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2.[3,8] Thus, caspase‑3, ‑8, ‑9, p53, p21, Bcl‑2 and Bax, genes 
among others are considered as the potential targets of 
CCA therapy.

Cellular apoptosis including caspase‑dependent and 
independent pathways are substantial signaling cascades 
for homeostasis between cell survival and death.[9] 
Apoptotic pathways (both intrinsic and extrinsic) have 
been identified as potential drug targets in cancer.[9] 
Intrinsic pathway is activated by DNA damage, ischemia, 
and oxidative stress while the extrinsic pathway is 
triggered by death ligand binding to a death receptor, 
for example, tumor necrosis factor‑alpha   (TNF-α) to 

INTRODUCTION

Cholangiocarcinoma  (CCA) is a neglected disease 
most prevalent in developing countries[1] and it has  
no available effective chemotherapeutics despite the 
high burden and mortality rate.[2‑4] This cancer arises 
from the abnormality of cell cycle (e.g., p38 or mitogen 
activated protein kinase,[3,5] p53 or tumor suppressor 
gene p53,[3,5] and p21Waf1 or cyclin‑dependent kinase 
inhibitor 1,[3,6] dysregulation of cell proliferation (e.g., 
p14ARF or alternative reading frame protein,[6] and the 
aberrant of apoptotic genes (e.g., FasL or Fas ligand,[7] 
Bax or bcl2‑like protein 4,[8] and bcl‑2 or B‑cell lymphoma 
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TNF receptor-1, etc. Caspase‑dependent apoptotic pathway 
is a complicated process involving various molecules 
such as TNFR1, TNF‑related apoptosis‑inducing ligand 
receptor (TRAIL-R) Fas receptor, (FasR/CD95), Bid  (BH3 
interacting‑domain death agonist), SMAC (second 
mitochondria‑derived activator of caspase), BCL‑2, BAX, 
caspase ‑8, ‑9, ‑6, ‑3, ‑7, and p53.[9] Although various 
antagonists and agonists of apoptosis have been developed 
to enhance the cellular apoptosis both in preclinical and 
clinical studies,[10] the efficacy of these compounds remains 
unsatisfactory.[11] So far, there are only a few compounds in 
preclinical study focused on CCA.

Beta (β)‑eudesmol (an active compound from Atractylodes 
lancea  (Thunb.) DC.), elicits various pharmacological 
activities.[12] It demonstrated potent anticancer activity 
on CCA in vitro and in vivo with low toxicity on normal 
cells (IC50 = 24.1 ± 3.4 µg/mL, and selectivity index = 8.6).[13] 
Moreover, β‑eudesmol also promoted cell cycle arrest at 
G1 phase, with caspase‑3/7 induction in CCA cell lines.[14]

Identification of drug molecular targets in apoptosis pathway 
by commercial apoptotic assays are often time‑consuming 
and cost‑intensive. However, a selection of key molecules 
in each cascade have been commonly used and known to 
be effective. The objective of this study was to investigate 
β‑eudesmol molecular target of action, using the selected key 
molecules of apoptosis pathways in CCA cell lines.

MATERIALS AND METHODS

Cell lines, antibodies, and compound
HuH28  (derived from a 37  years old female) and 
HuCCT1 (derived from a 56 years old male) CCA cell lines were 
maintained at Chulabhorn International College of Medicine, 
Thammasat University, Thailand. Cells were propagated and 
cultured at 37°C in a humidified atmosphere (5% CO2) using 
RPMI‑1640 medium (Wako, Osaka, Japan) supplemented 
with 10% fetal bovine serum and 1% penicillin/streptomycin. 
Primary antibodies were purchased from Cell Signaling 
Technology, MA, USA (caspase3 #9665 and caspase‑8 #4790), 
Santa Cruz Biotechnology, Inc., TX, USA  (p21 #sc‑6246, 
caspase‑9 #sc‑17784 and Bax #sc‑20067), and Medical and 
Biological Laboratories Co., Nagoya, Japan  (anti‑β‑actin 
pAB‑HRP‑DirectT). Secondary antibodies used were from 
Promega, WI, USA  (anti‑rabit IgG HRP) and Santa Cruz 
biotechnology, Inc., (anti‑mouse‑IgGk BP‑HRP). β‑eudesmol 
was purchased from Wako [Figure S1].

Treatment of HuCCT1 and HuH28 cells with β‑eudesmol
Cells were divided into treated and control  (nontreated) 
groups, and sampled for assessment at different time 
points (0, 4, 12, 24, 36, 48, and 72 h) post-treatment. Cells were 
seeded into 100 mm dish (3 × 106 cells/dish) and cultured 

overnight. Next day, cells in the treated groups were exposed 
to β‑eudesmol and harvested at the given time points.

Total RNA extraction and cDNA synthesis
Total RNA was extracted from treated and untreated cells 
using RNeasy Mini kit  (QIAGEN, CA, USA). Reverse 
transcription was performed with Superscript Ш kit (Life 
Technologies, CA, USA) following the manufacturer’s 
instructions. Resulting cDNA was stored at −20°C until used.

Analysis of mRNA expression levels of apoptosis pathway 
proteins
The mRNA expression levels of caspase‑3, ‑8, ‑9, p53, p21, 
Bcl‑2, and Bax were determined by quantitative real‑time 
polymerase chain reaction  (qRT‑PCR) using iTaq TM 
Universal SYBR Green Supermix reagents  (BIO‑RAD 
Laboratories, CA, USA) according to the manufacturer’s 
instructions. The RT‑PCR condition was set as: initial 
denaturation at 95°C for 10 min followed by 40 cycles of 95°C 
for 15 s, TM (melting temperature, varied [55°C–62°C] with 
primer sets) for 1 min and 95°C for 15 s. The primers and TM 
of each target have been provided in Table 1. Housekeeping 
gene, glyceraldehyde 3‑phosphate dehydrogenase (GAPDH) 
was used to normalize the expression level.

Western blot analysis of apoptosis pathway proteins
Cells were lysed using radio‑immunoprecipitation 
assay  (RIPA) Lysis and Extraction Buffer  (ThermoFisher, 
MT, USA). Lysate was loaded into 12% SDS‑PAGE 
and transferred onto polyvinylidene difluoride (PVD) 
membrane  (MilliPore, Darmstadt, Germany). After 
blocking with bovine serum albumin (BSA) in tris‑buffered 
saline (TBS) with Tween20, membrane was incubated at 
4°C overnight  (1200  rpm) with corresponding primary 
antibodies according to the manufacturer’s instructions. 
HRP‑labeled secondary antibody was added and detected 
using Amersham™ ECL™ Start Western blotting Detection 
Reagent  (GE Healthcare, Buckinghamshire, UK). Protein 
bands were visualized by an image analyzer  (LAS‑4000 
mid; GE healthcare).

Data analysis
All the experiments were performed 3  times. Expression 
levels were presented  as average and error bar (standard 
deviation). Comparison of expression levels with the 
baseline was performed by Student’s t‑test. P < 0.05 was 
considered as statistically significant.

RESULTS

β‑eudesmol altered the expression levels of cell cycle 
regulated genes (p21 and p53)
As shown in the qRT‑PCR results [Figure 1a], the expression 
levels of p21 and p53 were higher in treated cells lines 
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compared with the nontreated. In HuH28 cells, expression 
levels of both p21 and p53 increased 4 h post β‑eudesmol 
exposure (P = 0.036, P = 0.045). In HuCCT1 cells, p21 was 
expressed highest at 24 h, but expression of p53 continuously 
increased with time (P = 0.039, P = 0.004) [Figure 1a].

Effect β‑eudesmol on the expression levels of apoptosis  
pathway genes
Apoptotic genes (caspase‑3, ‑8, ‑9, bcl‑2, and Bax) expression 
altered with β‑eudesmol treatment  [Figure  1b and c]. 
The proapoptotic gene Bax showed increased expression 
at 4  h in HuH28  cells and HuCCT1  cells  (peaked at 
24 h), respectively. In HuCCT1 cells (but not in HuH28), 
expression of anti‑apoptotic gene, i.e., bcl‑2 increased with 
time and peaked at 72 h posttreatment (P = 0.0011).

In HuH28  cells, the expression levels of caspase‑3 and‑8 
were increased at 4  h and then declined, while the 
expression of caspase‑9 increased to peak at 72  h of 
β‑eudesmol exposure  (P  =  0.048, P  =  0.022, P  =  0.036, 
respectively)  [Figure  1c]. In contrast, HuCCT1  cells 
demonstrated gradual increase in caspase‑3 and ‑9 
expression  (peaked at 72 and 48  h for caspase‑3 and ‑9, 
respectively) (P = 0.003, P = 0.05), while caspase‑8 increased 
throughout the time points (P = 0.0019) with a peak at 24 h 
after β‑eudesmol treatment.

β‑eudesmol induced the expression of caspase‑3, -8, and -9 
proteins
The results of immunoblotting showed the expression 
of  caspase proteins in both HuH28 and HuCCT1 cell 
lines [Figure 2a and b].  In HuH28 cells, β‑eudesmol induced 
caspase‑9 protein expression at 4–48 h (peak at 12–36 h), 
whereas caspase‑8 expressed between 4 and 72 h though 
relatively low. Caspase‑3 expression started after 4 h and 
remained so till 48  h. β‑eudesmol also induced caspase 

Table 1: Oligonucleotide sequences used for real‑time quantitative‑polymerase chain reaction analysis
Target gene Forward: Primer sequence (5’‑3’)

Reverse: Primer sequence (5’‑3’)

Temperature (°C)

Caspase‑3 5’‑CATACATGGAAGCGAATCAATGGACTCTGG‑3’
5’‑CGACATCTGTACCAGACCGAGATGTC‑3’

57

Caspase‑8 5’‑GATATTGGGGAACAACTGGACAGTGAAGA‑3’
5’‑CATTCAACCCACACCTCCCAGTC‑3’

57

Caspase‑9 5’‑GCGAACTAACAGGCAAGCAG‑3’
5’‑CCAATGTCCACTGGTCTGG‑3’

55

p53 5’‑CTTTTCGACATAGTGTGGTGGTGCCC‑3’
5’‑CCCATGCAGGAACTGTTACACATGTAG‑3’

55

p21 5’‑CCGTGAGCGATGGAACTTCGACTTT‑3’
5’‑CAGGTCCACATGGTCTTCCTCTGCT‑3’

55

Bcl‑2 5’‑GAGGATTGTGGCCTTCTTTGAGTTCG‑3’
5’‑CTCCGTTATCCTGGATCCAGGTG‑3’

60

Bax 5’‑TCCACCAAGAAGCTGAGCGA‑3’
5’‑GTCCAGCCCATGATGGTTCT‑3’

62

GAPDH 5’‑TCAACGGATTTGGTCGTATT‑3’
5’‑CTGTGGTCATGAGTCCTTCC‑3’

60

GAPDH=Glyceraldehyde 3‑phosphate dehydrogenase

‑3, ‑8, and ‑9 protein expressions in HuCCT1 cells during 
4–24 h [Figure 2b].

β‑eudesmol activated p21 and bax protein expression
Immunoblotting revealed β‑eudesmol induced p21 protein 
expression particularly in HuCCT1  cells  [Figure  2b]. 
Moreover, the p21 expression appeared earlier in 
HuCCT1 cells with subsequent decline later on. Interestingly, 
β‑eudesmol also induced persistent expression of BAX 
protein in HuH28 cells from 4 to 72 h, with no increased 
expression of p21 protein [Figure 2b].

DISCUSSION

Results of the present study suggest that β‑eudesmol 
may have contributed to cell cycle arrest in CCA cell 
lines, perhaps, through the induction of p21 (inhibition 
of G1/S transition) by p53.[15] Although the p21 expression 
was observed at RNA and protein level in HuCCT1 cells, 
there was no expression at protein level in HuH28 cells. 
Due to slightly different expression of p53 in mRNA and 
protein levels, we cannot totally rule out  the potential 
impact of previous cell cycle  especially in HuH28 cells. 
Besides promoting p21 expression, p53 modulates the 
intrinsic apoptotic pathway through the activation of 
pro‑apoptotic protein  (e.g., bax) expression and binds 
to antiapoptotic protein (e.g., bcl‑2) leading to increased 
free proapoptotic protein. This was evidenced by the 
increased bax expression at mRNA level in both cell lines 
and protein level in HuH28 cell lines. In the published 
data, induction of pro‑apoptosis pathway by anti‑cancer 
agents was reported in CCA inhibition through bax 
expression.[16] Although we do not have bcl‑2 protein 
level data, perhaps, its high expression had some role 
in the suppression of bax protein in HuCCT1  cells. 
The induction of p53 expression is beneficial to cancer 
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patients in terms of the enhancement of chemotherapy 
and radiation through promoting DNA‑double strands 
breakdown.[17]

Caspase ‑8, ‑9, and‑3 are the hallmark for the investigation 
of apoptotic pathway.[9] In the previously published 
datasets, induction of apoptosis pathways by anticancer 
agents  (cucurbitacin B, indirubin‑3’‑oxime, allicin, 
kaempferol, etc.,) were found to suppress human CCA, 
where expression of bcl‑2, caspase ‑3, ‑8, ‑9 and bax 
was observed.[18] In this study, β‑eudesmol induced 
the caspase‑dependent apoptotic activity  (caspase ‑3) 
through both intrinsic  (caspase‑9) and extrinsic  (caspase 
‑8) apoptotic pathways in HuH28  and/or HuCCT1 cell 
lines which was evidenced by the mRNA expression 
and western blot profiles. Previously, in different 
cell lines  (human CCA KKU‑100 and CL‑6), this 
compound also induced apoptosis with the activation of 
caspase‑3/7 pathway.[19] Therefore, caspase‑3 may serve 
as an appropriate surrogate to examine drug‑mediated 
apoptosis pathway in CCA.

Figure 2: Effect of β‑eudesmol on the expression levels of key proteins related 
to cell cycle regulation and apoptosis in HuH28 and HuCCT1 cell lines. Protein 
expression  (caspase ‑3, ‑8, ‑9, p21 and Bax) measured by western blot at 
different time points (h) in both cell lines: (a) western blot protein bands and (b) 
semi‑quantitative measurement  (densitometry plot) using band intensities. 
Band intensities were normalized with actin for quantification. Zero h indicates 
non‑treated control. In HuH28 cell lines, Caspase‑3 and ‑9 proteins were 
detected during 4–48 h, Bax protein was detected during 4–72 h. In HuCCT1 
cell lines, caspase ‑3, ‑8, ‑9 and p21 proteins detected were during 4–36 h. All 
the experiments were performed 3 times, and the band intensity was expressed 
as average with error bar (standard deviation). h = hour

b

a

Figure 1: Expression profiles of key genes associated with cell cycle regulation 
and apoptosis pathway in HuH28 and HuCCT1 cell lines after treatment with 
β‑eudesmol. (a) Expression of p21 and p53; (b) Bax and bcl‑2, and; (c) caspase‑9, 
‑8, and ‑3 in both cell lines at different time points (h). Relative gene expression was 
normalized with the house‑keeping gene GAPDH. Zero h indicates non‑treated 
control. In HuH28 cell line, mRNA expression of p21, p53, bax, caspase‑3, and ‑8 were 
stimulated by β‑eudesmol at 4 h post treatment and caspase‑9 at 72 h. In HuCCT1 cell 
lines, p21 and bax were stimulated at 24 h, while p53, bcl‑2, caspase‑3 were gradually 
increased from 4 to 72 h. Expression of caspase ‑9 and ‑8 peaked at 48 and 24 h, 
respectively. All the experiments were performed 3 times, and the gene expression 
level was presented as average with error bar (standard deviation). h = hour

c

b

a
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Presently, a few extrinsic apoptotic modulators have 
been investigated for CCA therapy.[20‑22] To the best of our 
knowledge, the studies of drug/compound which induces 
extrinsic pathway in CCA cell lines (e.g. HuCCT1) are very 
limited. None of the available published articles showed the 
enhancement of extrinsic pathway. Therefore, a compound 
that can activate the extrinsic pathway would be of interest 
to drug discovery.

HuCCT1 cell line is likely to be more sensitive to β‑eudesmol 
on induction of cell cycle regulation and activation of the 
intrinsic and extrinsic apoptotic pathways. This is supported 
by the expression of key molecules  (p53, Caspase ‑3, ‑8, ‑9, 
and bcl‑2) by real‑time PCR in HuCCT1 but not in HuH28 
cell lines  [Figure 1a‑c]. In turn, this could also explain the 
variation in drug response in patient treatment, for example, 
most effective in patients with certain clinical characteristics. 
Nonetheless, the different characters of the two cell lines 
cannot be overlooked while interpreting these findings (such 
as different cell morphology, doubling time, tumor specificity, 
etc.).

Studies revealed that caspase‑3 has the widest ability to 
cleave substrate.[23] Currently, there are only a few marketed 
drugs that promote the activation of caspase‑3, particularly 
for CCA, e.g.  sorafenib.[24] However, it is still unsatisfactory 
since 75% of the patients exhibited grade 1 and 2 adverse 
events (AEs). It means, approved drugs for CCA therapy are 
still unsatisfactory in terms of survival rate, progression‑free 
survival, and AEs. Therefore, compounds that can activate 
both intrinsic and extrinsic pathway on CCA cell lines 
should be considered priority for drug development for 
alleviating illness and improving the quality of life.

CONCLUSION

Taken together all the findings, β‑eudesmol induced the 
expression of apoptosis pathway proteins, suggesting 
its potential role in promoting the caspase‑dependent 
apoptotic pathway and induction of the cell cycle arrest. 
Although the availability of protein level data for p53 and 
bcl‑2 expression would provide additional value, this is 
our limitation. Nevertheless, β‑eudesmol can be considered 
as a potential compound to be further investigated as an 
anti‑CCA agent.
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Supplementary Figure S1: Structure of β‑eudesmol  (Source: Wako, Osaka, 
Japan)


