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Abstract

We generalize recent work on graphical models for linkage disequilibrium to estimate the conditional
independence structure between all variables for individuals in the Genetic Analysis Workshop 17 unrelated
individuals data set. Using a stepwise approach for computational efficiency and an extension of our previously
described methods, we estimate a model that describes the relationships between the disease trait, all quantitative
variables, all covariates, ethnic origin, and the loci most strongly associated with these variables. We performed our
analysis for the first 50 replicate data sets. We found that our approach was able to describe the relationships
between the outcomes and covariates and that it could correctly detect associations of disease with several loci
and with a reasonable false-positive detection rate.

Background
As the search for genetic variation underlying complex
diseases turns to rare variants of small effect ascertained
from genome-wide or exome-wide sequence data, the
need for methods of disease-gene association that account
for the high degree of nonindependence between densely
spaced genetic variants (i.e., linkage disequilibrium [LD])
becomes increasingly critical. Failure to consider LD may
result in false-positive associations. We have recently
shown [1] that graphical modeling is a useful and accurate
approach for estimating the LD model, or joint distribu-
tion of alleles across loci, for genome-wide single-nucleo-
tide polymorphism (SNP) array data. The use of a general
decomposable graphical model for the LD structure has a
number of advantages. One such advantage is the ability
to incorporate discrete covariates and outcome variables
into the graph, so that the associations between outcomes,
covariates, and allele states can be estimated without prior
knowledge or specification of a model. Here, we apply
such an approach to the Genetic Analysis Workshop 17

(GAW17) mini-exome case-control sequence data in an
effort to detect genes associated with disease phenotype
while controlling for LD as well as sex, age, and smoking
habits. Because allele frequencies and patterns of LD are
known to vary between populations, we include each indi-
vidual’s population of origin as an additional covariate.

Methods
A graphical model describes the joint distribution of a set
of random variables as the product of conditional distribu-
tions on smaller subsets of the variables. This factorization
has a corresponding Markov (or conditional indepen-
dence) graph, in which vertices represent variables and
edges connect variables that appear together in the same
conditional distribution (see Lauritzen and Sheehan [2] for
background on graphical models). We apply a graphical
modeling approach to the GAW17 data to find SNPs asso-
ciated with disease phenotype and with quantitative traits
Q1, Q2, and Q4 while controlling for LD and several dis-
crete covariates. Specifically, we modified the method
detailed by Abel and Thomas [1] to estimate a decompo-
sable graphical model for the joint distribution
P Y Q X A( , , , )   using the Markov chain Monte Carlo
(MCMC) method. Here Y is the disease phenotype; the Q

* Correspondence: alun@genepi.med.utah.edu
2Division of Genetic Epidemiology, University of Utah, 391 Chipeta Way, Salt
Lake City, UT 84105, USA
Full list of author information is available at the end of the article

Abel and Thomas BMC Proceedings 2011, 5(Suppl 9):S62
http://www.biomedcentral.com/1753-6561/5/S9/S62

© 2011 Abel and Thomas; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:alun@genepi.med.utah.edu
http://creativecommons.org/licenses/by/2.0


are the discretized (into thirds) quantitative traits; the X
are the discrete covariates (population of origin, smoking
status, sex, and age) (dichotomized by the median); and
the A are the alleles at loci 1 through n.
For LD models for SNP genotype arrays, the structure

of the conditional independence graphs tends to be long
and thin, facilitating efficient computation. However,
because of, for example, allele frequencies, age structure,
and smoking rates that vary across populations, the
incorporation of outcome variables and covariates into
the model results in a more complex stellate (and thus
computationally taxing) structure. We use a stepwise
iterative approach to render the problem more compu-
tationally tractable.
In the first step of our algorithm we estimate for all

nonsynonymous variants on each chromosome the pos-
terior most-probable population-dependent graphical
model. That is, we empirically estimate a joint distribu-
tion on the ethnic origin variable and alleles at all loci
with nonsynonymous variants [3]. (In general, exclusion
of synonymous variants is a reasonable simplification,
although synonymous mutations could induce a change
of phenotype by means of, for instance, codon bias. We
note that all GAW17 simulated causal variants were
chosen to be nonsynonymous.) These models are esti-
mated using a slight modification of the program
FitGMLD, described by Abel and Thomas [1].
Briefly, we start with arbitrarily phased haplotypes and

an initial configuration for the graph in which the
dependence structure for the loci is a second-order
Markov chain and in which all loci are associated with
the population of origin. The best-fitting graphical mod-
els are then estimated using simulated annealing
through a method that iterates between rounds of
decomposability-preserving Metropolis graph updates
and blocked Gibbs phase updates based on the current
structure of allele associations [1,3]. In the Metropolis
update of an incumbent graph G, a new graph G′ is pro-
posed by randomly connecting or disconnecting an
appropriate pair of vertices [4]. The proposed graph G′
is then accepted with probability:
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otherwise the graph G remains. Here, t is the tem-
perature parameter for the simulated annealing, and the
penalized likelihood:

IC df( ) log ( ) ( )G L G G= − a (2)

serves as an information criterion in which the penalty
depends on the graph’s degrees of freedom (df). L is the

maximized graph likelihood, and a is a constant. To
allow for an efficient walking-windowed estimation, we
assume that alleles separated by more than 15 interven-
ing loci are conditionally independent. We then use the
obtained model to estimate the most probable phase of
each genotype. We note that, although necessary in gen-
eral, this step may not be required for the previously
phased GAW17 data; however, it would help to mitigate
any phasing or genotyping errors.
The second and third steps of the algorithm are also car-

ried out for each chromosome individually. In these steps,
the haplotype phase is fixed according to the results of the
first stage, and model fitting proceeds using Metropolis
graph updates only. In the second step, a restricted graphi-
cal model is fitted to the full data set, including all loci,
disease status, quantitative traits, and covariates. To
reduce the model space and improve mixing, we enforce
the restriction that edges can connect loci separated by at
most 50 SNPs. We then prune the Markov graph to
include only a subset of loci that are most strongly asso-
ciated with any of the outcomes or covariates; that is, we
restrict the subgraph to spanning all neighbors of all out-
comes and covariates, with the exception of ethnic origin,
up to third degree. At this stage we exclude the loci linked
only to ethnic origin because they are unlikely to be rele-
vant predictors of disease.
The third step is similar to the second; at this stage,

however, because of the decreased model space, we fit
an unrestricted graphical model to the reduced data set.
We then perform a second pruning step, this time
restricting the new Markov graph to the subgraph of all
first- and second-degree neighbors of all loci except eth-
nic origin.
In the final stage of our algorithm, we combine the

remaining loci from all chromosomes to determine the
loci that are most strongly associated with any of the
outcomes while controlling for ethic origin and all cov-
ariates. Again, we fit an unrestricted graphical model to
the data. The nearest neighbors of the disease state or
any of the quantitative traits are considered significantly
associated (according to the information criterion given
by Eq. (2)).

Results
We performed our analysis for the first 50 replicates of the
GAW17 data set. In all cases, the estimated relationships
between disease status, the quantitative traits, and the
measured covariates closely approximate those specified in
the model used to generate the data. To illustrate the
method, we depict in Figures 1 and 2 the intermediate and
final model estimates for the first replicate. Typical results
for two chromosomes after the third model-fitting stage
are shown in Figure 1. In this instance, on chromosome 1
we detect one causal gene and one noncausal haplotype
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(consisting of four nonindependent loci) associated with
disease status. This model suggests a direct association of
trait Q1 with disease and more complex interactions
between age, Q2, and disease and between Q2, Q4, and
disease. Our model for chromosome 10 detects one causal
haplotype and one noncausal haplotype and a single locus
associated with disease status. The pattern of associations
between covariates and outcomes is similar. Although our
main interest here is to detect associations between vari-
ables, our program estimates marginal and conditional dis-
tributions on all subsets of variables, indicating, for
instance, that the probability of disease decreases with
increasing quantitative trait Q4.
The final estimated graphical model for the first repli-

cate is shown in Figure 2. For this data set, our method
detected five causal variants on four genes. Our model
found three variants associated with disease status:
C1S9445 in PIK3C2B, C6S2981 in VEGFA, and
C10S3050 in SIRT1. All three of these variants are rare,
with minor allele frequencies (MAF) of 0.0029, 0.0022,
and 0.0022, respectively, and they were simulated to have
additive mean effects b = 0.23, b = 1.2, and b = 0.97,
respectively. We also detected two common variants,
both in FLT1, associated with quantitative trait Q1:
C13S522 (MAF = 0.028, b = 0.62) and C13S523 (MAF =
0.067, b = 0.65). Our algorithm also returned 13 noncau-
sal variants (i.e., variants that were not part of the disease
model). We note that, as seen in Figure 2, our best-fitting
graphical models sometimes connect SNPs that influence
traits Q1 and Q2 to disease status (rather than the

vertices representing traits Q1 and Q2); however, this
confounding is not unexpected or problematic because
the disease liability was simulated as a linear combination
of latent liability and the three quantitative traits (overall
liability = latent liability + Q1 + Q2 − Q4).
Over the first 50 simulated data sets, our graphical mod-

eling method identified, on average, 1.4 SNPs in causal
genes per data set. Of these correctly identified SNPs,
90.2% were exactly the causal SNPs rather than SNPs
located elsewhere in the causal gene. Our algorithm also
identified an average of 15.8 noncausal variants per repli-
cate. Table 1 summarizes our results for the 50 replicates.
SNPs are categorized as rare (MAF < 0.005) or common
and as having weak (b < 0.5) or strong effect; the number
of times (out of 50) that each variant was detected is indi-
cated. Out of seven possible variants in the common and
strong category, our algorithm detected three: C13S523
(FLT1) was seen in 25 replicates, C13S522 (FLT1) in 23
replicates, and C1S6533 (ARNT) in 2 replicates. Of the 57
variants in the strong and rare category, 6 were seen in at
least one replicate. Of 17 common and weak variants, we
observed only 1. Finally, out of 81 variants in the rare and
weak category, only 1 was detected but in four distinct
data replicates.

Discussion and conclusions
We have shown that a graphical modeling approach can
detect loci associated with complex diseases. Our
method also provides a good approximation of the true
associations between outcomes and covariates specified

Figure 1 Typical pruned Markov graphs after the third model-fitting stage of our algorithm. Outcome variables and covariates are shown
in yellow. Correctly identified variants are indicated by red circles. Left panel: chromosome 1. Right panel: chromosome 10.
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by the model. Furthermore, our method has the ability
to detect environmental effects on disease as well as
gene-gene and gene-environment interactions. We have
demonstrated that our method has reasonable power to
detect common variants of strong effect, finding muta-
tions in the FLT1 gene in more than 70% of replicates.
Furthermore, our approach shows some power to detect
rare variants of large effect, detecting 6 of 57 such var-
iants in at least one replicate. In its current implementa-
tion, our method has little power to detect variants with

weak effect on phenotype; however, it did find the
C10S3110 mutation in SIRT1 (MAF = 0.002152, b =
0.10) in four distinct replicates, probably because of LD
between this locus and other rare mutations of stronger
effect within the same gene. In general, however, our
graphical modeling method is successful at controlling
for LD, because it is able to pinpoint causal SNPs within
causal genes more than 90% of the time.
Our graphical modeling approach, which controls for

population structure, linkage disequilibrium, and

Figure 2 Markov graph estimated in the final model-fitting step. SNPs are color-coded by chromosome. Outcome variables and covariates
are shown in yellow. Correctly identified genes are indicated by red circles.
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relevant covariates, shows considerable promise for
detection of both common and rare variants from
exome sequence data. However, it does have some lim-
itations that should be addressed in future work. First,
our method is purely statistical and avoids biological
assumptions (except in its exclusion of synonymous var-
iants); hence it has only weak power to detect rare var-
iants and also tends to detect associated but noncausal
variants. Inclusion of, in particular, biological pathway
information into the model would help to increase
power and decrease detection of spurious associated
SNPs. Second, our algorithm uses simulated annealing
to find the single most likely graph to represent each
data set; using the MCMC method to average over
many models from the posterior distribution might help
to decrease the number of false positives. By identifying
only the nearest neighbors of the outcome variables in
the most likely model, our algorithm sometimes
excludes causal SNPs in favor of other tightly linked
causal or noncausal SNPs. Model averaging and incor-
poration of, for instance, pathway information into the
model would help to increase both sensitivity and speci-
ficity by appropriately constraining the model space and
considering a larger number of possible solutions.
Finally, our graphical models incorporate a single
(given) ethnicity variable. In general, this could pose a
problem because of admixture or possibly unreliable
self-reported ethnicity. We are currently developing a
method to extend our LD model (the empirically esti-
mated joint distribution of genotypes) to allow the eth-
nicity variable to change between loci and small clusters
of loci, thus allowing for admixed and unknown ethnic
origins.
Despite these limitations, the flexible method of gra-

phical modeling provides a promising approach to the
challenge of detecting the genetic variation that under-
lies complex disease. Given such a disease that involves
environmental factors and many rare variants of small

effect, inclusion of relevant biological information into
the model would help to elucidate the true underlying
factors. Graphical modeling might provide a framework
for such a systems biological tack.
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Table 1 Detected causal variants categorized by minor
allele frequency and strength of effect

Minor allele frequency b < 0.5 b < 0.5

<0.005 C10S3110, SIRT1 (4) C1S9445, PIK3C2B (1)
C3S4873, BCHE (2)
C6S2981, VEGFA (1)
C9S376, VLDLR (1)
C10S3048, SIRT1 (1)
C10S3050, SIRT1 (1)

≥0.005 C18S2492, PIK3C3 (1) C1S6533, ARNT (2)
C13S522, FLT1 (23)
C13S523, FLT1 (25)

Causal variants detected out of 50 replicates. Numbers in parentheses denote
the number of times (replicates) a particular variant was found. For reference,
there were 7 simulated variants in the common and strong category, 57 in
the rare and strong category, 81 in the rare and weak category, and 17 in the
common and weak category.
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