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ABSTRACT: Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered
novel quantification methods, such as droplet digital polymerase chain reaction (ddPCR) and an antibiotic heteroresistance analysis
tool. For droplet analysis, researchers often use image-based detection techniques. Unfortunately, the analysis of images may require
specific tools or programming skills to produce the expected results. In order to address the issue, we explore the potential use of
standalone freely available software to perform image-based droplet detection. We select the four most popular software and classify
them into rule-based and machine learning-based types after assessing the software’s modules. We test and evaluate the software’s (i)
ability to detect droplets, (ii) accuracy and precision, and (iii) overall components and supporting material. In our experimental
setting, we find that the rule-based type of software is better suited for image-based droplet detection. The rule-based type of
software also has a simpler workflow or pipeline, especially aimed for non-experienced users. In our case, CellProfiler (CP) offers the
most user-friendly experience for both single image and batch processing analyses.

■ INTRODUCTION

Droplet microfluidics has become a powerful tool for high-
throughput analysis over the last few decades.1 It allows
compartmentalization of samples in massive parallelization.2

This high-throughput technique is also compatible with
different analytical technologies, e.g., mass spectrometry.3

Droplets are often applied for high sensitivity nucleic acid
diagnostics4 or different microbiological studies.5 For instance,
the tool has also been used to perform high-throughput
screening for protein crystals,6 DNA quantification by digital
droplet polymerase chain reaction (ddPCR),7,8 detecting
viable bacteria and heteroresistance in antimicrobial experi-
ments,9,10 or performing experiments with mammalian cells.11

Image-based analysis has often been used in droplet
microfluidic experiments.12 The analysis has been imple-
mented in different types of image data, from single static
image up to real-time data, either by bright-field or
fluorescence microscopy.13 This approach has been used for
a wide range of experiments, such as bacterial surveillance of
foodborne contamination,14 screening of specific substrates,15

single-cell analysis,16 and detecting viable bacteria or viruses
(e.g., SARS-CoV-2).17,18 Image-based droplet analysis (IDA)

often requires specific skills in programming that are not
widely available in non-specialist laboratories. Most of the
published articles in droplet detection use scripted programs,
such as Circular Hough Transform in Python programming
language,19 Mathematica,20,21 Scikit-image in Python,22 Image
Processing Toolbox from MATLAB,23 OpenCV and Keras in
Python,24 and OpenCV in C++.25 There are some user-
friendly software that may be used for droplet microfluidic
image analysis, such as the Zen imaging program26 and NIS-
Elements from NIKON.14 However, these kinds of programs
are only commercially available.
There is a need for widely accessible and user-friendly IDA

tools for image-based droplet analysis. Open-source software is
available and can be used to detect and/or analyze droplets.
For example, ImageJ software has been used to analyze image
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data in general27 including droplets,28 or CellProfiler (CP),
which was developed to identify and measure various bioimage
data.29 Even though some published articles mention the use
of the software, information regarding their workflow is limited
(the data is often missing from publications). This would
confuse early-stage researchers with little or no experience in
image analysis, specifically for image-based droplet detection
using no programming skills. However, novel workflows can be
constructed by combining functions, modules, or pipelines
from different software, like building a puzzle.30

Here, we (i) demonstrate how to use different software for
the analysis of droplet images in static 2D images and (ii)
explore the differences and similarities of workflows in the
different software from the perspective of detecting, counting,
and measuring the properties (including but not limited to
droplet number, diameter, fluorescence intensity of droplets,
etc.) using four selected software (Table 1).

■ RESULTS AND DISCUSSION
Software Selection and Workflow Construction. The

most popular software for image analysis are ImageJ (IJ),
CellProfiler (CP), Ilastik (Ila), and QuPath (QP). Here, we
use Twitter and Scopus repositories to find the popularity of
the software in the field of image analysis. Twitter has been
used for research purposes before.32 We found that social
media also give researchers the opportunity to “push” their
findings and correlate them to a greater citation.33 To find the
popularity, we executed Twint34 Python script using each of
the software’s name as the keyword. For finding the results
from Scopus’ repository, we also used the same keyword. Both
searches were performed to acquire data from January 1, 2010
to December 31, 2020. Based on the Scopus and Twitter
search (obtained on February 11, 2021), we showed the sum
of “tweets” or 160-character max of text from Twitter and the
sum of Scopus search in scatter plot (Figure 1A). The most
popular software are ImageJ,27 CP,35 Ilastik, and QuPath, in
blue, red, cyan, and green color, respectively. Ilastik uses the
concept of supervised machine learning in their workflow,36

and QuPath has been used as a whole slide image analysis
tool.37 We continued with these four popular software tools
and used them to detect droplets on the image dataset
previously described by Bartkova et al.31 (Figure 1B). Then, we

took a deeper look into their workflow and assessed their
performance with different key parameters (Figure 1C).

Rule-Based and Machine Learning-Based Software
for Droplet Detection.We divided the selected software into
two groups (rule-based and machine learning-based) according
to their workflow. In the rule-based software group (CP and
ImageJ), users have to manually provide settings for the
program to select the pixels of interest with numeric or known
parameter in order to detect droplets. In the machine learning-
based group (Ilastik and QuPath), on the other hand, users
may select the areas of the image (labeling) and manually
annotate them as objects of interest (e.g., droplets or
background) for pixel classification. Based on these character-
istics, we described the abstraction of the process with three
increasing levels and used it to direct the image-based droplet
detection.

Pre-processing, Processing, and Post-processing
Concepts. We used the terms (i) pre-processing, (ii)
processing, and (iii) post-processing. (i) In pre-processing,
we modified, adjusted, and prepared the image data for further
use. For instance, we performed pre-processing to duplicate
the image data, introduce features, and make annotation(s) on
the image. In addition, we also include the image setup, such as
image upload, metadata setting, and supporting option before
processing the image data. For instance, we also included the
macro record in IJ and the metadata setup in CP.
(ii) In processing, we conducted segmentation or pixel

partitioning based on color, intensity, or texture along with
droplet detection or counting process.38 Usually, processing
steps may help users obtain a specific type of data.39 In our
case, we introduced thresholdring to distinguish between the
background (dark) and the foreground (droplets). For the
details, CP came in handy and only needed one module named
“IdentifyPrimaryObject”, which contained some options to
detect droplets. This included thresholding, smoothing,
segmentation, and automatic selection. In ImageJ, processing
steps had three options: “Thresholding”, “Watershed”, and
“Analyze Particle”. Similar to CP, these three steps will provide
selections to detect the droplets. In the processing part, Ilastik
had to process “Thresholding”, “Object Feature Selection”, and
“Object Classification” for selecting the droplets and discarding
the background. In QuPath, we found all of these features in
“Pixel Classifier”. The settings included a classifier from an
artificial neural network with multilayer perception
(ANN_MLP)40 with high resolution, using four multiscale
features (Gaussian, gradient magnitude, Hessian determinant,
and Hessian max eigenvalue) with probability as an output.
(iii) For the last step, in post-processing, we prepared data

extraction or generation for further use, for example, to
generate a table of data or type of images for visualization. In
CP, this last step was performed with “OverlayOutlines”,
“OverlayObject”, “DisplayDataOnImage”, and “ExportToS-
preadsheet”. These modules generated the images and results
in CSV format. The order was similar in ImageJ and Ilastik, but
the option was available in “ROI Manager” and “Export”,
respectively. In QuPath, the results can be obtained by
exporting annotations from detected objects or called as
labeled images. We used the Groovy script to generate this
result using commands in “Workflow” tab. Groovy is a
compiled language that can be integrated seamlessly with Java.
However, it has some semantic and practical differences,
especially regarding syntax.41 For a brief workflow/pipeline, we
provide the scheme of third level complexity in Figure 2.

Table 1. General Characteristics of Selected Softwarec

Requirement CellProfiler ImageJ Ilastik QuPath

Version 4.0.3 1.52p 1.3.3 0.2.3
Operating system Win, Mac Win, Mac Win, Mac Win, Mac
Bit machine 64 and 32 64 and

32
64 64

RAM and hard disk
space

4 Gb & NA NA &
NA

8 Gb &
NA

4 Gb &
NA

Written in Python Java Python Java
Compatible file format widea widea widea widea

Outputb v v v v
Available plugins v v - -
Documentation v v v v
Batch processing v v v v
aWide is the general image file type, such as TIFF, JPEG, PNG, etc.
bGenerates object size, pixel intensity, circularity, object position, etc.
cv = available, − = not available
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CP Has the Highest Accuracy and Precision. By
comparing the results with manually counted droplets

(7145), we investigated the ability of the analyzed software
to detect droplets. We only counted the droplets that did not

Figure 1. Schematic of droplet generation and image analysis of a single image. (A) We generated water-in-oil droplets using a flow-focusing
microfluidic chip (left). We used a fluorescence microscope to obtain “raw images” of droplets that contained fluorescence producing bacteria
(middle). For the analysis of droplet images, we used the four most popular image analysis software that were selected according to hits in social
media (Twitter) and Scopus search (obtained on February 11, 2021) (right). (B) Droplet detection comparison among (i) ImageJ (IJ), (ii)
CellProfiler (CP), (iii) Ilastik (Ila), and (iv) QuPath (QP). (C) We divided the image processing software into two groups (rule-based and
machine learning-based) and explored their logic and working principle on three levels of abstraction. (1) The first level shows that used software
are very similar in their basic image processing logic. They usually have three processing stages in their image analysis logic: pre-processing,
processing, and post-processing. (2) The second level shows distinction between two groups of software in droplet detection: rule-based, where
users define how to detect droplets by giving specific parameters (e.g., threshold or size), or machine learning-based, where users classify/annotate
grouping of pixels on an image. (3) The third level shows a number of different steps and modules in processing stages. For the object on the left
side of each workflow, we use a triangle to determine the module with only one option, rectangle for the module with two to eight options, and
circle for the module with more than eight options.
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touch the image border and did not make a bundle (joint
droplets because of failed segmentation). We performed
sensitivity and specificity tests using True Positive (TP),
False Positive (FP), and False Negative (FN) values based on
the comparison with manual counting.42 The TP confirms the
positive droplet detection in the data. For FP, the value is
obtained by finding false droplet detection or underestimation
(type I error). In FN, the software does not detect the droplet
or performs overestimation (type II error). We defined TN as
the background (black = 0). After the calculation, we obtained
the accuracy ((TP + TN)/(TP + TN + FP + FN)) and
precision (TP/(TN + TP)) from the detection. This accuracy
explains the ratio between the correct droplet detection and
total number of droplet detection. On the other hand,
precision describes the probability to produce the correct
droplet detection in total positive detection.43−45 The accuracy
of each detection ranges from 74.7 to 96.2%. One of the
software managed to generate a precision of up to 99.8%
(Table 2).
Low-Image Quality Gives More False Detection. From

Figure 3, we can see how each group shares similar errors in

every event (detection per image). We compared the false
detection results (both FP and FN) from each of the software.
We found that the rule-based group (CP and ImageJ) have less
false detection compared to the machine learning-based group
(Ilastik and QuPath). However, Ilastik and QuPath received
high error because they do not have filters to eliminate the
droplets that touch the border, and some droplets are falsely
detected as joint droplets (Figure S1). Figure 3 also shows
images, which may have bad quality for droplet detection. For
instance, image numbers 2, 19, and 64 depict the highest error
values from all four software. Notwithstanding, CP outper-
forms the other software and has both high accuracy and
precision.

Each Software Requires Different Workflows for
Batch Processing. CP is the most suitable software for
batch analysis or high throughput analysis. In CP, we can
analyze a whole set of images with a press of a single button
“Analyze Images” on the main menu. The software will process
available images uploaded in the “Images” module (default
module). We tested and used the batch processing option to
analyze 64 images straight after we had our pipeline/workflow
set. In ImageJ, we processed the batch analysis using a
recorded macro by single image analysis. We also performed
some macro script cleaning (e.g., closing unnecessary tabs
during the process), which was written in the macro recorder.
After cleaning, we selected the input and output folders and
performed batch processing through the “Process” tab. For
Ilastik, we executed batch processing after the last option of the
pipeline. We just needed to upload the images and started the
“Process all files”. QuPath demanded macroprogramming
commands for executing batch analysis. However, this software
provided an automated script generator that simplified the
macro record to perform batch analysis. ImageJ and QuPath
required a macro script for batch analysis. Even though this
macro script was easy to do, creating a macro script for the first
time could become an obstacle for researchers who are not
familiar with any programming language or practices.46 From

Figure 2. Detailed third level of abstraction for image-based droplet
detection using (i) CellProfiler, (ii) ImageJ, (iii) Ilastik, and (iv)
QuPath. The symbols represent how many options are within each
module, referring to the previous figure where the triangle, rectangle,
and circle represent one, two to eight, and more than eight options,
respectively. The background colors correspond to pre-processing
(cyan), processing (yellow), and post-processing (magenta).

Table 2. CP Gives the Highest Accuracy and Precision

Category CellProfiler ImageJ Ilastik QuPath

% Accuracy 96.2% 92.7% 74.7% 80.9%
% Precision 99.8% 96.3% 80.2% 83.1%

Figure 3. Droplet detection errors are higher in machine learning-
based software in the diagnostic test. The figure shows the False
Positive (FP, wrong detected droplet) and False Negative (FN, wrong
undetected droplet) events per image. Each block represents event or
image error detection. The scale shows the number of errors (dark =
high and bright = low).
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our viewpoint, CP and Ilastik had the most user-friendly
interface for batch processing because they provide the option
to scale up after single image pipeline construction and do not
require any programming steps. Therefore, finding any
additional button or tab to batch process the images was
unnecessary. On the other hand, process and scripting were
required in ImageJ and QuPath.
Modularity Gives More Flexibility in Developing

Pipelines. Rule-based class software are flexible and have
modular options in processing image(s). As rule-based tools,
CP and ImageJ offered options that could be added and
removed depending on the user’s preferences, such as the type
of thresholding algorithm, filters, and other modules. In
machine learning-based software, the features were embedded
in the pipeline and had limited availability for additional
settings. For example, Ilastik had some pre-defined pipelines:
one of them was object classification and pixel classification.36

These two were fixed in the interface of Ilastik and may be
rearranged only through Python programming. From Figure
1C, the third level of complexity also represents the modularity
in which Ilastik and QuPath were more limited than CP and
ImageJ. For instance, CP had the “IdentifyPrimaryObject”
module that could be duplicated in one pipeline, while in
Ilastik, “Thresholding” could be performed only once within
the pre-defined workflow. This complication placed Ilastik as
the least flexible tool followed by QuPath.
Batch Processing Time Is Shorter in Java-Based

Software. Macro programming language affects the software
processing time, particularly in batch analysis. CP or ImageJ
expected less computational power for the use since they did
not implement machine learning classification methods in our
pipelines. The use of machine learning requires training and
features implementation that requires more computational
power.47 The rule-based software used object logic classi-
fication48 and did not require training set to test the defined
parameters, e.g., size of the object or maximum length of the
object. In QuPath and Ilastik, the classification depended on a
supervised machine learning process.36,48 We used manual
annotations (droplets and background) in making the classifier
before processing whole pixels. We also previously compared
the minimum hardware requirements for each of the tools
(Table 1). Based on the comparison, ImageJ was the only one
that did not put any minimum requirement on the random-
access memory (RAM). We also expected that the machine
learning-based software might take more time to process the
whole set of images. Therefore, we also tried running the
whole pipeline and comparing the performance from each of
the tools. We tested each pipeline with the same computer
having an Intel Core i3-9100F processor, 8GB RAM, NVDIA
GeForce GTX 1660 SUPER, 120Gb SSD PANTHER and
running in a Windows operating system. In our setting (with
the same environment and background setting), we found that
QuPath and ImageJ perform faster than CP and Ilastik in batch
processing (Figure 4). The experiment was conducted by
running the same pipeline 10 times to find the deviation as
well. Tool’s batch processing language (macros) may cause this
difference. At the beginning, we expected Ilastik and QuPath to
have longer processing time than CP and ImageJ because of
the machine learning-based processing. However, ImageJ and
QuPath performed faster than others. In principle, there are
two types of program that bioinformaticians use: compiled and
interpreted.49 ImageJ and QuPath use Java based (macros)
code that is compiled once before the program processes the

batch analysis. Presumably, this allows the program to run
faster. On the other hand, CP and Ilastik use Python to process
batch analysis. In Python, variables and functions will be run
through an interpreter every time the program needs to
process the task, in our case, to detect droplets in every image.
Regardless, we do not have enough evidence to claim that the
type of software may shorten the processing time. Nonetheless,
a speed comparison of different types of language (including
Python and Java) to run the same command showed that
implementation in Java performs up to 20 times faster than in
Python.50 We also note that different hardware can alter the
performance of software in different settings, but the relative
ratios of needed computing resources should be similar.

Documentation Is Important in Pipeline Develop-
ment. CP and ImageJ have sufficient examples and
documentation for novice users. Each of the software provides
documentation and examples for guiding their users. CP and
ImageJ have been developed since 2005 and 1987,
respectively.46,51 Therefore, these rule-based software have
more users and examples, e.g., ImageJ has a distribution for
compiling the biological image analysis plugins called Fiji.27 CP
also provides some tutorials, examples, and other documenta-
tion on their website, e.g., detecting different cell morphology
and tracking objects (www.cellprofiler.org). On the contrary,
Ilastik and QuPath have limited documentation for accom-
panying new users. However, these two software also have
extensive documentation, including their manuals and tutorials
for both novice and advanced users at their website (https://
ilastik.org/documentation and https://qupath.readthedocs.io).
Additionally, there are some forums such as image.sc forum
(forum.image.sc) that are actively helping other bioimage
researchers or software users.

Plugins May Ease Users to Perform Specific Image-
Based Detection. Plugins in CP and ImageJ can be used as
an extensible option in processing images. Plugins or add-on
can be used to improve default options within the software.
These may be utilized by other software developers. As an
additional option, plugins may help the user implement
specific cases of detection. Before Ilastik and QuPath were
developed, ImageJ had plugins called Trainable WEKA
Segmentation that, in principle, works similarly to machine
learning-based software.52 In CP, plugins are also available. For
instance, we found one plugin that analyzes mass cytometry
(multiplexed images) called ImcPluginsCP.53 Here, we did not
add any plugins to detect droplets and we used similar settings
to see the tool’s ability to detect and count droplets. The
extension software for CP, CellProfiler Analyst (CPA),54 could

Figure 4. Java-based software has a shorter processing time in the
droplet detection scenario. We ran the droplet detection pipelines in
the same computer with the same dataset. Error bars show standard
deviation between 10 replicate analysis runs with the same set of 64
images.
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be an option to enhance droplet detection, which has been
described briefly in our previous research.31 Based on our
classification, CPA belongs to machine learning-based software
because users need to supervise or train the data at the
beginning. However, this software is not a standalone software
and requires feature extraction or properties file that contain
the observed data from CP.31,55

Image Components Take Important Role in Process-
ing. Rule-based software are more suitable for analyzing
droplet microfluidic image data. Rule-based software provide
more options, e.g., to disregard the object that touches the
border/frame, which resulted in high accuracy and precision.
On the other hand, the machine learning-based software
required more optimization to train the classifier. We only used
12 lines (5 lines for determining droplets and 7 lines to define
borders between droplets and background) to supervise each
class (background and droplet). Each line represents the pixels
for each group. This pixel manual selection works better if the
image has similar properties in majority and represents the
pixel distribution of an object, for example, borders between
droplets and empty droplets. Even though the droplet’s border
looks the same across the image, the pixel distributions are
varied. We picked more lines to define borders. We also
needed extra time to train the classifier (in minutes) when
setting the machine learning-based software to determine the
12 lines. However, this cannot represent all of the properties
and may result in joint droplets. To overcome this, a larger
training set and improvement of the classifier would
presumably give a better result. As an image processing tool,
the machine learning-based software like QuPath has a more
specific purpose. Moreover, this software was created to
accommodate whole slide image and large image data analyses,
specifically for complex tissue images.37 However, a compar-
ison has been made between QuPath and CP coupled with
CPA.48 The comparison also shows the pros and cons between
the rule-based and machine learning-based software in renal
tissues. Furthermore, ImageJ, CP, Ilastik, and QuPath have
shown their capability in detecting droplets and generating the
results as standalone tools.
Data Acquisition Can Be Embedded in the Pipeline.

Droplet detection is often used as a preliminary step in droplet
microfluidic experiment. It is possible to expand the pipeline
for further analysis, e.g., bacteria detection,31 enzyme reaction
measurement,56 chemical purification analysis,57 and metal
extraction.58 This step is usually performed to extract the
different aspects of a droplet (size, texture, volume, etc.)
through pixel analysis. However, each software has its own
option and feature to obtain the particular information, for
example, “MeasureObjectSizeAndShape” and “MeasureObjec-
tIntensity” in CP and “Set measurement” and “ROI Manager”
in ImageJ. Nonetheless, this further analysis is not within the
scope of this article. We try to focus on the principle of image-
based droplet detection in different software and their
components that may ease the user with no experience in
image-based analysis.

■ CONCLUSIONS
This investigation gives insights into processing droplet
microfluidic images using the four currently most popular
software tools. We classified the types of open-source software
into rule-based and machine learning-based groups. Both
groups have three levels of complexity that cover pre-
processing, processing, and post-processing steps. These

steps help users, specifically with no programming experience,
to choose and perform their image analysis. In our
experimental setup, we found that the rule-based type of
software is better suited for image-based droplet detection. The
rule-based type tools also have a simpler workflow or pipeline,
especially aimed for non-experienced users. In our case, CP
outperforms other software in terms of accuracy, precision, and
user-friendliness (defined as usability for non-experienced
users in building the pipeline and performing image-based
droplet detection using available software modules). In terms
of time processing, ImageJ and QuPath give faster processing
time to detect droplets in 64 images. On the other hand, Ilastik
gives a direct module that may ease early-stage researchers in
image-based detection using the annotation principle. How-
ever, the optimal software choice may definitely be different for
other users depending on their experimental conditions and
acquired images. Our paper would serve as a starting point for
them to compare available solutions and start with settings
optimization, either using rule-based or machine learning-
based software. In addition, published research, documenta-
tion, or forum discussions (such as www.image.sc) help in
finding the most suitable software pipeline for image-based
droplet detection and analysis.

■ METHODS
Software Search and Selection. We used selected

software tools to detect droplets using the procedure explained
by Bartkova et al.31 We found several available and accessible
software tools online such as CP,35 ImageJ,27 Ilastik,36

QuPath,37 Icy,59 BioFilmQ,60 CellOrganizer,61 CellCogni-
tion,62 BioImageXD,63 BacStalk,64 Advanced CellClassifier,65

Phenoripper,66 and Cytomine.67 We have tested every software
mentioned previously to perform image-based droplet
detection; however, not all of the software had a good
documentation, workflow, reference, and user-friendly inter-
face. Therefore, we tried to find the most preferred tools
available online by using Twint−Twitter Intelligence Tool
script34 written in Python and Scopus search from their
website (https://www.scopus.com). The search has the same
filter, including the search time (01-01-2010 until 31-12-2020),
and only receives the result in “English”. Therefore, the search
both in Twitter and Scopus will not consider any data outside
the filter. Both Twitter and Scopus data were obtained on
February 11, 2021. We used each software’s name as the
keyword for the search. For the Twitter search, the processing
was executed in Jupyter Notebook (ver. 6.0.3)68 within
Anaconda Navigator.69 We also imported datetime and Pandas
as additional libraries. For the Scopus search, it was performed
using the same keyword. Both results were visualized together
using Bokeh and NumPy libraries in Python.70−72

Droplet Generation and Image Acquisition. We
repeated the method described in Bartkova et al. to generate
droplets and their image data.31 We used a set of 64 images to
test the most popular software to detect droplets. The images
are 2D layers of droplets generated by fluorescence confocal
microscopy. We used the same images to find a suitable
workflow for each software and describe it thoroughly in the
next paragraph. Using the data, we calculated the precision and
accuracy of detecting the droplets by comparing the results
with manual counting using the same batch processing results
in the same attempt.

Image Analysis with the Most Popular Software. The
image data were analyzed first as a single image using ImageJ
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(ver. 1.52p), CP (ver. 4.0.3), Ilastik (ver. 1.3.3), and QuPath
(ver. 0.2.3). For each of the software, we describe the pipeline
construction in the following paragraphs. Pipelines can be
found at https://github.com/taltechmicrofluidics.
Pipeline Construction in CP. We used our previous

pipeline31 in CP as the basis for exploring other tools. We
uploaded the image through a drag and drop feature in the
Images module and set the Metadata, NamesAndTypes, and
Groups according to our setting. We used the “IdentifyPrimar-
yObject” to detect droplets. We also used the same setting that
is also provided in our GitHub repository (github.com/
taltechmicrofluidics/CP-for-droplet-analysis). The “Measur-
eObjectIntensity” and “ExportToSpreadSheet” modules were
also set as previously. The results were obtained automatically
after pressing the “Analyze Image” button.
Pipeline Construction in ImageJ. For ImageJ, we recorded

the workflow in the macro record option. This record was used
to make scripts for batch processing. To upload the image, we
use Open Image from the File tab in the main menu. The
parameter was set within “Set Measurement” under “Analyze”
tab, and we only ticked “Area” for obtaining the pixels’ area in
one droplet. This was followed with processing workflow,
which included segmentation using “Threshold” under
“Adjust” option in the “Image” tab. The threshold was
determined as 1507, corresponding to 0.023 scale, described
in our previous article using CP. The thresholding was
followed with “Watershed” to separate droplets from each
other. The counting was performed using “Analyze Particle”
under the “Analyze” tab. We set the size corresponding to the
range we described in CP, 22,500 up to 62,500 pixels2 with 0
circularity. Once we finished the processing step, we
downloaded the image through the “Flatten” option in the
“ROI Manager” menu. We obtained the results in the table,
which appeared straight after we performed the analysis.
Pipeline Construction in Ilastik. In Ilastik, we used “Pixel

Classification” and “Object Classification” pre-defined work-
flow. We loaded the image in the Input Data module and
selected the features for the training set. Since we did not have
any reference regarding this type of workflow, we used the
recommendation from image.sc forum, starting by adding 0.30,
1.00, and 3.50 sigma or scale corresponding to the selected
features, e.g., Gaussian Filter, for color/intensity, edge, and
texture. We trained the program to distinguish between the
background (dark) and droplets using manual annotations/
labels. For thresholding, we used the default smoothing value
(1.0 and 1.0) with a 0.70 threshold. For the size filter, we put
values that correspond to the settings in ImageJ, 22,500 for the
minimum size and 62,500 for the maximum size. This was
followed by using the standard object selection feature option
and selecting the detected droplets in object classification as a
sample. After finishing the setup, we obtained the results by
exporting both object predictions and measured features.
Pipeline Construction in QuPath. In QuPath, we started

the workflow by creating a project (Create Project) and
uploading the image (Add Image). Once the selected image
was ready, we performed annotations similar to Ilastik. This
process aimed to distinguish the background and foreground
(droplets). After annotating the image, we performed “Pixel
Classification” using the artificial neural network (ANN_MLP)
classifier with high (downsample = 4.0) resolution. For the
features, the scales were 1.0, 2.0, and 4.0 for Gaussian gradient
magnitude, Hessian determinant, and Hessian max eigenvalue,
respectively. We created object detection for droplets and

measured all detected droplets. We set a thick boundary class
to make borders between each of the droplets. We saved the
measurement data from the measurement menu.

Batch Processing from Each of the Software. In CP,
we performed batch processing by loading the set of images in
the Images module and run the “Analyze Images” button. For
ImageJ, we executed batch processing using the “Batch
Process” option under the “Process” tab. We used a recorded
macro with some adjustments to execute the images in the
Input folder. By processing the images through this option, we
generated results directly to the Output folder. In Ilastik, we
continued the batch processing straight after setting up the
workflow. Similar to CP, we executed batch processing after
uploading the images and only needed to press the “Process all
images” button. In QuPath, we transformed the workflow from
a single image into scripts to execute the batch processing.
Since QuPath provides the script builder, we did not have to
script by ourselves, and we could start batch processing by
executing the script and ran it for the whole image set in the
project. However, the image results from QuPath require
additional script using Groovy. We managed to generate the
results and you may find the script in our GitHub. We stored
both single and batch processing pipelines from each of the
software here: (github.com/taltechmicrofluidics/Software-
Analysis).

Data Acquisition and Processing. We gathered all
results and processed them in Microsoft Excel as follows. We
tested the results with sensitivity and specificity tests and used
manual counting as the reference.42,73,74 We used these
formulas for the test:

=
+

FP Rate
FP

FP TN

=
+

TP Rate
TP

TP FN

=
+

Precision
TP

TP FP

= +
+ + +

Accuracy
TP TN

TP FP FN TN
Where TP is the correct droplet Detection compared to
ground truth, FP is the wrong detection (detecting back-
ground), FN is the wrong detection (software cannot
recognize existed droplet), TN is the background (0), accuracy
is the quality of correctness, and precision is the similarity
upon repeatable counting.
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