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Abstract

Background

Pulmonary vascular endothelium is the main metabolic site for Angiotensin I-Converting

Enzyme (ACE)-mediated degradation of several biologically-active peptides (angiotensin I,

bradykinin, hemo-regulatory peptide Ac-SDKP). Primary lung cancer growth and lung can-

cer metastases decrease lung vascularity reflected by dramatic decreases in both lung and

serum ACE activity. We performed precise ACE phenotyping in tissues from subjects with

lung cancer.

Methodology

ACE phenotyping included: 1) ACE immunohistochemistry with specific and well-character-

ized monoclonal antibodies (mAbs) to ACE; 2) ACE activity measurement with two ACE

substrates (HHL, ZPHL); 3) calculation of ACE substrates hydrolysis ratio (ZPHL/HHL

ratio); 4) the pattern of mAbs binding to 17 different ACE epitopes to detect changes in ACE

conformation induced by tumor growth (conformational ACE fingerprint).

Results

ACE immunostaining was dramatically decreased in lung cancer tissues confirmed by a 3-

fold decrease in ACE activity. The conformational fingerprint of ACE from tumor lung tissues

differed from normal lung (6/17 mAbs) and reflected primarily higher ACE sialylation. The

increase in ZPHL/HHL ratio in lung cancer tissues was consistent with greater conforma-

tional changes of ACE. Limited analysis of the conformational ACE fingerprint in normal

lung tissue and lung cancer tissue form the same patient suggested a remote effect of tumor

tissue on ACE conformation and/or on “field cancerization” in a morphologically-normal lung

tissues.

Conclusions/Significance

Local conformation of ACE is significantly altered in tumor lung tissues and may be detected

by conformational fingerprinting of human ACE.
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Introduction

Pulmonary vascular endothelium is the main site of metabolism of vasoactive peptides -angio-

tensin I and bradykinin [1] and likely hemoregulatory peptide Ac-SDKP [2] by Angiotensin

I-Converting Enzyme (ACE) as 100% of lung capillaries express ACE whereas only 5–15% of

systemic capillaries express ACE [3–4]. Primary lung cancer growth and lung cancer metasta-

ses decrease lung vascularity reflected by dramatic decreases in both lung and serum ACE

activity. [5–6] and preoperative serum ACE activity was suggested as a useful prognostic indi-

cator in lung cancer [7] or as a tool for monitoring serum ACE levels–for the management of

patients with lung malignancies [8–10].

ACE and ACE inhibitors (ACEI) have received considerable attention in oncology as pre-

clinical and clinical data suggested that ACEI may potentiate the effect of certain systemic anti-

tumor therapies [11–12]. The use of ACE inhibitors was associated with better outcomes in

cancer patients receiving chemotherapy [13–14] or anti-VEGF therapy [12]. Progress in ACE

biology over the last decade prompted us to re-evaluate the status of ACE (ACE phenotype) in

lung cancer.

Angiotensin I-converting enzyme (ACE, CD143, EC 3.4.15.1), a Zn2+ carboxydipepti-

dase with two catalytic centers [15], is a key regulator of blood pressure which also partici-

pates in the development of vascular pathology and remodeling [16–17]. The somatic

isoform of ACE (sACE) is highly expressed as a type I membrane glycoprotein in endothe-

lial [4, 18–19], epithelial and neuroepithelial cells [20–21], as well as immune cells–macro-

phages and dendritic cells [22–23]. ACE has been designated as a CD marker, namely

CD143 [3, 24]. Apart from membrane-bound ACE, blood and other biological fluids con-

tain a variable amount of soluble ACE that lacks the transmembrane domain [25]. ACE

enters the circulating pool via proteolytic shedding from the endothelial cell surface by an

unidentified ACE secretase [26]. In healthy individuals, the concentration of ACE in blood

is stable [27], but is significantly increased in subjects with either sarcoidosis or Gaucher

disease (3 to 5-fold increase in blood) serving as a potential clinical biomarker of disease

severity [28–29].

Our studies with monoclonal antibodies (mAbs) to numerous conformational epitopes on

human ACE revealed that the pattern of mAb binding to ACE is a very sensitive marker of the

local conformation in ACE. The changes of the mAb binding pattern i.e. the “conformational

fingerprint of ACE”, is attributed to partial denaturation of ACE, chemical modification,

inhibitor binding, mutations, and differences in glycosylation/deglycosylation [30–33]. More-

over, the “conformational fingerprint of ACE” can be cell- and/or tissue specific as shown in

macrophages/dendritic cells [30], epithelial cells [32] and from cardiac-derived endothelial

cells [34] when compared lung endothelial cell ACE. We also demonstrated the presence of

conformationally-altered ACE in blood of patients with sarcoidosis [30], uremia [31] or

Gaucher disease [35].

Here we report the complete phenotyping of ACE from lung cancer tissue. The data show

that ACE expression as well as local conformation of ACE is altered by tumor formation. We

suggest that these conformational changes in ACE may be related to 1) greater levels of sialyla-

tion in the lung tumor tissue or, alternatively, 2) expression of proteins in tumor tissue that

may be novel ACE effectors–like ACE effector found in normal spleen tissue [35]. Moreover,

conformational fingerprinting of ACE was sufficiently sensitive to detect conformational

changes of ACE in matching morphologically normal lung tissue in specific patients, which

points towards a possibility of a bystander effect of tumor on surrounding lung tissue or a

“field cancerization” effect.

ACE in lung cancer
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Materials and methods

Study participants

This pilot study was conducted according to the principles of the Helsinki Declaration and

was approved by the Institutional Review Boards of Columbia University Medical Center

(New York), Paracelsus Medical University (Salzburg, Austria) and the University of Illinois at

Chicago. All tissue procurement procedures were carried out in accordance with institutional

guidelines. After obtaining a written informed consent from the patients or next of kin, surgi-

cal specimens of lung carcinomas and adjacent tumor-free lung parenchyma, were collected

for measurements of enzymatic activity and immunochemical and immunohistochemical

characterization. Patient selection for ACE enzymatic activity and immunochemical character-

ization is outlined in Table 1 with 11 of 12 patients diagnosed with non-small cell lung cancer

(NSCLC), 1 patient with small cell lung cancer (SCLC). Patients were evaluated at the time of

diagnosis, the stage of disease was as following: one presented with stage I disease (8.3%), two

with stage II (16.6%), 6 with stage III (50%) and 2 with stage IV (16.6%). Histologically, we reg-

istered 8 adenocarcinomas (ADC) (66.7%), and 3 squamous cell carcinoma (SCC) - 25.0% and

one—large cells carcinoma (8.3%).

Immunohistochemistry

Processed formalin-fixed and paraffin-embedded tissues of archival lung cancer specimens

(n = 12) were cut to 3μm sections, mounted on adhesive glass slides (TOMO adhesive glass

slides, Matsunami, Osaka, Japan), and dried at 60˚C for one hour. Deparaffinization, antigen

retrieval at pH 9, immunostaining, counter staining, dehydration and cover slip application as

well as pre-treatment were conducted using standard immuno-histochemistry (IHC) protocols

[36] and performed on a Ventana Benchmark Ultra instrument (Ventana Medical Systems,

Tucson, AZ, USA) using primary mouse monoclonal antibodies. Sections were incubated with

anti-CD-143 (clone CG2, catalog number: T-1129; Biomedicals AG, Augst, Switzerland), anti-

CD68 (clone: KP-1, catalog number: 790–2931; Ventana Medical Systems, Tucson, AZ, USA;

trademark of Hoffmann-La Roche AG, Basel, Switzerland) and anti-AE1/3 (clone: AE1/AE3,

catalog number: M3515; Dako, Vienna, Austria). Negative controls were performed by

Table 1. Patients’ cohort and tumor types used in enzymatic and conformational studies of their ACEs.

Patient’s # Sex Age Type Histology Stage

1 M 52 NSCLC SCC III

2 F 72 NSCLC ADC III

3 F 48 NSCLC ADC III B

4 F 64 NSCLC ADC III B

5 M 63 NSCLC ADC IV

6 M 49 NSCLC SCC III A

7 M 44 NSCLC SCC II

8 M 70 NSCLC ADC IV

9 M 58 NSCLC ADC III B

10 M 55 NSCLC ADC I

11 M 49 NSCLC ADC II

12 M 68 SCLC Limited

NSCLC: Non-Small Cell Lung Cancer; SCLC: Small Cell Lung Cancer

ADC: ADenoCarcinoma; SCC: Squamous Cell Carcinoma.

https://doi.org/10.1371/journal.pone.0226553.t001
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omitting primary antibodies from the buffer during first incubation. The ultraView Universal

DAB Detection Kit utilizing a polymer complex with a linked secondary antibody (catalog

number 760–500; Ventana Medical Systems, Tucson, AZ, USA) was used for visualization of

staining.

ACE activity assay

ACE activity in lung tissue homogenates was measured using a fluorimetric assay with two

ACE substrates, 2 mM Z-Phe-His-Leu or 5 mM Hip-His-Leu at pH 8.3 [37]. Briefly, 20–40 μl

aliquots of samples were added to 200 μl of ACE substrate and incubated for the appropriate

time at 37ºC. His-Leu product was quantified based on its complex forming with o-

phtaldialdehyde.

Complementing ACE activity measurement, we calculated the ratio of the rates of their

hydrolysis—ZPHL/HHL ratio. The two domains of ACE hydrolyze a range of natural and syn-

thetic substrates, but with different efficacy [38–41] i.e. HHL is hydrolyzed faster (9-fold) by

the C domain [38] whereas ZPHL is hydrolyzed at similar rates by both domains [37]. As a

result, the ratio of the rates of hydrolysis of these two substrates (ZPHL/HHL ratio) serves as a

characteristic of a definite ACE form: for somatic two-domain human ACE it is about 1–1.5,

for N-domain– 5–7, and C-domain—0.6–0.8 [42].

Immunological characterization of ACE (enzyme-captured

immunoprecipitation assay)

Ninety six-well plates (Corning, Corning, NY) were coated with 17 anti-ACE mAbs using pre-

coated goat anti-mouse IgG (Pierce, Rockford, IL) as a capture and incubated with tissue

homogenates containing ACE. Plate-bound ACE activity was measured using ACE substrate

Z-Phe-His-Leu directly in the wells [30,43].

Statistical analysis

All data are presented as mean ± SD. Significance was calculated using the Mann-Whitney test

with STATISTICA 6 (StatSoft, Inc., OK).

Results and discussion

Immunohistochemical detection of ACE in lung cancer tissues

We performed immunostaining with anti-ACE mAbs CG2 in 12 lung cancer tissues: 3 cases of

SCLC (small cell lung cancer), 9 NSCLC (non-small lung cancer), 3 squamous cell carcinoma

(SCC), 3 adenocarcinoma (ADC) and 3 neuroendocrine carcinoma (NEC) (Figs 1 and 2).

ACE is expressed strongly in macrophages (Fig 2B), in the tumor vascular endothelium (Fig

2A, 2C and 2D) and in adenocarcinoma (Figs 1J and 2A). ACE was not detected in cancer cells

of SCLC, SCC and NEC (Fig 1B, 1F and 1N).

ACE activity in lung cancer tissues

ACE activity in 12 lung cancer tissue homogenates (Table 1) was significantly (3-fold) lower

than in their nine “normal’ counterparts (macroscopically visible “normal” lung tissues) or in

lung tissues of unrelated patients (Fig 3), which is consistent with previously reported studies

[5].

Blood ACE appears in circulation due to proteolytic cleavage (shedding) from endothelial

cell membrane [44] and primarily from the vast pulmonary microvasculature that exhibits

100% ACE expression compared to 10–15% expression in capillaries of systemic circulation

ACE in lung cancer
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[4]. Based on this finding and the fact that 30% of all endothelial cells are in the lungs [45], we

estimated that ~ 75% of blood ACE originates from lung capillaries. Therefore, it is not sur-

prising that in reported studies on blood ACE in patients with lung cancer, the levels of ACE

are dramatically decreased—up to 2-fold [6]. Moreover, the measurement of preoperative

serum ACE activity may be a useful prognostic indicator in lung cancer [7]. Monitoring of

serum ACE levels may be useful also in management of patients with malignant disease in the

lungs [8–10].

In five patients with paired cancerous and macroscopically-normal lung tissues we mea-

sured ACE activity using two substrates (ZPHL and HHL) and calculated the ratio of the rates

of their hydrolysis—ZPHL/HHL ratio. The ZPHL/HHL ratio was used primarily to detect the

presence of common ACE inhibitors taken as a drug in patients’ blood at the time of blood

sampling [42,46]. It can also be utilized for detection of inactivation or inhibition of a separate

domain [42].

The ZPHL/HHL ratio is characterized by very low inter-individual variability: while ACE

levels varies 3–4 fold (with standard deviation (SD) about ~30% [27,43], ZPHL/HHL ratio is

extremely constant (both for blood or tissue ACEs—with SD for ACE in blood at only 3–5%

[31,42]. In 2 out of 5 cancer tissues we found a significant increase of ZPHL/HHL ratio reflect-

ing: a) conformational changes in cancer ACE rather than the presence of commercial ACE

inhibitors in their tissues (see below in Fig 4), or, alternatively, b) the presence of newly discov-

ered (but not identified yet) ACE effector/inhibitor, which is present at high levels in normal

spleen, but disappears in Gaucher spleen [35]. Recently, we found that prostate cancer tissue

ACEs are also characterized by an increase in ZPHL/HHL ratio [47].

Fig 1. ACE expression in lung cancer. We performed immunostaining on the lung cancer specimens with anti-ACE

mAbs CG2. We have analyzed 3 cases of SCLC (small cell lung cancer; pictures A-D), 9 cases of NSCLC (non-small

lung cancer), here 3 squamous cell carcinoma (SCC; pictures E-H), 3 adenocarcinoma (ADC; pictures I-L) and 3

neuroendocrine carcinoma (NEC; pictures M-P). ACE expression and localization is shown by brown color.

Compared to anti-CD68 (macrophages; pictures C, G, K, O) and AE1/3 (cancer cells; pictures D, H, L, P) ACE is

expressed strongly in macrophages and endothelial cells of the tumor vascularization in all types of lung cancer

analyzed (pictures B, F, J, N). A weak expression of ACE in cancer cells was only found in adenocarcinoma (picture J).

ACE was not detected in cancer cells of SCLC, SCC and NEC (pictures B, F, N). A, E, I, M: H&E; B, F, J, N: CD143

(ACE); C, G, K, O: CD68; D, H, L, P: AE1/3. Magnification x100 (A-D, I-L, M-P), x200 (E-H).

https://doi.org/10.1371/journal.pone.0226553.g001
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Conformational fingerprinting of ACE in lung cancer

To characterize the conformation of ACE in lung cancer, we performed conformational fin-

gerprinting of ACE in paired cancer and normal lung tissues using a panel of mAbs directed

against 16 different epitopes located on the N and C-domains of catalytically active human

ACE [30]. Previously we showed that the pattern of precipitation of ACE by this set of mAbs

provides a sensitive tool for detecting changes in local conformation of ACE due to

Fig 2. ACE expression sites in lung cancer. Weak expression of ACE in lung adenocarcinoma cells (A). Strong

expression of ACE in tumor vascular endothelial cells (arrows in A, C and D). Strong expression of ACE in

macrophages and gigantic cell (B). Magnification: 100X (D), 200X (A, B, C).

https://doi.org/10.1371/journal.pone.0226553.g002

Fig 3. ACE activity in lung cancer tissues. ACE activity in 12 homogenates (1:9 weight/volume ratio) of human lung

cancer tissues (black dots) and in 10 homogenates from morphologically normal lung tissues (used as controls), (blue

circles) was quantified using a spectrofluorometric assay with Z-Phe-His-Leu (2 mM) as substrates. Data expressed as

individual values in mU/mg of protein (black dots and blue circles in A) and as mean values for control (blue bar-

28.6 ± 14.6 mU/mg) and for tumor lung tissue (9.4 ± 3.2 mU/mg). Data presented as a mean of at least 3 independent

experiments (with intra-assay SD<10%).

https://doi.org/10.1371/journal.pone.0226553.g003

ACE in lung cancer
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denaturation, inhibition [30–31], mutations [33,48] and references therein, or cell/tissue origin

[30,32,34–35].

onformational fingerprints of ACE from homogenates of cancer and macroscopically nor-

mal lung tissues are presented as tumor/normal tissue ratio in Fig 4. By using normal and

cancer tissues from the same patient we eliminated possible effect of numerous SNPs in ACE

gene (908 of those that change amino acids) that were identified up to date [http://useast.

ensembl.org/Homo_sapiens/Transcript/Sequence_cDNA?db=core;g=ENSG00000159640;r=

17:63477061-63498380;t=ENST00000290866]. Conformational fingerprinting of ACE is a very

sensitive tool, which can detect even single amino-acid substitution [33, 49–50]. Therefore,

Fig 4. ACE conformation in lung cancer (conformational fingerprinting of ACE). ACE activity was precipitated by

17 different mAbs from five individual homogenates of tumor lung tissues and their morphologically normal lung

counterparts. Immunoprecipitated ACE activity is presented as a normalized value (Tumor/Normal ratio), to highlight

differences in immunoprecipitation pattern of ACE from different homogenates by different antibodies. ACE activity

in these 10 homogenates was quantified before immunocapture and ZPHL/HHL ratio was calculated and presented as

a percentage of a value for morphologically normal tissues–values on the right side of the data for each patient. Data

presented as a mean of at least 2–3 independent experiments in duplicates. Ratio increased more than 20% are

highlighted with orange, more than 50% -with brown and more than 100%—with red. Bars highlighted with yellow-

ratio decreased more than 20%, with blue—decreased more than 50%. Bars were highlighted if values were statistically

significant (� p<0.05).

https://doi.org/10.1371/journal.pone.0226553.g004

ACE in lung cancer
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using paired tumor and normal tissue from the same donor significantly decrease false-posi-

tive results.

The binding of several anti-ACE mAbs - 3A5 (N domain) and 1B3, 1B8, 3F10 and 2H9 (C

domain of ACE) was increased, while binding of mAb 5F1 (N domain) was decreased in all

cancer tissues in comparison to ACE from “normal” tissue (blue boxed in Fig 4). One of the

explanations for that can be different glycosylation of ACE in normal and cancer tissue,

namely, in the following glycosylation sites: Asn82 located in 3A5 epitope [51], Asn117 (or

Asn480), both located in 5F1 epitope [52], Asn731, within overlapping regions for mAbs 1B8,

3F10 and 1B3 and Asn685 located in 2H9 epitope [53]. Previous mass-spectroscopy studies of

various purified ACE preparations (lung, seminal fluid, heart) demonstrated that alterations in

mAbs binding were accompanied by changes in glycan structures revealed by mass-spectros-

copy [32, 54]. We hypothesized that particular differences in mAbs 1B8 and 3F10 binding to

lung cancer ACE (Fig 4) may result from greater extent of sialylation of glycan in Asn731 in

tumor. This possibility arise from the observation that these very mAbs better bind to plasma

ACE than to lung ACE (Fig 10A in [55]), and plasma ACE is known to be more sialylated than

its “parent” lung enzyme as a result of elimination of unsialylated proteins from plasma by

liver lectins [56].

There is mounting evidence for the role of abnormal glycosylation of proteins in cancerous

transformation of cells and tumor progression [57]. On of changes reported for cancer cells is

the increase of sialic acid carbohydrates on their cell membrane [58]. Hyperglycosylation as

the increase of sialic acids most likely results from the overexpression of sialyltransferases–a

broad family of more than 20 different enzymes which have defined tissue-specificity [59]. Cell

and tissue specificity of these enzymes allows to assume, that each type (including probably

malignant cells) have a unique “sialome” which may be used to document cell origin or pathol-

ogy [60]. Therefore, our hypothesis that observed changes in binding of mAbs to ACE from

lung tumor tissues is limited to mAbs that are sensitive to hypersialylation (Fig 4) seems

reasonable.

ACE from tumor tissues from patients #1 and #2 has increased ZPHL/HHL ratio (Z/H in

Fig 4). Moreover, an increased mAbs binding to ACE from tumor tissues from those two

patients was noticed for more mAbs from the 17-antibodies set we used. In patients with

unchanged ZPHL/HHL ratio fewer antibodies showed changes of binding to ACE (Fig 4).

Therefore, the increased ZPHL/HHL ratio for ACE from lung cancer tissues of these two

patients may be caused by more profound changes in local conformation of ACE, as shown by

changes in mAbs binding pattern. However, an expression of certain proteins in tumor tissue

that may be novel endogenous ACE effectors/inhibitors, similar to what we identified recently

in human spleen [35], still cannot be ruled out and we will plan to pursue this issue in future

studies.

We also compared conformational fingerprinting of ACE in macroscopically normal lung

tissues from 5 patients. Expressing binding of 17 mAbs to ACE from these tissues as a percent-

age of average binding to ACE from unrelated lung tissues (Fig 5), clearly shows that only ACE

from normal tissue from patient #2 seems normal, whereas ACEs from 4 other “normal” lung

tissues shows different changes in mAbs binding. ACE from “normal” lung tissue from patient

#3 shows changes in conformation similar to ACE from cancerous tissue of the same patient.

It appears that conformational fingerprinting of ACE in this patient #3 can detect “field can-

cerization”- which is a phenomenon, when tumor markers (or somatic tumor mutations) can

be detected in morphologically normal tissues [61–63].

In conclusion, we performed ACE phenotyping of lung cancer tissues and found unique

kinetic properties and ACE conformation with the conformation of ACE both tissue- and dis-

ease-specific. These findings may be clinically relevant especially with the recognition that

ACE in lung cancer
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tissue renin-angiotensin system is a target not only for therapy of cardiovascular disorders

[64], but also in cancer chemotherapy [12].
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