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Systemic Lupus Erythematosus (SLE) is a chronic inflammatory autoimmune disease in

which type I interferons (IFN) play a key role. The IFN response can be triggered when

oxidized DNA engages the cytosolic DNA sensing platform cGAS-STING, but the repair

mechanisms that modulate this process and govern disease progression are unclear.

To gain insight into this biology, we interrogated the role of oxyguanine glycosylase 1

(OGG1), which repairs oxidized guanine 8-Oxo-2
′

-deoxyguanosine (8-OH-dG), in the

pristane-induced mouse model of SLE. Ogg1−/− mice showed increased influx of

Ly6Chi monocytes into the peritoneal cavity and enhanced IFN-driven gene expression

in response to short-term exposure to pristane. Loss of Ogg1 was associated with

increased auto-antibodies (anti-dsDNA and anti-RNP), higher total IgG, and expression

of interferon stimulated genes (ISG) to longer exposure to pristane, accompanied by

aggravated skin pathology such as hair loss, thicker epidermis, and increased deposition

of IgG in skin lesions. Supporting a role for type I IFNs in this model, skin lesions

of Ogg1−/− mice had significantly higher expression of type I IFN genes (Isg15, Irf9,

and Ifnb). In keeping with loss of Ogg1 resulting in dysregulated IFN responses,

enhanced basal and cGAMP-dependent Ifnb expression was observed in BMDMs from

Ogg1−/− mice. Use of the STING inhibitor, H151, reduced both basal and cGAMP-driven

increases, indicating that OGG1 regulates Ifnb expression through the cGAS-STING

pathway. Finally, in support for a role for OGG1 in the pathology of cutaneous disease,

reduced OGG1 expression in monocytes associated with skin involvement in SLE

patients and the expression of OGG1 was significantly lower in lesional skin compared

with non-lesional skin in patients with Discoid Lupus. Taken together, these data support

an important role for OGG1 in protecting against IFN production and SLE skin disease.
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INTRODUCTION

SLE, a chronic systemic inflammatory autoimmune disease,
occurs in about 1.8–7.6 people per 100,000 in the United States,
with a 9:1 female to male ratio (1). Patients with SLE have a
diverse range of immunological abnormalities that contribute
to disease progression and pathology. Despite the heterogeneity
of the disease, type I interferons (IFN) have emerged as
key pathogenic cytokines in SLE and correlate with disease
severity (2, 3). One source of extracellular DNA that initiates
and drives type I IFN production is genomic DNA released
from dead and dying cells, which is recognized by TLR9 in
endosomes, driving IFNα expression. More recently, oxidized
DNA from mitochondria (driven by ROS production) has also
been recognized as a trigger for type I IFN production. In SLE,
low density neutrophils/granulocytes are an important source of
oxidized mitochondrial DNA (mtDNA), which is released from
activated neutrophils as they undergo NETosis. Indeed, NETs
are enriched in oxidized mtDNA, specifically 8-OH-dG motifs
(4, 5). In addition, exposure to ultravliolet light can also drive
oxidative stress, oxidized DNA damage, and accumulation of 8-
OH-dG lesions in the skin. Oxidized DNA, including 8-OH-dG,
is sensed by the cytosolic DNA sensor cyclic GMP-AMP synthase
(cGAS), which has recently emerged as an important contributor
to elevated type I IFN in SLE (6, 7). Once activated, cGAS

generates 2
′

3
′

-cyclic-dinucleotides which bind and activate the
ER-resident adaptor protein stimulator of IFN genes (STING),
and drive TBK1-IRF3 dependent induction of IFNβ (7–10).

Mechanisms regulating clearance of cytosolic DNA and RNA,
including oxidized and damaged DNA, are critical to preventing
triggering of IFN responses. OGG1 (oxoguanisine glycolase 1) is
a DNA repair enzyme in the base excision repair (BER) pathway
that excises and repairs 8-OH-dG DNA lesions (11). A single
nucleotide polymorphism (SNP) in OGG1 is associated with
development of lupus nephritis (12). This SNP encodes a serine-
to-cysteine substitution at position 326 (S326C), which is thought
to reduce function of OGG1 (13), thus conferring susceptibility to
lupus nephritis by enabling accumulation of 8-OH-dG (4, 14–16).

Given that OGG1 plays an important role in protecting
against accumulation of oxidized DNA lesions, we hypothesized
that loss of Ogg1 may contribute to IFN-driven disease. We
therefore investigated the role of OGG1 in the pristane-induced
lupus (PIL) mouse model of IFN-driven SLE, which recapitulates
numerous human SLE manifestations, including elevated
type I IFNs, autoantibody generation, arthritis, and severe
glomerulonephritis (17, 18). In this study, loss of Ogg1 resulted
in increased oxidized DNA damage, enhanced recruitment
of Ly6Chi monocytes and ISG expression in the peritoneal
cavity, enhanced neutrophil activity, and systemic IFN-driven
responses. Intriguingly, however, rather than increased kidney
pathology, loss of Ogg1 resulted in cutaneous involvement in
PIL, accompanied by enhanced IFN driven gene expression
in the skin. Mechanistically, we observed enhanced signaling
through the cGAS-STING pathway in Ogg1−/− bone marrow
derived macrophages (BMDMs), an effect inhibited completely
by blocking signaling through STING. In translating these results
to human disease, we found decreased OGG1 expression in SLE

patients associated with cutaneous involvement, and that lesional
skin from patients with chronic cutaneous lupus erythematosus
had reduced OGG1 expression compared to non-lesional areas.
Taken together, our results indicate that OGG1 protects against
IFN induction and cutaneous involvement in SLE by reducing
8-OH-dG driven IFN responses.

MATERIALS AND METHODS

Mice
Wild-type C57BL/6 and Ogg1−/− mice (C57BL/6 background),
female, 6–8 weeks old, received a single i.p. injection of 0.5ml
of pristane (2,6,10,14-Tetramethylpentadecane (TMPD), Sigma).
Some mice were sacrificed at 1 week after pristane. Mice were
bled at 7 months after pristane inoculation for complete blood
cell count analysis. All mice were monitored for proteinuria by
dipstick test once a month and sacrificed at 10 months after
pristane treatment.

Flow Cytometry
The following conjugated anti-mouse antibodies were used:
anti-Ly-6G (1A8), anti-CD11b (M1/70), anti-Ly-6C (ER-MP20),
anti-F4/80 (BM8), anti-CD4 (GK1.5), anti-CD8a (53–6.7), anti-
CD11c (3.9), and anti-B220 (RA3-6B2) (eBiosciences). Cells
were incubated in CD16/32 (Fc block; BD Biosciences) prior to
staining. Cells were acquired on LSR II (BD Biosciences) and
analyzed with the FlowJo software (Treestar).

Autoantibody and Cytokine ELISAs
Serum IgG subtypes (IgG1 and IgG2a) were measured by ELISA
using the following coating antibodies: purified anti-mouse IgG1
and IgG2a and detection antibodies: biotin anti-mouse IgG1 and
IgG2a (BD Pharmingen, San Jose, CA). Following Streptavidin-
HRP (Sigma) incubation, the ELISA was developed with TMB
substrate (Dako). The optical density (OD) for each well with a
microplate reader set to 450 nm. MCP-1 and s100a8/9 levels were
measured via ELISA according to the manufacturer’s instruction
(R&D). Total serum IgG and anti-dsDNA and anti-RNP Ab
levels were quantified by ELISA using commercially available kits
(Alpha Diagnostic International, San Antonio, TX), following
manufacturer’s protocols. An anti-mouse albumin ELISA kit was
used to measure urine proteinuria (Bethyl labs).

Gene Expression Analysis
Quantitative PCR (Q-PCR) was performed as previously
described (19, 20). In brief, total RNA was extracted from 106

peritoneal cells using TRIzol reagent (Invitrogen, Carlsbad, CA),
and cDNA was synthesized using the (Invitrogen) according to
the manufacturer’s protocol. qPCR was performed on a CFX96
Real-Time PCR Detection System (Biorad). A melting-curve
analysis was performed to ensure specificity of the products. Gene
expression was normalized to GAPDH, and expression relative
to the PBS treatment was calculated using the ddCt method (18)
Primer sequences are listed as follows:

mIsg15 Fw: GGTGTCCGTGACTAACTCCAT
mIsg15 Rv: CTGTACCACTAGCATCACTGTG
mMx1 Fw: GATCCGACTTCACTTCCAGATGG
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mMx1 Rv: CATCTCAGTGGTAGTCAACCC
mIrf9 Fw: TGTCTGGAAGACTCGCCTAC
mIrf9 Rv: GCAACATCCATACGACCTCTCT
mIfnb Fw: CAGCTCCAAGAAAGGACGAAC
mIfnb Rv: GGCAGTGTAACTCTTCTGCAT
mOgg1 Fw: tgtgtaccgaggagacgaca
mOgg1 Rv: ctgtgccaggctgacatcta
hOGG1 Fw: CACACTGGAGTGGTGTACTAGC
hOGG1 Rv: CCAGGGTAACATCTAGCTGGAA

NETosis
NETosis was measured with or without stimulation with the
ionophore A23187 for 0, 60, and 120min in bone marrow
derived neutrophils (BMDN). Sytox (ST)measures external DNA
and Pico Green (PG) measures total DNA and ratio ST/PG
was calculated.

Histology
Skin samples from the shaved dorsal neck region were fixed
in 10% buffered formalin and embedded in paraffin. Sections
were stained with hematoxylin and eosin. Frozen sections were
prepared and stained with anti-mouse IgG-AF550 conjugated
antibody. Kidneys were fixed in paraformaldehyde, embedded
in paraffin, and sections were stained with H&E and periodic
acid-Schiff (PAS). Kidney sections were scored by pathologist
in a blinded fashion to determine a glomerular and interstitial
inflammation score. Briefly, a mean glomerular score was
calculated for each mouse by grading injury in fifty glomeruli.
Glomeruli were scored as normal = 0, mesangial expansion =1,
endocapillary proliferation = 2, capillaritis or necrotic changes
= 3, or crescents = 4. The interstitial score was determined
by examining 50 high power fields and scoring the interstitial
inflammation on a scale from 0 to 4 as absent, involving <25%,
25–50%, or >50% of the interstitium. For immunofluorescence,
sections were prepared from frozen kidneys in OCT (TissueTek).
Glomerular immune complexes in kidney sections were detected
by staining with Dylight 488 labeled goat anti-mouse IgG
(minimal x-reactivity, Biolegend). Using the image analysis
software, deposition of IC was scored by pathologist.

Skin Disease Incidence
Cohorts of WT and Ogg1−/− mice were followed over time, and
the onset of macroscopic skin disease was recorded along with
the ages of the animals. Mice were considered affected when an
area >0.5 cm of hair loss and ulceration was noted.

Animal Studies
All animal experiments were performed according to the
guidelines and approved protocols (IACUC #8299) of the
Cedars-Sinai Medical Center Institutional Animal Care and
Use Committee. Cedars-Sinai Medical Center is fully accredited
by the Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC International) and abides
by all applicable laws governing the use of laboratory animals.
Laboratory animals are maintained in accordance with the
applicable portions of the Animal Welfare Act and the guidelines

prescribed in the DHHS publication, Guide for the Care, and Use
of Laboratory Animals.

Study Approval
Patient Samples

As described previously (21), all SLE patients (as per ACR
diagnostic criteria) were recruited from Cedars-Sinai Medical
Center, CA, USA. Age- and sex-matched healthy donors
who had no history of autoimmune diseases or treatment
with immunosuppressive agents were included. All participants
provided informed written consent and the study received prior
approval from the institutional ethics review board.

Isolation of PBMCs and Cellular Subsets

Peripheral blood mononuclear cells (PBMCs) were separated
from whole blood by density-gradient centrifugation with Ficoll-
Paque Plus (GE Healthcare). CD14+ monocytes were purified
from fresh PBMCs by positive selection using magnetic CD14+

beads (Miltenyi Biotec) according to manufacturer’s protocol.

Statistics
All data are expressed as means ± SD. Statistical differences
were measured using either an unpaired Student’s t-test or 2-way
analysis of variance (ANOVA) when appropriate with Bonferroni
post-hoc test. Normality of data was assessed via a Shapiro–
Wilk normality test. When the data analyzed was not distributed
normally, we used the Mann–Whitney test or Kruskal–Wallis
1-way ANOVA with Dunn’s post-hoc test. Data analysis was
performed using Prism software version 7.0a (GraphPad, San
Diego, CA). A P-value of <0.05 was considered statistically
significant. Asterisks in the figures represent the following: ∗P <

0.05; ∗∗P < 0.01; ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001.

RESULTS

Ogg1 Deficiency Exacerbates
Pristane-Induced Lupus-Like Systemic
Inflammatory Responses in vivo
To determine whether loss of Ogg1 exacerbated disease
progression in PIL, we compared C57Bl/6 (WT) and Ogg1−/−

mice 7 days after pristane treatment. Analysis of peritoneal
lavage demonstrated that pristane treatment resulted in
increased recruitment of inflammatory CD11b+Ly6Chi

monocytes and expression of Siglec1, an IFN inducible gene,
in Ogg1−/− mice compared to WT mice, whereas neutrophil
(CD11b+Ly6G+) recruitment was similar across both genotypes
(Figures 1A–D). In addition, significantly higher level of 8-
OH-dG was determined in peritoneal lavage from Ogg1−/−

mice compared to WT mice (Figure 1E). Taken together, lack of
Ogg1 resulted in enhanced expression of IFN stimulated genes
(ISGs)—Ifnb, Oas1, and Ip10 (Figure 1F).

To determine the role of OGG1 in organ damage and SLE
pathogenesis, we compared C57Bl/6 (WT) to Ogg1−/− mice 10
months after pristane injection. In female C57Bl/6 mice, pristane
treatment significantly elevated the level of 8-OH-dG in urine 10
months after injection, indicating that pristane induced oxidative
DNA damage (Figure 2A). Furthermore, Ogg1 expression was
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FIGURE 1 | Early inflammatory response to pristane in WT and Ogg1−/−mice. (A) Representative pictures of FACS analysis of peritoneal cells day 7 after pristane. (B)

% CD11bLy6C+ population, (C) % CD11bLy6G+ population, (D) Siglec1+ cells in CD11bLy6G− population. All data represent mean ± SD. (E) 8-OH-dG ELISA

peritoneal lavage. (F) The expression of mRNA for IFN signature genes (Ifnb, Oas1, and Ip10) in peritoneal cells. Statistical significance was determined using

Two-Way ANOVA with Bonferroni post-hoc test. *p < 0.05, **p < 0.01.

significantly lower in peritoneal cells from pristane-treated
mice than untreated mice (Figure 2B), indicating that Ogg1
downregulation may permit the accumulation of oxidative DNA
damage in PIL mice. In keeping with our analysis of the acute
effects of pristane on IFN-inducible responses in Ogg1−/− mice
we observed that expression of IFN stimulated genes (Irf9,
Mx1, and Isg15) were significantly higher in the peritoneal cells
of Ogg1−/−mice post pristane injection than in those of WT

mice (Figure 2C), indicating a sustained systemic response to
pristane treatment in the Ogg1−/− mice. In order to assess the
level of lupus-like systemic inflammatory responses induced
by pristane, we measured circulating levels of anti-dsDNA and
anti-RNP autoantibodies, and found that all were substantially
higher in Ogg1−/− mice than WT mice 10 months after
pristane exposure (Figures 2D,E), whereas total IgG, IgG1, and
IgG2a and other autoantibodies showed no difference between
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FIGURE 2 | Increased inflammatory response to pristane in Ogg1−/− mice. (A) 8-OH-dG secretion in spot urine in WT mice with or without pristane. n = 3–4/group

(B) Ogg1 mRNA expression in peritoneal cells in WT mice with or without pristane. n = 6–8/group (C) The expression of mRNA for IFN signature genes (Irf9, Mx1, and

Isg15) in peritoneal cells. (D,E) The level of auto antibody, anti-dsDNA, and anti-RNP, in serum by ELISA. n = 10–15/group. All data represent mean ± SD. Statistical

significance was determined using Two-way ANOVA with Bonferroni post-hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

genotypes (Supplementary Figures 1A–D). Rather surprisingly
whilst both pristane-treated WT and Ogg1−/− mice exhibited
splenomegaly 10 months post-pristane treatment compared
with untreated mice, with no statistically significant difference
observed between treated WT or Ogg1−/− groups (Figure 3A).

The splenomegaly observed was mirrored by a significant
increase in the number of splenocytes (Figure 3B) and in
circulating neutrophil numbers (as determined by complete
blood count, Figure 3C and Supplementary Figure 2C) in
pristane-injected WT and Ogg1−/− mice, again with no
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FIGURE 3 | Increased inflammatory response to pristane in Ogg1−/−mice. (A,B) ratio of spleen to BW and Total cell number of spleen. (C) neutrophil counts by

complete blood cell count (CBCC) analysis in peripheral blood. n = 4–6 per group (D) NETosis in A23187 stimulated BMDN obtained from pristane treated WT and

Ogg1−/− mice. n = 4 in triplicates. All data represent mean ± SD. Statistical significance was determined using Two-Way ANOVA with Bonferroni post-hoc test. ns,

not significant. *p < 0.05, **p < 0.01, ***p < 0.001.

statistically significant difference observed between treated
WT or Ogg1−/− groups. Similar changes were observed with
respect to neutrophils (CD11b+Ly6G+) and inflammatory
monocytes (CD11b+Ly6Chi) recruited to the peritoneal
cavity following pristane treatment of both genotypes
(Supplementary Figures 2A,B), whilst levels of S100 calcium
binding protein A8/9 (s100a8/9, known as calprotectin), a
potent chemotactic agent for neutrophils and monocytes
both in vitro and in vivo (19), and MCP1 were similarly
changed with no significant differences between treated groups

(Supplementary Figures 2D,E). However, despite the lack of
significant differences in absolute numbers between WT and
Ogg1 KO treated groups, functionally lack of Ogg1 modified
neutrophil function. Robust NET formation was observed
following A23187 ionophore stimulation of bone-marrow
derived neutrophils (BMDN) from both pristane-treated WT
and Ogg1−/−mice. However, neutrophils from Ogg1−/− mice
displayed altered kinetics, with NET formation starting earlier
and being more pronounced (although not significantly) in
Ogg1−/−BMDN compared with WT BMDN (Figure 3D).
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FIGURE 4 | Ogg1 deficiency exacerbates skin changes in pristane treated mice. (A) Representative pictures of hair loss observed over the indicated time periods in

pristane treated WT and Ogg1−/−mice. (B) Representative pictures of H&E staining of skin from dorsal neck area. Quantification of epidermal thickness. Scale bar =

20µm. n = 10–12/group (C) Representative pictures and quantification of IgG deposition of dorsal neck area of skin of pristane treated WT and Ogg1−/−. n =

4/group. All data represent mean ± SD. Statistical significance was determined using Two-Way ANOVA with Bonferroni post-hoc test in panel (B) and two tails

Student’s t-test in panel (C). ns, not significant. **p < 0.01, ***p < 0.001.
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Overall, these results suggest that lack of Ogg1 leads to increased
responses to 8-OH-dG, anti-dsDNA antibodies, and enhanced
IFN responses in the pristane model.

Loss of Ogg1 Has Little Effect on Kidney
Pathology, but Exacerbates Skin Pathology
in Pristane-Treated Mice
To determine the effect ofOgg1-deficiency on glomerulonephritis
in this model of lupus, we measured proteinuria. None
of the mice from untreated or treated groups scored 3+,
although Ogg1−/−mice treated with pristane showed a
non-significant trend toward increased pathological score
(Supplementary Figure 3A). IgG deposition within the
glomeruli was enhanced in both pristane-treated WT and
Ogg1−/− mice compared with their untreated controls
(Supplementary Figure 3B). We next scored kidney sections
stained with PAS and Mesangial expansion/hypercellularity
(M.E.) and Endocapillary Hypercellularity (H.E.) indices, which
approximate the scoring system of human lupus nephritis. Both
M.E andH.E were significantly increased in both pristane-treated
WT and Ogg1−/− mice compared with their control groups,
with a non-significant trend toward increased pathology in
Ogg1−/− mice compared with WT (Supplementary Figure 3C).
These results indicate that loss of Ogg1 may only play
a minor role in the development of pristane induced
lupus-like glomerulonephritis.

Surprisingly, we observed increased hair loss and differences
in skin pathology in the Ogg1−/− compared to WT. Starting
around 3–3.5 months of age, both untreated and treated
Ogg1−/− mice lost hair in the dorsal neck area, whereas
WT mice did not. In pristane-treated Ogg1−/− mice, hair
loss spread to the frontal, and dorsal part of entire trunk,
reaching the hind legs by 10 months of age (Figure 4A and
Supplementary Figure 4A). Histopathological analysis of H&E
stained sections revealed epidermal hyperplasia, consisting of
acanthosis and hyperkeratosis, in pristane-treated Ogg1−/− mice
(Figure 4B). Analysis of IgG deposition in the skin from the
dorsal neck area revealed that skin of Ogg1−/− mice had visible
IgG deposition, whereasWT had none (Figure 4C). These results
indicate that Ogg1 deficiency promotes the development of
pristane-induced skin disease.

Inhibition of STING Reverses Increased IFN
Response in BMDMs From Ogg1−/− Mice
To assess whether type I IFN may play a role in skin pathology in
the pristane-treatedOgg1−/− mice, we measured IFN-stimulated
gene expression in dorsal skin from pristane-treated mice.
Pristane treatment induced significantly higher expression of Ifnb
and type I IFN signature genes (Irf9 and Isg15) in dorsal neck skin
of Ogg1−/−mice than WT mice (Figure 5A). Given the recently
reported role of the cGAS-STING pathway in both recognition of
8-OH-dG DNA lesions and cutaneous LE (20), we interrogated
the role of STING downstream of 8-OH-dG recognition in
Ogg1−/− mice. Treatment of WT and Ogg1−/− BMDMs
with 50µM menodione to induce 8-OH-dG (22), resulted in
enhanced Ifnb expression in Ogg1−/− BMDMs compared to

FIGURE 5 | Loss of Ogg1 results in enhanced STING-driven type I IFN

response. (A) The expression of mRNA for IFN signature genes (Ifnb, Irf9, and

Isg15) affected area of skin, fold changes were Ogg1−/− WT. (B) BMDM from

WT and Ogg1−/−mice, were stimulated with cGAMP with or without 50µM

menodione—ME (ROS inducer) pretreatment. Ifnb mRNA was measured by

RT-PCR. (C) Ifnb mRNA in BMDM from WT and Ogg1−/−mice, were

stimulated with cGAMP with or without H151 (STING inhibitor). n = 5–6 per

group. All data represent mean ± SD. Statistical significance was determined

using two tails Student’s t-test (A) Two-way ANOVA with Bonferroni post-hoc

test (B,C). *p < 0.05, **p < 0.01, ***p < 0.001.

controls (Figure 5B). Interestingly, menodione also amplified the
response to cGAMP in Ogg1−/− BMDMs, indicating that loss of
Ogg1 primed the cGAS-STING pathway. Confirming a role for
STING in the enhanced Ifnb expression observed in Ogg1−/−

BMDMs, the STING inhibitor H151 (1µM), completely blocked
menodione- and cGAMP-induced Ifnb expression in Ogg1−/−

BMDM (Figure 5C). As a control, we did not observe any
changes in polyIC induced Ifnb expression in H151-pretreated
cells compared to non-treated cells (Supplementary Figure 5).
Taken together, these data indicated that the cGAS-STING
pathway may be responsible for increased type I IFN expression
in Ogg1−/− cells.
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Altered Levels of OGG1 Associate With
Skin Disease in SLE Patients
To determine how our observations of cutaneous involvement
in pristane-treated Ogg1−/− mice translated to human SLE, we
looked at potential clinical associations of OGG1 expression in
our SLE patient cohort (21). This cohort had been previously
screened for increased expression of ISGs in peripheral blood
mononuclear cells as shown in Smith et al. (21). Monocytes from
these patients with skin and lung involvement expressed lower
levels of OGG1 than monocytes from healthy controls, whereas
no such decrease was observed in monocytes from patients
with other organ involvement (Figure 6A). Analysis of gene
expression profiling conducted by Werth et al. (23) on paired
skin samples from lesional and non-lesion skin from patients
with chronic cutaneous (Discoid) Lupus Erythematosus (DLE)
showed that expression of OGG1 was significantly reduced in
lesional skin compared with non-lesional skin (adj. p = 3.02 ×

10−3; data accessible at NCBI GEO database (24, 25), accession
GSE100093) (Figure 6B). Taken together, our data demonstrate
that expression of OGG1 in SLE is negatively associated with
skin damage observed in patients. This suggests that reduced
expression or loss of OGG1 promotes inflammation and IFNβ

production via recognition of oxidized DNA such as 8-OH-dG
by the cGAS-STING pathway, contributing to both localized
responses in the skin and systemic inflammation (Figure 6C).

DISCUSSION

In this study, we explored the contribution of OGG1 to the
pathogenesis of pristane-induced lupus. Deficiency of Ogg1
resulted in enhanced immune responses to pristane, namely
increased recruitment of Ly6Chi inflammatory monocytes to
the peritoneal cavity, enhanced NETosis, systemic expression of
type I IFN signature genes, higher levels of autoantibodies and
skin damage. Gene expression analysis showed decreased Ogg1
mRNA level in DLE lesions and in PBMCs from SLE patients with
skin involvement. This demonstrates the importance of oxidized
DNA repair enzyme OGG1 in protecting against oxidized DNA-
induced IFN responses in lupus.

OGG1 has two isoforms: nuclear and mitochondrial (11).
Multiple approaches have demonstrated that mitochondrial
OGG1 is crucial for maintenance cell survival, mitochondrial
function, and energetics (26, 27). Recognition and repair of 8-
OH-dG lesions is carried out by the mitochondrial isoform,
and we previously showed that Ogg1−/− BMDMs were more
sensitive to menadione-induced mtDNA oxidative damage,
and that inflammation caused by oxidized DNA damage and
dyslipidemia-induced metabolic stress resulted in accelerated
atherosclerosis in Ogg1−/−Ldlr−/− mice (22).

It is well-known that the catalytic activity of OGG1 is
decreased in the setting of oxidative stress, resulting in an
accumulation of 8-OH-dG (28). In turn, the accumulation
of oxidized DNA drives both inflammation and induction of
type I IFNs, which are thought to be the principal drivers
of SLE. Our results show that Ogg1 deficiency results in
increased proinflammatory monocytes and neutrophils, which

FIGURE 6 | OGG1 expression in human patients. (A) OGG1 mRNA

expression of PBMC of healthy control and SLE patients with different organ

involvements. (B) OGG1 expression from paired lesional and non-lesional skin

samples (n = 16) from patients with Discoid Lupus Erythematosus (DLE) (Data

available at NCBI GEO database, accession GSE100093). Values are reported

as mRNA expression levels, i.e., normalized fluorescent intensity. Lines

indicate relationship between paired samples while *** indicates the difference

is significant between the two groups at p < 0.00001 (Paired Student’s t-test).

(C) The proposed mechanism for increased inflammatory response to pristane

in due to the loss of OGG1. *p < 0.05, **p < 0.01.

are the main source of type I IFN in the pristane model.
Abnormal accumulation of self DNA or oxidized DNA in the
cytosol engages the DNA sensor cGAS, and promotes STING-
IRF3-dependent signaling to elevate interferon-stimulated gene
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expression, potentiating type I IFN responses (29, 30). Indeed,
recent evidence points to STING-mediated pathways as being
overactivated in SLE patients (31). Here, the results of STING
activator and inhibitor experiments (Figure 5) demonstrate that
STING is essential for an increased expression of type I IFN
in Ogg1−/− mice. During the past decade, significant progress
has been made to elucidate a role for aberrant DNA repair
in the development of lupus. Recent evidence indicates that
patients with SLE have higher levels of DNA damage than
normal subjects, and that polymorphisms in genes involved in
the preservation of the genomic stability increase the risk for SLE
(32–34). Furthermore, experience from animal models reinforces
the importance of defective repair in the development of SLE-
like disease (35), suggesting that therapeutic potential of targeting
DNA damage and DNA repair responses in SLE pathogenesis
(36, 37). Indeed, oxidized DNA has a greater immunostimulatory
capacity to stimulate type I IFN than does normal DNA, possibly

due to increased resistance to degradation by the 3
′

repair
exonuclease 1 TREX 1 (38). Our results show that the ROS
inducer menodione more potently induces type 1 IFN expression
from Ogg1−/− BMDMs, in keeping with the model that lack
of Ogg1 results in accumulation of oxidized DNA, driving a
more potent activation of the STING-dependent cytoplasmic
DNA-sensing pathway.

There are 21 known polymorphisms in OGG1, 13 of which
are associated with disease due to reduced capacity to repair
DNA damage (13, 39, 40). In addition, OGG1 polymorphisms
have been linked to SLE risk. For example, the OGG1 SNP
rs1052133 is associated with the development of lupus nephritis
and an observed increase of 8-OH-dG levels in plasma (12).
Interestingly, however, we observed no exacerbated kidney
pathology in theOgg1−/− mice in response to pristane treatment.
Instead, we find that loss of Ogg1 exacerbates pristane-induced
skin pathology and increased expression of IFN stimulated genes
in the skin of Ogg1−/− mice. Although the exact mechanism
of skin involvement in SLE is unknown, ultraviolet light (UV),
immune cells, cytokines, and deposition of immunoglobulins are
all known to have a role in the development of skin inflammation
in SLE (41–43). Recent studies also suggest a pathogenic role of
endogenous nucleic acids in SLE with cutaneous involvement
(44, 45). 8-OH-dG is abundant in skin lesions in SLE patients
with cutaneous involvement, and colocalizes with an IFN gene
signature (44, 46), suggesting that oxidized DNA damage is

an important driver of pathology. In support of this finding,
injection of oxidized DNA into the skin of lupus-prone MRL/Ipr
mice induces lesions similar to those observed in patients (38).

In keeping with these observations and consistent with our
findings in the Ogg1−/− mice, we find that OGG1 expression
is reduced in SLE patients with skin involvement and that
OGG1 expression is decreased in skin lesions obtained from
DLE patients compared to non-lesional matched samples. Taken
together, our results indicate that OGG1 protects against IFN
induction and cutaneous involvement in SLE by reducing 8-
OH-dG-driven IFN reponses, via a mechanism that involves
cGAS-STING mediated IFNβ production.
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