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Abstract

Background

Immunoglobulin A vasculitis (IgAV) is the most common vasculitis in children. Previously,

we demonstrated that patients with IgAV show abnormal proliferation of cluster of differ-

entiation (CD)4+C-X-C chemokine receptor type (CXCR)5+ follicular helper T (Tfh) cells.

Here, we explored the status of Tfh cell subsets and plasma cytokine levels in patients

with IgAV.

Methods

CD4+CXCR5+CD45RA−, CD45RA-CXCR3+CCR6−, CD45RA−CXCR3−CCR6−, CD45RA−

CXCR3−CCR6+, and CD45RA−CXCR3+CCR6+ Tfh cell fractions and plasma concentra-

tions of interferon-γ, interleukin (IL)-4, and IL-17A were evaluated by flow cytometry and a

flow cytometric bead array, respectively, in 30 patients with IgAV and 15 healthy controls

(HCs).

Results

Tfh2 and Tfh17 cell fractions were larger and the Tfh2+Tfh17/Tfh1 ratio and plasmaIL-4 and

-17A levels were higher in patients with IgAV than in the HCs. Only Tfh1 cell counts were

reduced in the abdominal subtype. The elevations in Tfh2 and Tfh17 cell counts and plasma

IL-4 levels were abrogated by treatment. Tfh2 cell number was positively correlated with

serum IgA and plasma IL-4 levels, but negatively correlated with the serum C4 concentra-

tion, while Tfh17 cell number was positively correlated with the serum IgA level and Tfh2 cell

counts.
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Conclusions

Abnormally high numbers of Tfh2 and Tfh17 cells are linked to the occurrence and develop-

ment of IgAV, but are not specific to the abdominal type. Only Tfh1 cells play a critical role in

abdominal-type IgAV.

Introduction

Immunoglobulin A vasculitis (IgAV), formerly known as Henoch–Schönlein purpura, is an

IgA-associated small-sized vessel leukocytoclastic vasculitis (LCV) with non-thrombocytope-

nic palpable purpura (mainly involving the lower extremities, although lesions are not

restricted to this area). IgAV is the most common form of vasculitis in children, with an esti-

mated annual incidence of 30–267 cases per 100,000 children [1,2]. The disease can be trig-

gered by chlamydia, bacteria, viruses, mycoplasma, or parasitic agents infection. Clinical

manifestations predominantly involve the skin, joints, gastrointestinal tract, and kidneys, and

occasionally other organs, and can be severe [2,3]. Progressive impairment of renal function,

bowel perforation, and central nerve system involvement are rare, but constitute the major

causes of IgAV-associated morbidity. Many patients experience abdominal pain as an initial

symptom, which can complicate clinical diagnosis. Therapy for IgAV is mostly supportive and

symptomatic, because the disease is usually benign and self-limiting. However, a subset of

cases have a remitting–relapsing course, especially those with recurrent abdominal pain or ste-

roid reduction difficulties; aggressive therapies such as glucocorticoids and/or immunosup-

pressants are indicated under these conditions [1]. Aberrant deposition of glycosylated IgA1

and complement activation in the walls of small vessels, together with subsequent activation of

an alternate complement pathway, play an important role in the etiology of IgAV [4–6]. Sev-

eral studies have demonstrated that hyperactivation of Th2 and Th17 cells, as well as a decline

in autoreactive natural killer cell number, may also be contributing factors [7], because these

cells are key players in the humoral immune response. Additionally, increased serum interleu-

kin (IL)-4, -6, and -17 concentrations have also been found in patients with IgAV [8,9].

Follicular helper T (Tfh) cells are critical for the formation of germinal centers (GCs),

immunoglobulin (Ig) class-switch recombination, somatic hypermutation, and differentiation

of B cells into long-lived memory B cells and plasma cells [10–12]. Tfh cells can be distin-

guished from other cluster of differentiation (CD)4+ T cell lineages by their high expression of

chemokine receptor C-X-C chemokine receptor type (CXCR)5, programmed death-1, induc-

ible costimulator (ICOS), signaling lymphocytic activation molecule adapter protein, B and T

lymphocyte attenuator, CD40 ligand, and IL-21 [13–15]. Tfh cells act coordinately with B cells,

and dysregulation of their interaction can result in autoimmunity or immunodeficiency. Cir-

culating Tfh cells have been implicated in various autoimmune diseases [16,17]. Our and other

research groups have previously reported aberrant expansion of CD4+CXCR5+ Tfh cells in

patients with IgAV [18,19]; strategies that reduce Tfh cell generation improve symptoms in

some autoimmune disease models [15]. Determining the characteristics of different Tfh cell

subsets in patients with IgAV is important for the development of more effective treatments.

We identified a population of CD3+CD4+CXCR5+ Tfh cells within the memory T cell com-

partment (CD45RA−) of human peripheral blood [20,21]. Four subsets of

CD4+CXCR5+CD45RA− Tfh cells have been phenotyped according to their C-C chemokine

receptor (CCR)6 and CXCR3 expression: CD45RA−CXCR3+CCR6− (Tfh1), CD45RA−CXC

R3−CCR6− (Tfh2), CD45RA−CXCR3−CCR6+ (Tfh17), and CD45RA−CXCR3+CCR6+ (Tfh1/
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17). Of these, only Tfh2 and Tfh17 cells can induce immunoglobulin production by B cells via

IL-21 [15,22].

In the present study, we investigated the distribution of distinct Tfh cell subsets in skin,

abdominal, and kidney-type IgAV and examined the correlation between the different subsets

and clinical parameters. We also evaluated plasma interferon (IFN)-γ and IL-4 and -17A levels

and their association with Tfh cell subsets.

Materials and methods

Patients

Written informed consents were obtained from parents or guardians of study participants.

The experimental protocol followed the guidelines of the Declaration of Helsinki and was

approved by the Human Ethics Committee of Jilin University (Jilin University, Changchun,

China). A total of 30 patients with active IgAV were recruited at the inpatient service of the

Department of Pediatrics, the First Hospital of Jilin University from October 2015 to July 2016,

and met the following criteria: (1) children younger than 18 years old; (2) met the European Lea-

gue Against Rheumatism/Pediatric Rheumatology International Trials Organization/Pediatric

Rheumatology European Society criteria for IgAV [23]; i.e., palpable purpura (mandatory) and

one of following findings: histopathology (typical LCV with predominant IgA deposits or prolif-

erative glomerulonephritis with predominant IgA deposits); diffuse abdominal pain (abdominal

involvement); acute arthritis or arthralgia (joint involvement); proteinuria> 0.3 g/24 h or> 30

mmol/mg of urine albumin/creatinine ratio on a spot morning sample (renal involvement);

hematuria [> 5 red blood cells (RBCs)/high-powered field or� 2+ on dipstick or RBC casts in

urinary sediment]; mild nephropathy; i.e., microhematuria (� 5 RBCs/high-powered field) and/

or proteinuria that did not reach the nephrotic range; severe nephropathy, defined as a) nephrotic

syndrome or b) nephritic syndrome; and renal insufficiency (plasma creatinine> 125% of the

upper limit of normal). On the basis of the presenting symptoms, the 30 patients in this study

were divided into skin (n = 9), abdominal (n = 12), kidney (n = 4), joint (n = 3), and mixed

(patients presenting two or more non-purpura symptoms; n = 2) IgAV types.

Given the self-limiting and benign course of IgAV, symptom-oriented and supportive ther-

apies were administered to patients following admission. Glucocorticoids and/or immunosup-

pressants were administered to those presenting severe gastrointestinal complications or

proliferative glomerulonephritis. Remission following treatment was defined according to two

criteria: (1) after 2 weeks, all skin purpura improved, with no appearance of new rashes; and

(2) abdominal pain, intestinal wall edema, arthralgia, hematuria, and/or proteinuria and other

related symptoms were alleviated. Only 27 of the total patients entered remission. There were

three patients with recurrent skin purpura or abdominal pain. We randomly selected 15

patients at the remission stage. The prognosis of IgAV is mostly benign; therefore, blood sam-

ples were collected from patients who had successfully entered remission. The 15 patients in

remission phase were of skin (n = 4), abdominal (n = 7), kidney (n = 2), joint (n = 1), and

mixed (n = 1) types.

A total of 15 sex- and age-matched healthy controls (HCs) were recruited for the study. All

participants underwent a routine blood test: measurement of serum immunoglobulin and

complement levels using a specific protein analyzer (BN-II; Siemens, München, Germany),

serum C-reactive protein (CRP) level using the QuikRead go CRP kit (Orion Diagnostica,

Espoo, Finland), urinary protein level using a P800 biochemical analyzer (Roche, Mannheim,

Germany), and urinary RBC and white blood cell (WBC) counts using a UF-1000 automatic

urinary sediment analyzer (Sysmex, Kobe, Japan).

Tfh cell subsets in IgAV
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Cell isolation

Fresh venous blood samples were collected from HCs and patients with IgAV following treat-

ment, as well as from patients in remission. Peripheral blood mononuclear cells (PBMCs)

were isolated from subjects by density-gradient centrifugation using Ficoll-Paque Plus (Amer-

sham Biosciences, Little Chalfont, UK) at 800 × g for 30 min at 25˚C.

Flow cytometry

PBMCs at 4 × 106/ml were analyzed by multicolor flow cytometry (FACSAria II; BD Biosci-

ences, Franklin Lakes, NJ, USA). Human PBMCs (106/tube) were stained with BV510-anti-

CD3 (clone: UCHT1), allophycocyanin (APC)-H7-anti-CD4 (clone: RPA-T4), BB515-anti-

CXCR5 (clone: RF8B2), phycoerythrin (PE)-Cy5-anti-CD45RA (clone: HI100), PE-Cy7-anti-

CCR6 (clone: 11A9), or APC-anti-CD183 (clone: IC6/CXCR3) (Becton Dickinson, San Jose,

CA, USA) at room temperature for 30 min. Data were processed using FlowJo v.5.7.2 software

(Tree Star, Ashland, OR, USA).

Cytometric bead array (CBA) analysis of plasma cytokines

Plasma IFN-γ and IL-4 and -17A concentrations were determined using the CBA Human Sol-

uble Protein Master Buffer kit (BD Biosciences) on a flow cytometer. A standard curve was

generated for each set of reagents. The minimum and maximum detection limits for all six

cytokines were 1.0 and 10,000 pg/ml, respectively. Quantification was performed using Cell-

Quest Pro and CBA software (Becton Dickinson).

Statistical analysis

Data are expressed as the median and range. Differences among groups were evaluated by

one-way analysis of variance. The Student’s unpaired or paired t test was performed to com-

pare two groups, and the Mann-Whitney U test was performed for nonparametric data. Rela-

tionships between variables were analyzed by Spearman’s rank correlation test. Statistical

analyses were performed using SPSS v.19.0 software. Two-sided P values< 0.05 were consid-

ered statistically significant.

Results

Clinical characteristics

The demographic and clinical characteristics of the study subjects are shown in Table 1. All

patients presented with palpable skin purpura, especially on the lower extremities and but-

tocks. Among the patients, 30.0% presented with skin purpura (skin type), 40.0% with gastro-

intestinal tract discomfort (abdominal type), 13.33% with microhematuria and/or mild

proteinuria (1+ to 2+) (kidney type), 10.0% with arthralgia and/or arthritis (joint type), and

6.67% with two or more non-purpura symptoms (mixed type). Upon recruitment, the WBC

count (P < 0.0001), and the platelet (P = 0.0069), serum IgA (P = 0.0173), IgE (P = 0.0402),

and complement C4 (P = 0.0451) levels were higher in patients with IgAV than in the HCs

(Table 1). No sequelae or other complications were noted. Etiological factors in abdominal-

type IgAV were upper respiratory tract infection (URTI) (n = 8), Helicobacter pylori infection

(n = 3), and allergy (n = 1); etiological factors in the kidney type were URTI (n = 3) and other

unknown causes (n = 1) (data not shown).
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Detection of circulating Tfh cell subsets in IgAV patients

To investigate the status of circulating Tfh cells in IgAV, we detected the levels of four subsets

of memory CD4+CXCR5+CD45RA− Tfh cells, including CD45RA−CXCR3+CCR6− Tfh1,

CD45RA−CXCR3−CCR6− Tfh2, CD45RA−CXCR3−CCR6+ Tfh17, and CD45RA−CXCR3+C

CR6+ Tfh1/17 cells, which were gated from CD3+CD4+ Th cells in a flow cytometry analysis of

30 patients with IgAV and HCs(Fig 1).Circulating Tfh2 and Tfh17 cells counts and Tfh2+-

Tfh17/Tfh1 ratios were increased in IgAV relative compared with those in the HCs (P< 0.001,

P = 0.0030, and P = 0.0405, respectively) (Fig 2A); however, the number of circulating Tfh1/17

cells did not differ between the two groups (P> 0.05; Fig 2A). We also found that Tfh1 cell

counts were decreased only in the abdominal-type (P = 0.0018; Fig 2B) of IgAV relative to that

in the HCs. Meanwhile, there were significant differences in Tfh1 cell counts between abdomi-

nal-type and skin and other (non-abdominal-type) IgAV (P = 0.0005 and 0.0013, respectively)

(Table 2).

Association between plasma cytokine levels and IgAV symptoms

Plasma levels of IL-4 (P = 0.0018; Fig 2A) but not IFN-γ or IL-17A (P > 0.05; Fig 2A) were ele-

vated in the IgAV and HC groups (Table 2). Compared with the levels in the HCs, the IL-17A

concentration was increased in abdominal-type IgAV (P = 0.0025), which differed from that

in the other (non-abdominal) types of IgAV (P = 0.0296); however, this effect was non-specific,

as it was also detected in the skin type (P > 0.05; Fig 2B).

Alterations in Tfh subsets and plasma cytokine levels following treatment

Following symptom-oriented and supportive therapies, the majority of patients showed

improvement. We examined Tfh cell subsets in 15 patients in remission (Fig 3). Tfh2 and

Tfh17 counts, plasma IL-4 levels, and the Tfh2+Tfh17/Tfh1 ratio were reduced relative to the

absolute value in the active stage (P = 0.0005, 0.0024, 0.0074, and 0.0406, respectively).

Although the number of Tfh1 cells (P > 0.05; Fig 3A) did not change during remission, 8/15

patients in the remission stage were of abdominal-type IgAV, and Tfh1 cell counts were

increased in these abdominal-type IgAV patients during remission compared with that in the

Table 1. Demographic and clinical characteristics of the study subjects.

IgAV (n = 30) Healthy controls (n = 15)

Age, year 6 (3–14) 6 (3–13)

Female/male 16/14 7/8

WBC, 109/l 9.82 (3.97–18.23)* 7.1 (5.13–9.11)

Lymphocytes, 106/l 3.36 (1.6–5.43) 3.61 (1.36–4.28)

Platelet, g/l 367 (179–471)* 278 (167–389)

Serum IgA, g/l 2.25 (0.97–5.83)* 1.56 (0.95–3.89)

Serum IgG, g/l 10.4 (0.98–17.1) 10.1 (1.15–16.02)

Serum IgM, g/l 1.23 (0.67–3.12) 1.02 (0.69–3.43)

Serum IgE, g/l 51.2 (23.9–637.0)* 32.1 (19.3–80.4)

Serum C3, g/l 1.31 (0.82–1.73) 1.42 (0.95–1.61)

Serum C4, g/l 0.41 (0.19–0.47)* 0.33 (0.15–0.51)

Serum CRP (mg/l) 7.53 (1.28–70.12)* 3.1 (0.82–4.2)

CRP, C-reactive protein; WBC, white blood cell.

*P < 0.05 vs. healthy controls (values before treatments)

https://doi.org/10.1371/journal.pone.0189133.t001
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active stage (P = 0.0437, data not shown). There were no changes in IFN-γ (P > 0.05; Fig 3F)

and IL-17A (P> 0.05; Fig 3H) levels during remission. Interestingly, although the numbers of

Tfh1/17 cells were similar between patients with IgAV and the HCs, they were reduced by

treatment (P = 0.0212; Fig 3E).

Association between and among Tfh cell subsets and clinical

parameters

We investigated whether alterations in Tfh cell subsets were associated with disease etiology

and progression, and found that the number of Tfh2 (r = 0.7083, P < 0.001) and Tfh17

(r = 0.5250, P = 0.0029), but not of Tfh1 (r = 0.2574, P = 0.1697) or Tfh1/17 (r = 0.1585,

P = 0.4030), cells was positively correlated with serum IgA levels (Fig 4A). Circulating Tfh2

cell counts were also positively correlated with plasma IL-4 levels (r = 0.5728, P = 0.0009; Fig

4C) and Tfh17 cell counts (r = 0.5221, P = 0.0031; Fig 4D). By contrast, circulating Tfh2 cell

Fig 1. Detection of circulating Tfh cell subsets by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were isolated from patients with

immunoglobulin A vasculitis (IgAV) (n = 30) and age and gender-matched healthy controls (HCs; n = 15), labeled with fluorophore-conjugated antibodies, and

analyzed by flow cytometry. A gating strategy was used to identify CD3+CD4+ T helper (Th) and CD4+CXCR5+CD45RA−, CD45RA−CXCR3+CCR6−,

CD45RA−CXCR3−CCR6−, CD45RA−CXCR3−CCR6+, and CD45RA−CXCR3+CCR6+ follicular helper T (Tfh) cell subsets.

https://doi.org/10.1371/journal.pone.0189133.g001
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Fig 2. Association between follicular helper T (Tfh) cell subsets and immunoglobulin A vasculitis (IgAV) symptoms and treatment strategies. (A)

Tfh cell subsets and plasma IFN-γ and IL-4 and -17A levels were compared in IgAV patients and healthy controls (HCs). (B) Tfh cell subset and cytokine

detection in skin, abdominal, other (non-abdominal) IgAV types and HC. *P < 0.05, **P < 0.01; NS, not significant.

https://doi.org/10.1371/journal.pone.0189133.g002

Table 2. Tfh cell counts and plasma cytokine levels in IgAV and healthy control groups

[median ± standard deviation (range)].

IgAV (n = 27) Healthy controls (n = 15)

Tfh1 cell, 106/l 23.08± 10.19 (6.83–50.08) 28.45± 9.63 (12.78–45.6)

Tfh2 cell, 106/l* 42.81± 11.89 (21.87–67.73) 25.27± 8.96 (12.57–44.59)

Tfh17 cell, 106/l* 33.87± 13.48 (17.0–67.82) 23.17± 7.21 (11.03–34.47)

Tfh1/17 cell, 106/l 6.15± 3.31 (2.25–13.73) 7.68± 4.52 (2.59–18.45)

Plasma IFN-γ, pg/ml 7.75± 1.82 (3.97–12.46) 7.02± 1.38 (3.84–8.22)

Plasma IL-4, pg/ml* 2.15± 0.97 (1.29–5.23) 1.73± 0.36(1.12–2.34)

Plasma IL-17A, pg/ml 7.92± 15.79 (2.73–80.57) 7.71± 2.32(5.9–13.67)

*P < 0.05 vs. healthy controls (values before treatments)

https://doi.org/10.1371/journal.pone.0189133.t002
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Fig 3. Treatment-induced changes in follicular helper T (Tfh) cell subsets and plasma cytokine levels. Following

treatment, 15 patients showed disease remission. Tfh cell counts and plasma IFN-γ and IL-4 and -17A levels were compared

between active and remission stages.

https://doi.org/10.1371/journal.pone.0189133.g003
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counts were inversely related to serum C4 levels (r = −0.4276, P = 0.0284; Fig 4B), but not the

number of Tfh1 cells (r = 0.3453, P = 0.0616; Fig 4D). We also explored the relationship

between Tfh cell subsets and serum IgA level/C4 in the HCs (data not shown).There was no

correlation between Tfh 2 (r = 0.2006, P = 0.4736) and Tfh17 (r = 0.3091, P = 0.2623) cell sub-

sets with serum IgA level in the HCs. Similarly, Tfh 2 (r = -0.1587, P = 0.5720) and Tfh17

(r = 0.1589, P = 0.5717) cell subsets showed no association with serum C4 in the HCs,

respectively.

Discussion

IgAV is a common childhood vasculitis triggered by environmental and genetic factors, and is

associated with a history of URTI [3]. It has long been presumed that aberrant deposition of

glycosylated IgA1 and complement activation contribute to IgAV. Recently, Tfh cells have

Fig 4. Correlation between and among follicular helper T (Tfh) cell subsets and serum IgA or plasma IL-4 levels. Correlations between indicated Tfh

cell subsets and (A) serum IgA, (B) plasma C4, (B) IL-4, and (D) among Tfh cell subsets were analyzed by Spearman’s rank correlation test.

https://doi.org/10.1371/journal.pone.0189133.g004
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been identified as a novel cell type that promotes isotype switching and co-operates with B

cells in GCs [24]. These cells mediate adaptive immune responses in various human autoim-

mune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple scle-

rosis [9, 17, 25], with different cytokines, transcription factors, and pathogens activating distinct

Tfh cell subsets. The expression of chemokine receptors has been instrumental in defining

human CD4+T cell subsets. The expression of CXCR3 is preferentially maintained by cells com-

mitted to the Th1 pathway, whereas CCR6 is expressed by Tfh17 cells. In CD4+CXCR5+ T cells,

CXCR3+CCR6- cells expressed T-bet, a transcription factor of Th1 cells; CXCR3−CCR6− cells

expressed GATA3, a transcription factor of Th2 cells; whereas CXCR3−CCR6+ cells expressed

RORγT, a transcription factor of Th17 cells[26,27]. An altered balance of circulating Tfh cell

subsets has been linked to IgAV. The prognosis of IgAV is mainly dependent on the extent of

kidney damage; however, when there is abdominal involvement (without skin purpura) as an

initial symptom or recurrent episodes of abdominal pain, a rapid diagnosis is critical. In our

previous work, we demonstrated that Tfh cell subpopulations contribute to the development of

IgAV in different ways. However, it is unknown whether certain Tfh cell subsets are specific to

abdominal and kidney-type IgAV.

The present study focused on the mechanisms underlying abdominal and kidney-type

IgAV. Expansion of CD4+CXCR5+ICOS+ Tfh cells has been implicated in IgAV [18,19,28].

However, this was concluded based on the direct detection of total CD3+CD4+ Th cells or the

indirect detection of related cytokines. In the present study, we examined various Tfh cell sub-

sets in IgAV and found that they contributed differentially to IgAV pathogenesis and remis-

sion. We also demonstrated that the balance of CD3+CD4+CD45RA− Tfh cells is altered in

patients with gastrointestinal-specific IgAV. Many patients experience abdominal pain as an

initial symptom, which can complicate the clinical diagnosis. In addition, the progression of

the abdominal symptoms is rapid and with more complications. Therefore, we think it is

important to identify the unique pathogenesis of the abdominal type of IgAV.

Th2 cellscontrol immunity to extracellular parasites and all forms of allergic inflammatory

response, including IgAV. Unlike total T helper cells, Tfh2 and Tfh17 cells can provide central

assistance to naïve B cells via IL-21 production, resulting in the secretion of various Ig isotypes.

Interestingly, in the present study, we found that the numbers of Tfh2 and Tfh17 cells in all

types of IgAV patients were higher than those in the HCs, and were reduced following treat-

ment during disease remission, thereby shifting the Tfh2+Tfh17/Tfh1 balance towards a

proinflammatory response. However, Tfh2 and Tfh17 cell counts did not differ between

abdominal and skin/non-abdominal types, nor between kidney and skin/non-kidney types

(data not shown), implying that these circulating cells play a key role in IgAV, but not of a spe-

cific type. In addition, the numbers of circulating Tfh2 and Tfh17 cells were positively corre-

lated with serum IgA levels, while Tfh2 cell numbers were inversely correlated with serum C4

levels in patients with IgAV. C3 and C4 are also known to be deposited in late vasculitis

lesions. Complement activation via alternative and lectin pathways is observed in patients with

IgAV nephritis and may initiate the inflammatory cascade, thereby worsening glomerular

injury [2, 29].Abnormal elevation of Tfh2 cell numbers may exacerbate C4 depletion, resulting

in its deposition on vascular walls, which has been linked to the occurrence of IgAV. In addi-

tion, Tfh2 cell and Tfh17 cell numbers were positively correlated. Given the important role of

Tfh cells in humoral immunity, a balance between stimulatory and inhibitory mechanisms is

required to regulate the function of Tfh cells and maintain immune homeostasis [30]. Taken

together, the above findings suggested that Tfh2 and Tfh17 cells are involved in the occurrence

and development of IgAV. Despite the diversity of symptoms, the most urgent and easily

relapsed cases are of the abdominal type.
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Interestingly, we found that Tfh1 cell counts were reduced in the abdominal type compared

with those in the other types of IgAV, and increased in the remission stage relative to that in

the active stage (data not shown). Tfh1 cells are proinflammatory effectors of the autoimmune

response, as they lack the capacity to act coordinately with naïve B cells [30–32]. A decrease in

Tfh1 cell numbers may weaken the immune defense reaction. However, migration of Tfh1

cells into inflamed organs as a result of CXCR3 expression might contribute to the reduced

number of Tfh1 cells in peripheral blood. Indeed, kidney infiltration by CXCR3-expressing

CD4+ T cells has also been detected in patients with active lupus nephritis [9], suggesting that

the pathogenesis of the abdominal type is closely related to Tfh1 cells; refractory cases in par-

ticular merit further exploration. Combined with the discovery of Tfh2 and Tfh17 cells, we

also demonstrated the importance of immune dysfunction in the pathogenesis of IgAV. Our

results highlight the association between systemic immunity and IgAV pathogenesis.

Excess cytokine production can cause host tissue injury in infective and sterile forms of

inflammation [33]. In a proinflammatory environment, Th2 cells can secrete IL-4, -5, and -13

to counteract this event [15, 34, 35]. The Th cell cytokines IFN-γ and IL-17 are linked to the

development of autoimmune disease [36]. Increased serum IL-17 levels and peripheral Th17

cell counts have been noted in children with active IgAV [9]. The observed increases in IL-4

and -17A levels in abdominal-type IgAV indicate that these cytokines are involved in disease

occurrence and development, but are not necessarily specific to this type. However, plasma IL-

17A levels were not increased in the kidney type; this may be a result of the small number of

patients of each clinical type that were examined. Under inflammatory conditions, Th17 lym-

phocytes shift towards a Th1 or Th2 phenotype, acquiring the ability to produce IFN-γ or IL-4,

and are more pathogenic than in unshifted cells [37, 38]. Circulating Tfh2 cell counts were

positively correlated with plasma IL-4 levels, leading us to speculate that feedback by the IL-4

produced by these cells induces the amplification of the inflammatory response, while a partial

increase in the number of Tfh17 cells by IL-4 causes these cells to differentiate into Tfh2 cells.

The major determinant of Th cell differentiation is the presence of cytokines at the time of

naïve T cell activation. Concurrently, IL-4 also can inhibit Th1 cell differentiation and induce

Th2 cells. Interfering with IL-4 signaling in Tfh cells during inflammation is a promising ther-

apeutic strategy to block their differentiation into pathogenic Tfh cells in patients with IgAV.

We speculated that pathogen load, immune homeostasis, and disease type affect the composi-

tion of the responding Tfh cell population. The heterogeneity of patients’ symptoms indicated

that distinct Tfh cells and molecular mechanisms underlie IgAV development.

Our findings suggested that Tfh2 and Tfh17 cells play a crucial role in the pathogenesis of

IgAV, but are not specific to the abdominal type. Differential activation of Tfh cell subsets is

responsible for the distinct clinical subtypes in IgAV patients, and may account for differences

in individual responses to therapies. In particular, the abdominal type might have a unique

pathogenesis. In particular, there is no rash in the early stage of IgAV; therefore, the detection

of abnormal markers of Tfh cell subsets will aid diagnosis. The primary purpose of therapy is

to ease acute symptoms and reduce the risk of recurrence; understanding the characteristics of

different Tfh cell subsets in IgAV could allow clinicians to prescribe more individualized ther-

apeutic regimens. A limitation of our study was the small number of patients of the abdominal

type; additional investigations with larger cohorts could help to validate our observations and

clarify whether different Tfh subsets can serve as useful prognostic markers for IgAV.
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S1 Fig. The circulating Tfh cell subsets by flow cytometry of 22 patients in the active stage.

(TIF)
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S2 Fig. The circulating Tfh cell subsets by flow cytometry of the other 8 patients in the

active stage and all patients in remission stage.

(TIF)

S3 Fig. The circulating Tfh cell subsets by flow cytometry of HCs.

(TIF)

S4 Fig. Plasma IFN-γ and IL-4 and -17A levels in all the IgAV patients and HCs.

(TIF)
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