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ABSTRACT: eIF4A1 is an ATP-dependent RNA helicase whose
overexpression and activity have been tightly linked to oncogenesis
in a number of malignancies. An understanding of the complex
kinetics and conformational changes of this translational enzyme is
necessary to map out all targetable binding sites and develop novel,
chemically tractable inhibitors. We herein present a comprehensive
quantitative analysis of eIF4A1 conformational changes using
protein−ligand docking, homology modeling, and extended
molecular dynamics simulations. Through this, we report the
discovery of a novel, biochemically active phenyl-piperazine
pharmacophore, which is predicted to target the ATP-binding
site and may serve as the starting point for medicinal chemistry
optimization efforts. This is the first such report of an ATP-
competitive inhibitor for eiF4A1, which is predicted to bind in the nucleotide cleft. Our novel interdisciplinary pipeline serves as a
framework for future drug discovery efforts for targeting eiF4A1 and other proteins with complex kinetics.

■ INTRODUCTION

Dysregulation of protein translation is known to contribute to
the establishment of many of the hallmarks of cancer, including
evasion of apoptotic signals, altered cellular energetics and
metabolism, invasion and metastasis, and induction of
angiogenesis.1,2 In fact, many of the major pathways hijacked
by cancer, such as PI3K/AKT/mTOR and MEK/Mnk,
converge on the eukaryotic initiation factor (eIF) 4F complex
to promote cap-dependent translation of downstream onco-
genic effector proteins.3,4 Overexpression of eIF4A1 in cancer
has been correlated with both poor prognosis and drug
resistance.5,6 Initial concern against globally targeting trans-
lation occluded interests in pursuing drug discovery and target
validation studies of eIF4A1. However, it has since been
established that there is a large therapeutic window in eIF4A1
inhibition, likely due to the aberrant upregulation in activity for
protein translation in cancer cells compared to normal cells.7,8

While some highly potent and selective eIF4A1 inhibitors have
been discovered, they lack core drug-like properties and thus
were not advanced further than animal testing. First, many of
the discovered compounds are natural products, such as the
rocaglate and silvestrol. Thus, their complex structures with
multiple chiral centers make them particularly synthetically
intractable and present a challenge for the intellectual
property.9 Second, cell and animal models show the develop-
ment of resistance quickly as silvestrol has a high affinity for
the multidrug resistance efflux pump ABCB1 (p-glycoprotein,

MDR1).10 Thus, the discovery of novel scaffolds that inhibit
eIF4A1 with unique mechanisms would facilitate bringing
pharmacological inhibition of eIF4A1 into clinical practice.
eIF4A1 is known to undergo several conformational changes

upon both nucleotide and RNA binding. Here we present
multiple computational models of eIF4A1. Through molecular
dynamics (MD) simulations, we are able to recreate the
opening and closing of this DEAD-box helicase upon ATP
binding. It has been reported that rocaglamide-A binds to the
bimolecular cavity formed by eIF4A1 and RNA.11 However,
detailed molecular modeling of the rocaglate binding sites as
well as the molecular mechanism of action of other inhibitors
such as elatol remains unknown, which hinders further
optimization and development of these molecules. Further-
more, computational modeling of eIF4A1 with its natural
ligands, ATP and RNA, has been limited by the absence of
high-resolution crystal structures. Through the creation of
several protein structure homology models of eIF4A1, we have
been able to analyze important intra- and intermolecular
interactions that influence enzyme activity. Subsequently, a
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concerted effort of both large-scale virtual screening, machine
learning, and extended molecular dynamics simulations was
carried out to prioritize diverse small-molecule scaffolds, which
may bind to and lock eIF4A1 in a closed conformation by
competing with ATP in the nucleotide-binding site. We herein
describe the pipeline of virtual screening and molecular
modeling with experimental validation in biochemical and
cell-based assays. We report the identification of several unique
scaffolds that mimic 3D shape and electrostatics of ATP-type
compounds and which, if optimized, may have potent anti-
eIF4A1 and thus antitumor activity.
eIF4A1 is the prototypical DEAD-box helicase, aptly named

for the conserved sequence D (Asp)−E (Glu)−A (Ala)−D
(Asp), which is necessary for nucleotide binding at the active
site.12−14 eIF4A1 catalyzes the ATP-dependent unwinding of
5′ UTR on mRNA in preparation for ribosome binding and
functions as the rate-limiting enzymatic step of cap-dependent
protein translation, in particular for mRNAs with increased 5′
UTR length and complexity. The overall protein structure of a
DEAD-box helicase consists of a helicase ATPase core formed
by two RecA-like domains separated by a long, flexible
linker.14,15 DEAD-box helicases are further characterized by
the presence of several conserved motifs, which line the cleft
between the two RecA-like domains and facilitate ATP
binding, RNA binding, ATP hydrolysis, and RNA unwinding.
The complex functions of eIF4A are reflected in the

structure of the 46 kDa protein.11,12 eIF4A1 adopts several
conformations, interacts with multiple proteins, and binds
different biomolecules. The conserved motifs, found across all
DEAD-box helicases, facilitate many of these functions, while
the flexible linker gives the protein conformational plasticity.14

On the amino terminal domain, motifs I (AQSGTGKT) and
II, also known as Walker A and B motifs (common to
ATPases), coordinate the binding of ribose of ATP. The Q-
motif (GFEKPSAIQQ), upstream of I and II, additionally
possesses a conserved glutamine residue, which interacts with
the adenine amino group of ATP. Motifs III, IV, and V, located
on the C-terminal domain, are all involved in RNA binding.
Motif VI (HRIGRGGR) contains three arginine residues,
which extend into the interdomain cleft to coordinate the
terminal phosphate of ATP.12,13

Structural studies of eIF4A1 have elucidated the molecular
basis for the various conformations the protein adopts in the
presence or absence of either RNA or nucleotide. Without any
ligands, eIF4A1 adopts a variety of “open” conformations in
which the two RecA-like domains are separated by the flexible
linker and form few interdomain contacts. Therefore, open
conformations represent an inactive state. Binding of ATP in
the interdomain cleft, with the adenine interacting at the N-
terminal domain and phosphate groups extending to the C-
terminal domain, results in a large conformational change to
form a more compact, active structure. In this low-energy
conformation, an intricate network of interdomain interactions
is formed. RNA binding further stabilizes the closed
conformation as RNA, like ATP, binding across both domains
of the helicase. This bent geometry conformation is
incompatible with the RNA duplex structure and thus the
structure is “melted”. A single-stranded RNA is released from
the structure followed by ATP hydrolysis. Upon release of a
phosphate group, the reopening of the interdomain cleft
triggers the release of the second RNA strand, thus priming
eIF4A1 for another cycle of ATP-dependent RNA unwind-
ing.12−14 These effects occur within the context of the overall

eIF4F complex, including also the 5′ mRNA cap binder eIF4E
and the scaffolding protein eIF4G (and variably the eIF4A1
cofactors eIF4B and eIF4H). Multiple copies of the eIF4A1
protein take part, jumping in and out of the RNA−protein
complex with each cycle of ATP hydrolysis and resulting in
RNA unwinding.16

Due to the various conformations that eIF4A1 is known to
adopt, a virtual screening campaign, sampling this large
conformational space, offers a potential strategy to identify
potent inhibitors capable of binding the protein in its various
states. A full high-resolution crystal structure of human eIF4A1
has recently been resolved with AMPPNP, RNA, and
rocaglamide-A in the active, closed state (PDB: 5ZC9).11

However, no human structure exists with ATP-only or with no
ligands in the open, inactive state. To evaluate ligand binding
in the different conformations of eIF4A1, several homology
models were built followed by docking and MD simulations.

■ RESULTS
eIF4A1 Structural Models. PDB: 1FUU is a crystal

structure of the full-length yeast eIF4A1 protein. Sequence
homology between the yeast and human protein is 63.5%
(pBLAST).17 This structure is not cocrystallized with a
nucleotide and thus is in the open, inactive conformation. In
this conformation, the N and C-terminal domains are
separated by a flexible linker (Pro231 to Arg247), adopting a
structure resembling a barbell. A homology model to study the
human form of eIF4A1, with 1FUU as a structural template,
was created using prime18 (LLC) homology modeling wizard
(A). The amino acid sequence for human eIF4A1 was obtained
from Uniprot19 (ID P60842). Model refinement through ab
initio loop modeling and energy minimization was performed,
and Ramachandran plots confirmed energetically favorable and
acceptable conformations. Extended molecular dynamic
simulations were then run for 500−1000 ns to assess local
dynamics and overall protein stability (Supporting Information
Figure 1). As expected, the open state of eIF4A1 undergoes
many large fluctuations in N and C domains in the absence of
ATP and RNA, with an average RMSD of 9 Å (Supporting
Information Figure 1). To assess the distance between N and
C-terminal domains, the distance between the starting and
ending residues of the flexible linker was measured throughout
the MD simulation. The interdomain distance in the initial
frame obtained from the homology model was about 38 Å and
ranges from 40 to 35 Å throughout the MD simulation (Figure
2). The distances between motifs Q and I (N terminus) with
motifs V and VI (C terminus) remain large; without nucleotide
or ligand binding, these residues do not come into close
contact with one another. Consistent with experimental data,
this model confirms that no interdomain contacts are observed
in the absence of nucleotide or RNA. The same analyses and
molecular dynamics simulations were also run with the original
crystal structure 1FUU to compare the behavior with our
homology model (Supporting Information Figure 2). As
expected and similar to our model, the original yeast structure
(without ATP) remains in the open, inactive conformation
with large interdomain distances.
Docking grids were then created using the centroid of

coordinates of residues known to be involved with nucleotide
binding, such as those in the Q-Motif and Motifs I and II. ATP
was then docked in 10 different grids with restrictions made so
that only poses containing a hydrogen bond with the amino
group (N6 or N7) of ATP adenine were considered. The
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highest scoring poses with all required binding contacts were
then selected for further analysis via the MD simulation.
Analysis across all poses confirmed a consensus that the
adenine base fits into a pocket built of residues conserved in all
DEAD-box proteins. The adenine nitrogens interact with
conserved glutamine residues in the I and Q motifs, while π−π
stacking is observed in some poses with conserved phenyl-
alanine residues and various interactions of the terminal
phosphate groups occur with residues in the linker domain
(Val22, Ile23) (Figure 1B). Top poses were selected for the
MD simulation, which would optimize binding interactions of
ATP and eIF4A1 through stochastic space sampling of poses
(see Methods).
MD simulations were initially used to confirm correct

binding poses as the ATP remains stably in the binding site
throughout the simulation (see Methods). In the ATP-bound
state, R365 and R362 from conserved motif VI (HRIGRGGR)
formed salt bridges with the g-phosphate of ATP, and the
residues involved in nucleotide binding remained stable during
the entire simulation. The system quickly equilibrates to ATP
binding and adopts a lower energy closed conformation, with
the ATP phosphate groups extending to the C-terminal V and
VI motifs, bringing the C- and N-terminal domains in close
proximity to one another (Figure 1C, D). The linker distance
decreases from an average of 39 to 27 Å and the system
converges at a lower energy, closed conformation (Figure
1C,1D). Additionally, several sustained interdomain hydro-

phobic interactions exist in the closed, active state, between
loops of VI motifs and C-terminal motifs. In the closed model,
the linker also appears to fold in on itself, with multiple
intradomain interactions. To test the stability of this state of
the protein, a longer MD simulation was run for 3 ms during
which the ATP remains bound to the protein in the closed
conformation, with key interactions sustained and an average
linker distance reduction of 11 Å (Figure 2). RMSF analysis of
individual residues, which had contact with ATP in the ATP-
docked model (Motifs I, Q, VI), compared to those same
residues in the model without ATP, reveals significant
differences (Supporting Information Figure 1). This is to be
expected as nucleotide binding elicits large fluctuations in the
C-α backbone on key residues in the protein. To confirm this
interaction, the MD study was repeated in the original yeast
model where similar domain closure occurred (Supporting
Information Figure 2). Prime MMGBSA binding free energetic
analysis of the 1FUU system in the open versus the closed
position with ATP bound demonstrates a decrease in total free
energy (Table 1), with an increase in favorable hydrophobic
and Coulombic interactions upon ATP binding.
Previous attempts to model eIF4A1 conformational changes

focused only on the yeast protein, not a homology model of
the human protein. Furthermore, the study only reports MD
simulations of 2 ns.20 Thus, this is the first large-scale extended
molecular dynamics study of a model of the open-
conformation human eIF4A1 protein. At the start of this

Figure 1. 1FUU eIF4A1 homology model. (A) ATP is docked in the open state of the 1FUU homology model. ATP initially binds in the N-
terminal domain with contacts between the adenine moiety and motifs Q and I. The interdomain distance (Pro231 to Ile246) in the open
conformation is measured to be 39.26 angstroms. (B) 2D representation of ATP docked in the N-terminal domain of the open-conformation
eiF4A1 model with hydrogen bonds to a conserved glutamine residue and several residues in the interdomain linker. (C) After an extended
molecular dynamic simulation, the 1FUU homology model adopts a closed conformation, with the interdomain distance between Pro231 and
Asp247 reduced to 27.15 Å. (D) ATP retains hydrogen bonds to the conserved glutamine residue in the N-terminal domain; however, terminal
phosphates of the ATP extend to the C-terminal domain with key interactions occurring between arginine residues in motif IV.
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project, a structure of human eIF4A1 in a closed, active
conformation had not been resolved. A protein BLAST query
using the human eIF4A1 sequence revealed that homologous
human DEAD-box protein, eIF4A3 (66% homology), had
been crystallized with the nucleotide (ANP; PDB: 2J0S).21

Therefore, a homology model was generated using this as a
structural template. First, MD simulations were run on the
native structure to evaluate nucleotide-binding stability and
domain flexibility. To assess the structure’s ability to undergo
conformational changes, ANP was removed from the binding
site and MD simulations were run for 500−1000 ns. As
predicted, the structure transformed from a “closed” active
state to an open inactive state, measured by increases in the
distance between the two RecA-like domains via residues of
the flexible linker as done with the 1FUU model (Supporting
Information Figure 3). ATP was then redocked into the final
frame of the MD simulation of 2J0S (now in the open state)
and domain closure was observed. These same experiments
were conducted in the eIF4A1 2J0S homology model with
similar results although with less significant changes of the
domain conformation (Figure 3). Binding free energy
calculation using Prime MMGBSA confirmed that the 2J0S
homology model assumes a lower-energy state upon ATP
binding and domain closure facilitated by numerous
interdomain and ligand−domain contacts (Table 2). Our

model thus reproduced the dynamics of domain closure upon
ATP binding and opening upon release. The model therefore
appeared suitable to evaluate if compounds docked in one of
the “closed” conformations could keep the structure closed and
compact. Our theory was that weaker binders would be more
likely to leave the binding site during a MD simulation
accompanied by unraveling of the structure into an open
conformation.
A third model, from PDB: 5ZC9, was the first full-length

human eIF4A1 structure crystallized with RNA, AMPPNP, and
the rocaglate prototype inhibitor rocaglamide-A.11 The 5ZC9
crystal structure was used to confirm the proper binding pose
of ATP in eIF4A1, which we had previously attempted to
model in the two dynamic homology models (1FUU and
2J0S). This model was also used for binding pose optimization
and molecular dynamics analysis of the top hits identified in
the biochemical and cell-based screens.
In summary, we have developed and analyzed three distinct

models of eIF4A1, which are able to accurately portray the
conformational and energetic changes associated with
nucleotide binding. Leveraging these data, we set forth on a
virtual screen to identify inhibitors of eIF4A1 at the
nucleotide-binding site. We hypothesized that compounds
predicted to bind to eIF4A1 in this site reduce system energy

Figure 2. Interdomain distance during MD simulations of the 1FUU
model. Extended MD simulations of the 1FUU homology model were
run for 3 ms in both the presence and absence of ATP. With ATP
bound in the N-terminal domain, interdomain closure is quickly
observed within the first 10 ns. The system equilibrates to an energy
minimum at 60 ns with domain closure and is sustained for the
entirety of the 3 ms simulation, the system converging at an
interdomain distance of around 27 Å. Without ATP, the system
remains open with an interdomain distance around 35 Å.

Table 1. Energy Analysis for the 1FUU Homology Modela

homology
model ligand pose

prime
Coulomb
(kJ/mol)

prime vdW
(kJ/mol)

prime
energy
(kJ/mol)

1FUU ATP open −12 081 −1038 −12 010
1FUU ATP closed −12 519 −1140 −12 581

aATP was docked into the 1FUU model and molecular dynamics
were run so that the structure would adopt a closed conformation.
Prime was used to calculate the total system energy, VdW energy, and
Coulombic energy in the initial structure (open) and again at the end
of the MD simulation in the closed structure. ATP binding promotes
domain closure and interdomain interactions causing a decrease in the
overall system energy.

Figure 3. 2J0S homology model analysis. ATP was removed from the
active site of the 2J0S homology model and a molecular dynamics
simulation was run for 1 ms. The protein quickly adopted an open
conformation with an increase in interdomain distance from 22 to 27
Å. Docking ATP back into the model in the final frame and running
the simulation for an additional 1 ms, the system closes again and
converges at an energy minimum with an average interdomain
distance of 23 Å.

Table 2. Energy Analysis for the 2J0S Modela

homology
model ligand

delta energy
(kJ/mol)

delta vdW
(kJ/mol)

delta Coulomb
(kJ/mol)

2j0s ATP
removed

134.44 18.23 99.84

2j0s ATP
redocked

−585.07 −367.68 −220.59

aATP was removed from the 2J0S homology model and molecular
dynamics were run so that the structure would adopt an open
conformation. Prime MMGBSA was used to calculate the change in
total energy, vDw energy, and Coulombic energy from the initial
structure. ATP was then redocked into the model and MD
simulations were run to promote domain closure. Prime was then
used to calculate the change in energies upon domain closure. This
demonstrates the creation of a dynamic eIF4A1 model and that ATP
binding causes major energetic transformations to a low energy, stable
system.
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and lock eIF4A1 in a closed conformation during MD analyses
and may prevent cycling through ATPase and RNA unwinding
activities in biochemical and in vitro assays.
Virtual Screening and MD Simulations to Identify

eIF4A1 Inhibitors: Nucleotide-Binding Site. Leveraging
the results data from our MD simulations analyses above, we
sought to perform a virtual screening campaign where we
prioritized compounds that (1) bound to eIF4A1 in the
nucleotide-binding site (in both open and closed-conformation
models) and (2) could stabilize the protein in a closed, low-
energy state. We hypothesized that potent inhibitors would
out-compete ATP in the binding site and would thus prevent
the cycling of ATPase and helicase activity.
Trajectories from each model’s MD simulation with ATP

bound were clustered by frames based on RMSD. Ten
representative ligand-complex poses were exported from the
1FUU and 2J0S model trajectories. Each unique pose of ATP
was then exported from the complex and used to screen several
virtual libraries to identify small-molecule compounds with
both similar three-dimensional shape and electrostatics.
Compounds from the original 2D databases were prepared
by first generating all tautomers and ionization states from
using QUACPAC (OpenEye) followed by generating 100−
150 3D conformers using OMEGA.22 Using fastROCS23 with
GPU technology, over 20 million compounds from Enamine,
MolPort, and eMolecules commercially available libraries were
screened and prioritized by Tanimoto24 color score, Tanimoto
shape score, and Tanimoto combo scorean aggregate of
color and shape scores. In addition, a small library of ATP-
competitive kinase inhibitors was also screened from Sell-
eckChem. Subsets of compounds from each database were
created for docking using physiochemical properties (see
Methods). The top 10% compounds based on Tanimoto
combo scores from each database were then used to dock
across all 10 grids of each eIF4A1 structural model using
HYBRID docking.25

Docking scores were first analyzed separately per model
(open: 1FUU and closed: 2J0S), with all scores from each of
the 10 grids being aggregated and averaged (Figure 4).
Compounds were clustered by topological similarity and
clusters with the highest average HYBRID docking scores
were chosen for further analysis. Using Maestro, which allows
for interactive 3D analysis of binding poses, the top 5000
scoring compounds from the top clusters from HYBRID were
docked again across all models. Compounds were again rank
ordered by individual docking scores and cluster average
scores. Top compounds of the best clusters were manually
analyzed for key hydrogen bonding interactions. In the closed-
conformation model (2J0S), compounds with hydrogen bonds
in the Q, V, and VI motifs, particularly to conserved glutamine
residues in the N-terminal domain and arginines in the C-
terminal domain, were prioritized. In the open-conformation
model (1FUU), flexible compounds with a strong hydrogen
bond in the Q, I, or Ia motifs on the N-terminal were
prioritized. Some larger compounds, for example, could span
the distance between domains and interact with key arginines
in the V and VI motifs in the 1FUU docking models. The
distribution of docking scores was different for each model and
each database, with compounds scoring better in the closed
model due to increased ligand−protein interactions. However,
it was reasoned that compounds with higher average scores
between each model were the best candidates to move forward
with biochemical screening. One hundred unique compounds
with differing scaffolds were chosen for the initial in vitro
experiments.

Biochemical and Cell-Based Screens for eIF4A1
Inhibitors. Sixty-one compounds (named UM98−UM158)
were identified from virtual screening campaigns targeting the
nucleotide-binding site of eIF4A1 and were purchased for in
vitro screening (Supporting Information Table 1). Compounds
were tested in both a malachite-green based, ATPase
biochemical assay and in a cell-based viability assay (see

Figure 4. Distribution of HYBRID scores by the small-molecule database. Top 25% of scores were selected for output so there is a sharp right-sided
decline for each curve. Two visible peaks in blue and red represent 2J0S and 1FUU, with HYBRID from the 2J0S models trending toward better,
more negative docking scores. For reference, ATP scores on average −7 in the 1FUU model, while it scores on average −9 in the 2J0S model. On
average, compounds filtered from the eMolecules Blockbuster library scored better, likely because they are larger and more drug-like versus smaller
lead-like compounds in the other libraries.
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Methods, Supporting Information Table 1, Figure 4). For the
biochemical screen, compounds were tested initially at high
concentrations of 250 mM and then tested in a 12-point dose−
response using 2-fold serial dilutions. Thirteen of these
compounds were considered weak hits (IC50 >125 mM,
<250 mM), showing some inhibitory effect at concentrations
of 125 mM, while the majority of the compounds had little to
no inhibitory activity at concentrations less than 250 mM.
Twelve of the 13 weak hit compounds consisted of the same 1-
phenyl-piperazine core scaffold present in compounds UM127
and UM139 (Figure 5). Quercetin (UM107) was also
identified as a weak hit from our screen, which also included
a subset of compounds known to be ATP-competitive kinase
inhibitors. This polyphenol is a known anticancer agent, with

multiple in vitro targets such as PI3K and eIF2. Dose−
response data show an IC50 of eIF4A1 ∼200 mM, while cell-
based assays give an IC50 of 25−50 mM. However, due to the
promiscuous nature of such polyphenol scaffolds, further
analysis was not pursued.26,27

MD simulations of 300 ns were used to evaluate the binding
and energetics of both the phenyl-piperazine scaffold hits in
addition to compounds that showed no activity in the initial
screens. Compound UM139 demonstrated favorable molecular
dynamics, with interdomain closure noted in 1FUU and 2J0S
models (Figure 6). UM127 scored well in docking models, was
a weak hit (IC50 125 mM), and had some cytotoxic effect but
displayed only transient domain closure (Figure 6). Most of
the compounds with no activity in the biochemical screen did

Figure 5. 2D representation of phenyl-piperazine hit compounds: (A) UM127, (B) UM139, (C) UM162, and (D) UM167.

Figure 6. Molecular dynamics analysis of top hits. Interdomain distance analysis of UM127 in the 1FUU (A) and 2J0S (B). UM127 causes large
conformational changes in both models, which leads to partial domain closure. (C) The model predicts that UM127 promotes intralinker contacts.
UM139 in the 1FUU (D) and 2J0S (E) leads to full domain closure in the 1FUU model and maintains domain closure in the 2J0S model. (F)
Binding post of UM139 shows similar contacts seen with ATP including bonding with Arg365 and Arg368.
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not have stable interactions during molecular dynamic
simulations and subsequently fell out of the binding pockets
in both models. To further explore the possibility of the
phenyl-piperazine scaffold present in many of the weak hits,
another fastROCS23 shape screen of three virtual databases
(Enamine, eMolecules, and MolportDB) was performed using
UM139 and UM127 (in their conformations after MD
simulation) as reference structures (Figure 5). After docking
in both models and ranking as described previously, 11
additional compounds (UM159−UM169) were prioritized
and purchased for evaluation. All compounds contained the
phenyl-piperazine scaffold and (compared to the original
reference compounds) were of slightly higher molecular
weight, more hydrophilic and cell-permeable, and contained
more HBDs and HBAs, which resulted in better docking scores
compared to UM127 and UM139 (Table 3, Supporting
Information Table 1). MD simulations in 1FUU and 2J0s also
demonstrated fast domain closure and stable binding in the
nucleotide site for compounds UM161, UM162, and UM167
(Figure 7), with notable interactions similar to that of ATP in
the 1FUU model, including contacts with Lys54, Gln60,
Glu244, and Arg368. An improvement in inhibition was also
noted in the biochemical screen, with IC50 values for the
enriched phenyl-piperazine analogue compounds ranging from

∼64 to 125 mM; compound UM159 was excluded from
analysis due to solubility issues (Table 4). UM167 was the

most potent inhibitor identified from the nucleotide-binding
site campaign with an IC50 of 69.51 ± 5.34 mM followed by
UM162 with an IC50 of 82.59 ± 6.19 mM (Figure 5). Prime
MMBSA calculations of compounds from the phenyl-
piperazine scaffold screen demonstrated that the more potent
compounds (UM167, UM162) have lower binding free

Table 3. Comparing Physiochemical Properties of Original and Phenyl-Piperazine Compoundsa

property average original range original average analogues range analogues

molecular weight (g/mol) 323.89 244.24−461.53 334.28 276.33−392.36
hydrogen-bond donors 1.81 0−4 1.59 1−3
hydrogen-bond acceptors 6.34 3−10 8.09 6−11
QlogPo/Pw 1.74 −0.303−3.898 1.11 −0.63−3.52
QPPCaco (not cell-permeable <25, very permeable >250) 83.64 2.18−619.02 239.13 4.20−1430.78
SASA 580.44 464.52−721.04 601.90 549.92−672.68
PSA 109.40 74.39−164.79 113.02 67.52−153.26

aProperties calculated using QikProp (Schrödinger, LLC, New York, NY, 2020).

Figure 7. Molecular dynamics analysis of UM167. UM167 was the most potent hit identified in the biochemical screen. MD simulation in the
1FUU model (A) shows rapid domain closure with sustained interactions with Arg368, conserved glutamine Gln60, and a glutamic acid residue
Glu244 in the interdomain linker (B). (C) UM167 also maintains domain closure in the 2J0S model. (D) Binding poses reveal that the UM167
binding leads to domain closure with multiple interdomain and protein−ligand contacts.

Table 4. Biochemical Activity Data for Phenyl-Piperazine
Analogue Compounds

compound ID biochemical IC50 (μM)

UM-160 110.4 ± 11.62
UM161 107.3 ± 12.24
UM162 82.59 ± 6.19
UM-163 124.5 ± 15.18
UM-164 110.4 ± 9.30
UM-165 >125
UM-166 >125
UM167 69.51 ± 5.34
UM-168 113.6 ± 11.88
UM169 >125
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energies than the initial weak hits (UM127, UM139) (Table
5).

Additional docking and molecular dynamics analyses were
carried out in the 5ZC9 human eIF4A1 model with RNA to
develop binding hypotheses and optimization strategies for the
most potent hits. UM167 is predicted to bind in the ATP-
binding site with interactions with residues in key motifs in
both the N-terminal and C-terminal domains. For example,
there are π-stacking interactions between a benzyl group and
Phe52 and strong interactions with the conserved glutamine
residue (Figure 8). Similarly, there are interactions with
Arg362 and Arg365 with the nitrogen in the heterocycle and
many water bridges and hydrogen bonds with residues in
motifs I and II. MD simulation for 300 ns showed sustained
interactions at all residues identified in the docking model,
suggesting that the compound remains stable in the binding
site. UM162, another more potent hit, displayed different
binding predictions during the MD simulation mostly
dominated by ionic interactions and coordination with an
active site magnesium (Supporting Information Figure 5).
Compounds from the nucleotide-binding site screen had an

average molecular weight of 322 g/mol, possessing many lead-

like qualities including low molecular mass, ClogP, and few
hydrogen-bond donors and acceptors. However, the analysis
from QikProp revealed many of these compounds suffered
from poor cell permeability (QPPCaCo, Supporting Informa-
tion Table 1). Therefore, it was no surprise that many of the
compounds that were identified as hits in the biochemical
screen had little to no activity in cell-based viability assays
(Supporting Information Figure 4). Cell-based viability assays
of UM98-UM158 revealed some cytotoxic effects from
UM107, UM108, UM109, UM127, and UM157, with IC50’s
ranging from 25 to 50 mM. UM127 with the piperazine
scaffold, though weakly potent in inhibiting eIF4A1 in
biochemical screens, had some cytotoxic effects in the cell-
viability assays, perhaps representing a promising starting point
which can be pursued further via medicinal chemical
optimization.

■ DISCUSSION

Preclinical studiesbiochemical, cellular, and animal mod-
elsover the past decade have confirmed the hypothesis of
targeting protein translation initiation through eIF4A1
inhibition to elicit antitumor toxicity while maintaining a
therapeutic window for normal cells. eFFECTOR Therapeutics
recently began a first-in-human phase I clinical trial with the
compound eFT226 (Zotatifin),28 a rocaglate-like compound
that similarly clamps eIF4A1 onto polypurine-rich mRNA
transcripts. Additionally, rocaglates have been shown preclini-
cally to be effective against viral, parasitic, and fungal
infections. Recently and most notably, rocaglates were shown
to effectively inhibit replication and infectivity of SARS-COV-
2, which is responsible for causing COVID-19.29 While we
anxiously await results from this clinical trial, we understand
there still remains an unmet need to generate more potential
clinical candidates for this class for treatment of cancer and
potentially for infectious diseases that hijack the host cell’s
translational apparatus.
Our novel approach takes advantage of three key fields of

biomedical research to most effectively identify and test lead
and lead-like compounds: computational biology, computa-
tional chemistry, and molecular biology. We used computa-
tional modeling to jumpstart the drug discovery process for
eIF4A1 inhibitors. With limited crystal structures available, we
generated homology models of the protein that accurately

Table 5. Changes in System Energy Following Compound
Docking and Molecular Dynamicsa

model compound
delta energy
(kJ/mol)

delta VdM
(kJ/mol)

delta Coulomb
(kJ/mol)

1FUU 167 −183.96 −75.15 −44.69
1FUU 162 −173.49 −88.03 −61.9
1FUU 157 −113.39 −20.4 −68.4
1FUU 139 −5.52 −41.22 −21.91
1FUU 127 −71.86 −16.29 −26.7

aPrime MMGBSA was used to calculate the change in total energy,
vDw energy, and Coulombic energy at the beginning (open
conformation) and end of molecular dynamic simulations (closed
conformation). In all top compounds identified in the virtual screen
and biochemical screen, there is a marked reduction in overall energy
in the system representative of favorable ligand−protein interactions
and interdomain interactions reflected in the promotion of
stabilization of the protein in the closed conformation. The most
potent compound, UM167, demonstrates the greatest reduction of
total energy upon binding the 1FUU model.

Figure 8. Binding hypothesis of UM167 in the human eIF4A1 model (5ZC9). UM167 binds in the interdomain cleft of eIF4A1 with key
interactions with conserved glutamines Gln59 and Gln77, active site Lys81, and motif VI Arg362 (A, B). Molecular dynamic simulations in the
5ZC9 model were stable and UM167 locked the model in the closed conformation with RNA also remaining in the interdomain cleft.
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reproduce known activity in molecular dynamics simulations.
This approach enabled us to employ an extensive virtual screen
canvassing nearly 20 million commercially available com-
pounds and docking into multiple poses, begetting a more
physiological model. We hypothesized that inhibition of
eIF4A1 by screening for inhibitors of the nucleotide (ATP)-
binding site may identify compounds that inhibit enzymatic
activity through ATP competition and stabilization in a low
energy, closed conformation. Prioritization of compounds and
further virtual assessment through molecular dynamics
simulations enabled higher confidence when selecting
compounds for purchasing and biochemical/cellular testing.
Our initial results suggest that molecular dynamics analyses
using multiple dynamic models of eIF4A1 to simulate
physiological domain closure and interaction may help to
enrich and prioritize compounds for biochemical screening.
We are limited, however, in the computational abilities to run
multiple extended molecular dynamic simulations in parallel
on multiple compounds across several structural models.
Therefore, it is necessary to use other high throughput
methods of enrichment, such as docking in parallel across
multiple protein conformations with HYBRID,25 clustering of
compounds by structure and docking score, filtering on the
basis of predicted physiochemical properties with tools such as
QikProp, and evaluating binding free energy changes upon
binding and molecular dynamics using MMGBSA calcula-
tions.30,31 For example, in our small pilot study, we observed a
trend that compounds with higher docking scores that can
reproduce domain closure and demonstrate a large reduction
in free energy upon binding and stabilization in silico are more
potent in biochemical screens. In future studies, we may
prioritize compounds for in vitro testing with certain
physiochemical properties such as molecular weights > 350
g/mol, HB acceptors > 7, and QPPCaCo>25. Additionally, a
higher-order predictive machine learning model may be
developed using the docking, shape screen, and MD simulation
results along various other descriptors to accelerate and scale
up the computational screen.
We believe we have established a successful method for

identifying lead-like eIF4A1 inhibitors that can be further
optimized using medicinal chemistry. The identified piperazine
scaffold is chemically tractable and possesses drug-like
properties and it is also found in reports of eIF4A3 inhibitors
in addition to other RNA helicase inhibitors. UM127, UM139,
UM162, and UM167 are all lead-like with molecular weights of
less than 400 g/mol. Thus, they have the potential for
medicinal chemistry optimization including increasing hydro-
phobicity, molecular weight, and other key properties to
improve solubility, binding, potency, and cell permeability. Out
results support for the application of computational modeling
and, specifically for this target, combining homology modeling,
docking, molecular dynamics simulations, and large-scale
shape-based screening to guide hit identification. Refinement
of our model and further exploration of the available space of
small molecules and their binding modalities will likely
generate additional leads and new structure−activity relation-
ship insights.

■ METHODS
Protein Model Creation. Protein and homology models

were generated using Prime18 (Schrödinger Release 2019-3:
Prime, Schrödinger, LLC, New York, NY, 2020). For protein
models, crystal structures were imported into Prime18 by PDB

ID (1FUU, 2J0S, 5ZC9). Using Protein Preparation Wizard,
missing loops and side chains were filled in, missing hydrogens
were added, and the protein underwent restrained energy
minimization. Water molecules with less than three contacts
with the protein were removed. For homology modeling, the
amino acid sequence was obtained from Uniprot19 and using
multiple sequence alignment, proteins with high degrees of
homology were selected as structural templates (PDB: 1FUU,
2J0S; Supporting Information Figure 6). All homology models
underwent loop refinement using serial loop sampling. For all
models, molecular dynamic simulations were run to assess the
model quality and stability. For models with cocrystallized
ligands (2J0s and 5ZC9), ligands were manually removed and
then redocked into the binding site to assess the model
accuracy in predicted experimentally derived binding pose.

Docking Grids. Receptor docking grids were generated for
virtual screening with Glide32 Receptor Grid Generation
(Schrödinger Release 2019-3: Glide, Schrödinger, LLC, New
York, NY, 2019) and OpenEye’s Make_Receptor function25

(OpenEye Scientific Software, Santa Fe, NM, http://www.
eyesopen.com. OEDOCKING 3.3.0). All proteins were
initially prepared using Protein Prep Wizard18 prior to grid
generation. Grids were then generated using the cocrystallized
ligand as the centroid for docking similarly sized ligands
(protein structures 5ZC9 and 2J0S). For the 1FUU model for
which no ligand was cocrystallized, docking grids were made
using the centroid of known residues, which define the ATP-
binding site. Docking restrictions were made in the grid to
ensure certain hydrogen-bond interactions were maintained
during docking, particularly nucleotide interaction of con-
served glutamines in the N-terminal domain and motif IV
arginines in the C-terminal of eIF4A1. For large-scale docking
studies, docking grids were generated using the same above
methods using protein structures exported from clustered
trajectory frames of molecular dynamics simulations.

Molecular Dynamics (MD). All-atom explicit solvent
molecular dynamics (MD) simulations were run using the
Desmond33 GPU accelerated suite of Schrödinger (Schrö-
dinger Release 2019-1 Desmond Molecular Dynamics System,
D. E. Shaw Research, New York, NY, 2020; Maestro-Desmond
Interoperability Tools, Schrödinger, New York, NY, 2020).
Simulation times varied between 300 ns and 3 ms, with a
maximum of 3000 frames and a recording interval of 1/1000th
of the overall simulation time. NPT (isothermal−isobaric)
ensemble was used for the simulation, which most accurately
represents laboratory conditions at ambient temperature and
pressure (300 K and 1.01325 bar). Each model system was
relaxed before the simulation for several nanoseconds, which
explains the slight variability in initial interdomain linker
distance measured in these experiments. Systems were built
also using Desmond with the SPC solvent model and OPLS3e
forcefield. Optimized potentials for liquid simulations (OPLS),
developed by Jorgensen et al.,34 is a forcefield with a core set of
nonbonded parameters. OPLS3 is the latest model, which
builds on optimization of valence and torsion parameters,
parametrization of bond-charge correction terms, and includes
machine learning data from quantum chemical simulations to
improve the representation of secondary structure elements in
proteins and protein−ligand binding. Simulations were
computed across dedicated GPU cores.

Ligand Library Preparation. Compounds selected for
virtual screen were populated as SMILES in a comma-
separated file along with a unique identifier or catalog number
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from the vendor. Using Pipeline Pilot (BIOVIA Pipeline Pilot,
Release 2018, San Diego: Dassault System̀es), SMILES were
canonicalized and the file was transformed to a structure data
file (SDF) to be used as input for LigPrep (Schrödinger
Release 2019-3: LigPrep, Schrödinger, LLC, New York, NY,
2019) or for OpenEye QUACPAC 2.0.1 and OMEGA 3.1.1
(OpenEye Scientific Software, Santa Fe, NM, http://www.
eyesopen.com). For initial large-scale virtual screens with over
100 000 compounds, OpenEye Hybrid25 docking was utilized.
Following enrichment by Hybrid Docking Score, smaller
subsets of ligands were then used to dock using Glide
(Schrödinger) for further binding pose visualization and MD
simulations. Ligand libraries were obtained from Enamine’s
Advanced HTS library, MolportDB, and eMolecules (2019
Release). The eMolecule library was filtered into screening
subsets using both lead-like and drug-like filters provided by
OpenEye. For ligand preparation, default settings were used in
both programs. Compounds to be used in OpenEye were
prepared first using QUACPAC, which involves tautomer and
protomer enumeration. OMEGA was then used to generate up
to 150 conformers for each ligand. For GLIDE docking,
ligands were prepared using LigPrep (Schrödinger Release
2019-3: LigPrep, Schrödinger, LLC, New York, NY, 2021),
which generates all conformers, tautomers, and ionization
states.
Ligand Shape Screen. Shape screens were conducted

using fastROCS GPU23 3.3.0 (OpenEye Scientific Software,
Santa Fe, NM, http://www.eyesopen.com), which can screen
millions of compounds in seconds. A combined Tanimoto
shape and color score was used to filter the most similar
compounds in eMolecules, MolportDB, and Enamine-prepared
compound libraries. Shape screen was used to first identify
ATP/nucleotide mimetics and was further used to find
analogues with the piperazine scaffold of compounds UM139
and UM127.
Ligand Docking. For initial large-scale docking studies,

OpenEye’s HYBRID Dock25 3.3.1 was used. HYBRID docking
was done in parallel on all eIF4A-I grids in one job. The top
25 000 compounds (by docking score) were exported for final
analysis. For smaller-scale docking jobs or confirmatory
docking studies prior to the MD simulation, Glide Docking32

was used (Schrödinger Release 2019-3: Glide, Schrödinger,
LLC, New York, NY, 2019). All default settings were used.
Glide standard precision docking (SP) was performed using
3D ligands from LigPrep. Up to 25 poses were generated per
ligand with the top five poses being selected for output. Glide
scores were exported for aggregation across various grids using
Pipeline Pilot. GLIDE docking scoring has been described
extensively by Friesner et al.35 HYBRID docking scoring is
described by McGann.25

Analysis. Molecular dynamic analyses of eIF4A1 models
with key ligands were conducted using Desmond Simulation
Event Analyses, which included RMSD, RMSF, and ligand−
protein interactions. Compounds were analyzed using QikProp
for predicted physiochemical properties. Compounds were
clustered by scaffold similarity using Pipeline Pilot with
extended fingerprint methods. Energies of each ligand−protein
system were calculated using Prime18 MMGBSA (Schrödinger
Release 2019-1: Prime, Schrödinger, LLC, New York, NY,
2019).
Compound Storage and Cataloging. All compounds

were purchased as powders in quantities less than 5 mg.
Compounds were dissolved in various organic solvents

(methanol, dichloromethane, ethyl acetate) and were aliquoted
out in separate vials. Solvents were evaporated using a rotovap
and high vacuum and aliquoted powders were stored at −20
°C. Compounds were dissolved in DMSO to a concentration
of 10 mM prior to use in assays. Compounds were stored in
DMSO at −80 °C no longer than 1 week. All purchased
compounds were cataloged virtually using the Collaborative
Drug D i s co v e r y (CDD) Vau l t (h t t p s : / /www .
collaborativedrug.com/).

eIF4A1 Inhibitor ATPase Assay. Recombinant eIF4A was
added to a clear-bottom 384 well plate (Greiner) in ATPase
buffer (20 mM Tris pH 7.4, 80 mM KCl, 2.5 mM MgCl2, 1
mM DTT, 1% glycerol). Compounds were added and the plate
at concentrations starting at 250 μM and were incubated at 37
°C for 20 min. ATP/RNA solution was added to afford a 20
μL per well reaction volume with 750 nM eIF4A, 250 μM
ATP, and 0.25 mg/mL yeast RNA (Sigma). The plate was
incubated for 4 h at 37 °C. Tween-20 (0.04% v/v) was added
to a Malachite Green solution, and then it was added to wells
(40 μL per well). The solution was incubated for 5 min at
room temperature and A660 was read on a SpectraMax iD5
plate reader (Molecular Devices). Experiments were conducted
in triplicate. IC50 values were calculated using nonlinear
regression fit in Graphpad Prism7.

eIF4A1 Cell-Based Viability Screen. Cells were plated in
triplicate at 3−5 ×103 cells/well in serial dilutions of drug
ranging two logs with the top concentration for 1 μM
silvestrol. Viability was measured after 72 h using Cell Titer
Glo (Promega G7573) following manufacturer’s protocol.
Luminescence was detected on the BioTek HT Synergy plate
reader and LD50 values calculated using nonlinear regression fit
in Graphpad Prism7.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c02805.

1FUU homology model MD analysis (Figure S1);
interdomain distances of the native 1FUU model
(Figure S2); interdomain analysis of 2J0S molecular
dynamic simulation (Figure S3); cell-viability data for
eIF4A1 inhibitors (Figure S4); binding hypothesis from
molecular dynamics of UM162 (Figure S5); sequence
alignment of eIF4A1 for homology modeling (Figure
S6) (PDF)
eIF4A1 compound activity data (Table S1) (XLSX)

■ AUTHOR INFORMATION
Corresponding Author
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