amount of interactional data is being combined into
networks of functional association. Here we have explored the
most common data types and methods used in the construction
of such networks, to help researchers make informed decisions
about which of the many network resources would fit their
particular research question. Additionally, this report can serve
as a primer for new researchers in the domain of data integration
and allow them to penetrate this comprehensive field.

It is apparent that none of the currently available data
types can serve as a universal input data for generating reliable
genome-wide association networks with sufficient coverage. A
data type can usually either contribute to high accuracy e.g. DDI,
but lacks in coverage or have a great coverage e.g. co-expression,

http://www.functionalnet.org/humannet/
http://iid.ophid.utoronto.ca/iid
imp.princeton.edu
https://string-db.org
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but is less reliable. The upside is that integrating several
datatypes balances out the individual biases providing networks
with high coverage and higher reliability. This integration, at
least at the moment and for the genome-wide networks is
preferably done using Bayesian techniques. Such approaches
present a flexible model able to cope with missing data and
provide probabilistic scoring for predicted interactions.

As is evident in the network resource section, there are many
ways to construct a genome-wide network. Some key steps
can, however, be identified in most approaches. One such step
is the selection of a collection of reliable datasets, preferably
pertaining to orthogonal datatypes including high coverage ones
e.g. co-expression from GEO and more direct evidence, e.g. DDI
from InterPro. The orthogonality of data types can increase the
network coverage, capture a more diverse type of functional
associations and increase the true signal in the data. Another
important aspect is the generation of high-quality, curated gold
standards both positive, using e.g. KEGG metabolic pathways,
and negative where the negative ones can be substituted for
a baseline of random interactions. The type of gold standard
will determine the type of interactions for which the resulting
network will be enriched. Using different types of gold standards
will therefore make the resulting association network more rich
in types of functional annotations that can be captured thereby
uncovering a larger part of the underlying cellular biological
network. Sticking with one type of gold standard will, on the
other hand, purify the network for just one type of functional
association, e.g. pure PPI networks, which can be suitable if the
research question involves direct physical interactions.

Many networks are constructed for multiple species either
just the common model organisms as in IMP (7 species) or an
extended set of model organisms as in GeneMANIA (9 species)
and FunCoup (18 species) or most of the sequenced species
like in STRING. The species specific networks are excellent for
researchers with research questions in a particular species, but
also as a source of additional evidence of interactions harnessed
by orthology transfer. The transfer of data across species can
be viewed as a coverage increasing data type and an additional
source of evidence and involves selection of a reliable orthology
database e.g. InParanoid, for identification of orthologs.

Variations of navl̈e Bayesian integration techniques used in
the most comprehensive association networks e.g. STRING, Fun-
Coup, etc. require scoring techniques tailored to the individual
datatypes, e.g. profile similarity or correlation-based. Addition-
ally, the integration process needs a way to account for the
violation of independence assumption in the nav̈e Bayesian
techniques. Different redundancy weighting approaches based
on MI or correlation between datasets have been successfully
applied for this purpose [22, 98].

One of the limitations of the current network inference
approaches is the failure to account for the dynamical aspects
of interactions. These aspects involve the distinction between
stable interactions in a protein complex versus the transient
events in a signaling pathway or different time-dependent
aspects of an interaction [134]. The simple cause of this
limitation is the lack of coverage, but novel experimental
techniques e.g. time-resolved MS [135] are trying to address this.

A strive for high coverage is apparent in the fact that data
used for inference can stem both from normal tissues at dif-
ferent experimental conditions and from diseases and other
pathologies. Separating the data from healthy tissue, from that
of diseased one into distinct networks, could strengthen the
true interactions important for the different conditions in the
respective network.

Another potential limitation is not restricted to the field of
data integration, but concerns machine learning in general and
stems from the use of supervised learning techniques. Accu-
racy of network prediction is tightly coupled to the quality and
coverage of the underlying gold standards. The unsupervised
approaches such as ‘multiple dataset integration’ [136] are still
lacking genome-wide applications. Additionally, also the unsu-
pervised techniques are subject to annotation bias resulting
from over-representation of some genes and phenotypes in dif-
ferent experiments.

A more practical aspect of network resources is that in addi-
tion to there being many of them present (pathguide.org), a
substantial part are neither relevant nor appropriately main-
tained. This is unfortunate and stresses the need for a more
updated repository of information about the available network
resources.

As of Today, there is no good way to compare different net-
work resources. A naïve approach of studying the number of
links for e.g. the whole H. sapiens network or taken at a spe-
cific confidence threshold in order to compare only the most
reliable links is not particularly useful, since the approach for
assigning confidence to a link can differ significantly between
the networks. Slightly more information could potentially be
gained by looking at the distributions of confidence scores in
different networks. However, this comparison also suffers from
lack of consistency in the assignment of confidence scores. An
external source such as GO has been used for validation as
for HAPPI-2 [137], but data cross contamination may bias the
results. Other experimentally attained sources may be useful,
but run the risk of being too small or if large enough, they
are soon incorporated directly or indirectly into the studied
networks.

In conclusion, despite current challenges and limitations
in the field of functional network inference, it has produced
many useful tools to uncover fundamental questions from the
biological domain.

Key Points
• Data from different levels of biological organization, e.g.

DNA, RNA and protein, can be integrated into functional
association networks that are used to increase the
understanding of the intra-cellular processes leading to
complex diseases.

• Key steps of construction of functional association net-
works are collection of reliable data pertaining to inde-
pendent data types, scoring and evaluation of the col-
lected data and use of high-quality gold standards for
training of the network model using a robust network
integration technique.

• All data types used for integration have unique
strengths and weaknesses, many of which can be over-
come by integration with other data, orthogonal data
types.

• Naïve Bayesian classification is the most popular
approach for integration of multiple heterogeneous
data types and its performance relies heavily on the
quality of gold standards used for training.

• Many functional association networks are already avail-
able to the research community. The large volume of
such resources and the lack of a standardized way to
compare them makes the selection of the proper tool for
the research question at hand a considerable challenge.

pathguide.org
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