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Abstract
Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the 
ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated 
COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As 
the first study of its kind, “COVLIAS 1.0-Unseen” proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL 
is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, 
and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models 
and predict from test data, leading to four combinations—two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, 
and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, 
UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. 
Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to 
validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After 
HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen 
AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was 
successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.

Keywords  COVID-19 · Lung CT · Glass ground opacities · Segmentation · Hounsfield units · Solo deep learning · Hybrid 
deep learning · And AI
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GGO	� Glass Ground Opacities
GT	� Ground Truth
HDL	� Hybrid Deep Learning
HU	� Hounsfield Units
ITA	� Italian dataset
JI	� Jaccard Index
NIH	� National Institute of Health
RT-PCR	� Reverse Transcription-Polymerase Chain 

Reaction
SDL	� Solo Deep Learning
VGG	� Visual Geometric Group
WHO	� World Health Organization
µ	� Mean
σ	� Standard Deviation

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is an infectious disease that has infected 385 million 
individuals and has killed 5.7 million people globally as 
of 3rd February 2022 [1]. On March 11th, 2020, the World 
Health Organization (WHO) declared COVID-19 a global 
pandemic (the novel coronavirus) [2]. COVID-19 [3, 4] has 
proven to be worse in individuals with comorbidities such as 
coronary artery disease [3, 5], diabetes [6], atherosclerosis 
[7], fetal [8], etc. [9–11]. It has also caused architectural 
distortion with the interactions between alveolar and 
vascular changes [12] and affected relationships with daily 
usage such as nutrition [13]. Pathology has shown that even 
after vaccine immunization (ChAdOx1 nCoV-19), vaccine-
induced immune thrombotic thrombocytopenia (VITT) was 
triggered [14]. It was also observed that adults who are born 
small, so-called intrauterine growth restriction (IUGR), are 
also likely to get affected by COVID-19 [8].

One of the gold standards for COVID-19 detection is the 
"reverse transcription-polymerase chain reaction" commonly 
known as the RT-PCR test. Nonetheless, the RT-PCR test 
takes time and has low sensitivity [15–17]. This is where 
we use the image-based analysis for COVID-19 patients 
by using Chest radiographs and Computed Tomography 
(CT) [18–20] to diagnose the disease and work as a reliable 
complement to RT-PCR [21]. In the general diagnosis 

of COVID-19 and body imaging, CT has shown high 
sensitivity and reproducibility [20–, 22–24]. The primary 
benefit of CT [25, 26] is the imaging capacity to identify 
anomalies/opacities such as ground-glass opacity (GGO), 
consolidation, and other opacities [27–29] seen in COVID-
19 patients [30–, 31–35].

DL is a branch of AI that employs deep layers to 
provide fully automatic feature extraction, classification, 
and segmentation of the input data [36, 37]. Our team has 
developed the COVLIAS system, which has used deep 
learning models for lung segmentation [38–40]. In these 
previous studies, only one cohort was used when applying 
cross-validation, leading to bias in the performance since 
both the training and testing data were taken from the same 
CT machine, same hospital settings, and same geographical 
region [41–43]. To overcome this weakness, we introduce a 
multicentre study where training is conducted on one set of 
data coming from Croatia and testing was conducted using 
another data set taken from another source. This source was 
from Italy, the so-called “Unseen AI” (or vice-versa), which 
is one of the innovations of the proposed study. Just recently, 
there has been more visibility on “Unseen AI” [38, 44].

Due to variations in COVID-19 lesions such as GGO, 
Consolidations, and Crazy Paving, the ability of AI models 
to predict the automated COVID-19 lung segmentation 
in CT Unseen data has led to poor clinical manifestations 
(see Fig.  1). This happens when the Hounsfield Units 
(HU) [45] of CT images are not consistent between the 
training and testing paradigms, which leads to over-and 
under-estimation of the prediction region. This can be 
prevented via normalization right before AI deployment [46, 
47]. We embed such normalization in our AI framework 
automatically, which is another innovation besides the 
Unseen AI model design.

Recent advances in deep learning, such as hybrid 
deep learning (HDL) have shown promising results 
[38–40–, 48–52]. Using this premise, we hypothesize that 
HDL models are superior to solo DL (SDL) models for 
segmentation. In this study, we have designed nine SDL 
and HDL models that are trained and tested for COVID-
19-based lung segmentation on multicentre databases. We 
further offer insight into how 9 models of AI reciprocate to 
COVID-19 data sets, which is another unique contribution 

Fig. 1   Overlay of segmentation 
results (red) from the ResNet-
SegNet HDL models trained 
without adjusting the HU level. 
The white arrow represents the 
region where the ResNet-Seg-
Net HDL model under-estimates 
the lung region

62   Page 2 of 29 Journal of Medical Systems (2022) 46: 62



1 3

of the proposed study. The analysis includes attributes such 
as (i) the size of the model, (ii) the number of layers in AI 
architecture, (iii) the segmentation model utilizes, and (iv) 
the encoder part of the AI model. These can be used for a 
comparison between the nine AI models. Lastly, to prove 
the effectiveness of the AI models, we present performance 
evaluation using (i) Dice Similarity (DS), (ii) Jaccard 
Index (JI) [53], (iii) Bland–Altman plots (BA) [54, 55], (iv) 
Correlation coefficient (CC) plot [56, 57], and (v) Figure of 
Merit. Finally, as part of scientific validation, we compare 
the performance of COVLIAS 1.0-Unseen against MedSeg 
[58], a web-based lung segmentation tool.

Literature Survey

Artificial intelligence (AI) has been in existence for a while 
especially in the field of medical imaging [59, 60]. AI can 
play a vital role in the investigation of CT and X-ray images, 
assisting in the detection of COVID-19 type and overcoming 
the shortage of expert workers. It started with the role of 
machine learning moving into different application of point-
based models such as diabetes [61, 62], neonatal and infant 
mortality [63], gene analysis [64] and image-based machine 
learning models such as carotid plaque classification 

Fig. 2   Sample CT scans taken 
from raw CRO data sets

Fig. 3   Sample CT scans taken 
from raw ITA data sets
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[65–69], thyroid [70], liver [71], stroke [24], coronary [72], 
ovarian [73], prostate [74], skin cancer [75, 76], Wilson 
disease [77], ophthalmology [78], etc. The major challenge 
with these models is the feature extraction process which is 
ad-hoc in nature and, therefore, very time taking [79]. It has 
been recently shown that this weakness is being overcome 
by the deep learning (DL) models [59, 60].

Paluru et al. [80] proposed AnamNet, a hybrid of UNet 
and ENet to segment COVID-19-based lesions using 
4,300 images (using 69 patients with 5122 resolution size) 
[81]. The authors compared the models against ENet [82], 
UNet + + [83], SegNet, and LEDNet [84]. The DSC for 
the lesion detection turned out to be 0.77. Saood et al. [85] 
used a set of 100 images downscaled to 2562 to compare the 
results between the two models, namely UNet and SegNet, 
and showed the DS score of 0.73 and 0.74, respectively. 
Cai et al. [86] established a tenfold CV protocol on 250 
images using 99 patients and adopted the UNet model with 

a DS of 0.77. They also suggested a method for predicting 
the duration of an intensive care unit (ICU) stay. Suri et al. 
[40] benchmarked NIH [87] (a conventional model) against 
the three AI models, namely, SegNet, VGG-SegNet, and 
ResNet-SegNet using nearly 5000 CT scans using 72 
patients in an image resolution of 7682. Concluding that 
ResNet-SegNet was the best performing model. In an 
inter-variability study by Suri et al. [39], three models, 
namely, PSPNet, VGG-SegNet, ResNet-SegNet were 
used. The authors showed HDL models outperformed 
SDL models, by ~ 5% for all the performance evaluation 
metrics using 5000 CT slices (taken from 72 patients), in 
an image resolution of 7682. A recent study by the same 
authors [38] presented VGG-SegNet, and ResNet-SegNet 
compared to their COVLIAS 1.0 system against MedSeg. 
This study used HDL models and demonstrated standard 
Mann–Whitney, Paired t-Test, and Wilcoxon tests to prove 
the system's stability.

Fig. 4   VGG-PSPNet architecture

Fig. 5   ResNet-PSPNet architecture
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Method and Methodology

Demographics and Data Acquisition

The proposed study utilizes two different cohorts from 
different countries. The first dataset contains 72 adult Italian 
patients (approximately 5000 images, Fig. 2), 46 males, 
and the remainder were female. A total of 60 people tested 
positive for RT-PCR in which broncho-alveolar lavage [88] 
was used with 12 individuals. This Italian cohort had an 
average GGO of 2.1 which was considered low. The second 
cohort consisted of 80 Croatian patients (approximately 
5000 images, Fig. 3), of which 57 were male and the rest 
female patients. This cohort had a mean age of 66 and an 
average GGO of 4.1, which was considered high.

For the patients in the Italian cohort, CT data were 
acquired using Philips' automatic tube current modulation 
– Z-DOM), while Croatia's CT volumes were acquired using 
the FCT Speedia HD 64-detector MDCT scanner (Fujifilm 
Corporation, Tokyo, Japan, 2017). The exclusion criteria 
consisted of patients having metallic items or poor image 
quality without artifacts or blurriness induced by patient 
movement during scan execution [38].

AI Architectures Adapted

The proposed study uses a total of nine AI models, of 
which (i) PSPNet (see Supplemental A.1), (ii) SegNet, 
and (iii) UNet are SDL models and (iv) VGG-PSPNet 
(Fig. 4), (v) ResNet-PSPNet (Fig. 5), (vi) VGG-SegNet (see 
Supplemental A.2), (vii) ResNet-SegNet (see Supplemental 
A.3), (viii)VGG-UNet (Fig.  6), and (ix) ResNet-UNet 
(Fig. 7) are the HDL models. The difference between the 
SDL and HDL is that the traditional backbone or encoder 
part of the SDL model is replaced with a new model like 
VGG and ResNet. Suri et al. [39, 40, 48, 49, 89] Recent 
findings show that employing HDL models over SDL 
models in the medical sector helps learn complicated 
imaging features rapidly and reliably. Using this knowledge 
of the performance of HDL > SDL, we here introduce four 
new HDL models, namely, VGG-PSPNet, ResNet-PSPNet, 
VGG-UNet, and ResNet-UNet for lung segmentation of 
COVID-19-based CT images.

UNet [90] was the first medical segmentation model 
that consisted of mainly two sections (i) encoder, where 
the model tries to learn the features in the images, and (ii) 
decoder, the part of the model that up-samples the image 

Fig. 6   VGG-UNet architecture

Fig. 7   ResNet-UNet architecture
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Fig. 8   Accuracy and loss plot for the nine AI models for the training on the CRO dataset

Fig. 9   Accuracy and loss plot for the nine AI models for the training on the ITA dataset
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to produce the desired output like a segmented binary lung 
mask in this study. Another model used in this paper is 
SegNet [91], which transfers only the pooling indices from 
the compression (encoder) path to the expansion (decoder) 
path, thereby using low memory. The Pyramid Scene Parsing 
Network (PSPNet) [92] is a semantic segmentation network 
that considers the full context of an image using its pyramid 
pooling module. PSPNet extracts the feature map from an 
input image using a pretrained CNN and the dilated network 
technique. The size of the resulting feature map is 1/8 that 

of the input image. Finally, the collection of these features 
is used to generate the output binary mask.

Residual networks (ResNet) [93] use a sequential 
technique of "skip connections" and "batch normalization" 
to train deep layers without sacrificing efficiency, permitting 
gradients to bypass a set number of levels. This solves the 
vanishing gradient problem which is not present in VGGNet 
[94]. The primary attributes of the AI models such as the 
backbone used in the architecture, the number of layers in 
the training models, the total number of parameters in the 

Fig. 10   Visual overlays (set 1) 
showing the AI (green) output 
against the GT (red) for Seen 
analysis 
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architecture, and the final size of the trained models are 
further discussed and compared in the discussion section.

Experimental Protocol

This study involves two datasets from different centers, 
each of ~ 5000 lung CT images for COVID-19 patients. We 
have utilized a fivefold cross-validation [95, 96] technique 
for the training of AI models without overlap. The training 

and testing performance was determined by the accuracy 
score of the binary output of the trained AI model and gold 
standard [39, 40], respectively.

The accuracy of the system was computed using 
standardized protocol given the true positive, true negative, 
false negative, and false positive. Finally, to assess the 
model's training during the backpropagation, the cross-
entropy loss function was employed. The plots of the 
accuracy and loss function can be seen in Figs. 8 and 9.

Fig. 11   Visual overlays (set 2) 
showing the AI (green) output 
against the GT (red) for Seen 
analysis 
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Results and Performance Evaluations

Results

To prove our hypothesis that the performance of the HDL > SDL 
models in the proposed study, we present a comparison between 
(i) SDL and HDL models and (ii) the difference in training the 
models using high-GGO and low-GGO lung CT images. The 
accuracy and loss plots for the nine AI model for CRO and ITA 
dataset is presented in Figs. 8 and 9. Using overlays (Figs. 10, 

11, 12 and 13), we present a visual representation of the 
results from the AI models by comparing against four different 
scenarios, namely, seen analysis using (i) train on Croatia data 
(CRO) and test on CRO, (ii) train on Italy data (ITA) and test on 
ITA. Similarly for Unseen analysis, (iii) train on CRO and test on 
ITA, and finally (iv) train on ITA and test on CRO. This study 
makes use of two different datasets (i) CRO with ~ 5000 CT 
images of COVID-19 patients who are considered as patients 
with high-GGO and (ii) ITA with ~ 5000 COVID-19 CT images 
regarded as low-GGO patients.

Fig. 12   Visual overlays (set 1) 
showing the AI (green) output 
against the GT (red) for Unseen 
analysis 
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Performance Evaluation

This study presents (i) DS, (ii) JI, (iii) BA, (iv) CC plots, and 
(v) Figure of Merit (FoM) as part of performance evaluation 
for nine AI models under Seen and Unseen settings. The 
cumulative frequency distribution (CFD) plot for DS and JI 
is presented in Figs. 14, 15, 16 and 17 at a threshold cutoff of 
80%. Figures 16,  17, 18 and 19 show the BA plot with mean 
and standard deviation (SD) line for the estimated lung area 

against the AI models and ground truth tracings. Similarly, 
CC plots with a cutoff of 80% are displayed in Figs. 18, 19, 
20 and 21. We present a summary, mean, SD, and percentage  
improvement for all six AI models for DS, JI, and CC values 
in Tables 1, 2 and 3. When comparing four scenarios for 
Seen and Unseen settings against SDL and HDL, the DS 
score is better by 1%, 3%, 1%, and 1%, the JI score is better 
by 3%, 5%, 3%, and 2%, and finally, for CC, the performance 
is better by 2%, 1%, 1%, and 6%, thus proving the hypothesis 

Fig. 13   Visual overlays (set 2) 
showing the AI (green) output 
against the GT (red) for Unseen 
analysis 
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Fig. 14   Cumulative frequency plot for Dice using Seen analysis 
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Fig. 15   Cumulative frequency plot for Dice using Unseen analysis 
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Fig. 16   Cumulative frequency plot for Jaccard using Seen analysis 
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Fig. 17   Cumulative frequency plot for Jaccard using Unseen analysis 
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Fig. 18   BA plot for Seen analysis 
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Fig. 19   BA plot for Unseen analysis 
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Fig. 20   CC plot for Seen analysis 
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Fig. 21   CC plot for Unseen analysis 

62   Page 18 of 29 Journal of Medical Systems (2022) 46: 62



1 3

for COVID-19 lungs that performance of HDL > SDL. The 
standard deviation for all the AI models lies in the range 
of 0.01 to 0.06, which is considered stable because of the 
values being in the second decimal place.

Scientific Validation

The results from the MedSeg tool were compared against 
gold standard tracings of the two datasets used in the 
study. Figure 22 shows a cumulative frequency plot of 
DS for the segmented lungs using the MedSeg tool for 
Italian and Croatian datasets using COVLIAS. Similarly, 
Figs. 23 and 24 show the JI and CC plot of the results 
from the MedSeg compared to the ground truth tracings 
of the two datasets, with ITA on the left and CRO on 
the right. The percentage difference between the DS, JI, 
and CC score of the COVLIAS AI models in comparison 
to MedSeg is < 5%, thus proving the applicability of 
the proposed AI models in the clinical domain. Finally, 
the mean and standard deviation of the lung area error 
is presented in Fig. 25 using the BA plot and is used in 
the same notion with ITA on the left and CRO on the 
right. For the determination of the system’s error, Table 4 
presents Figure of Merit for the nine AI models of Seen 
and Unseen analysis. Finally, to prove the reliability of 
the AI-based segmentation system COVLIAS, statistical 
test such as Mann–Whitney, Paired t-Test, and Wilcoxon 
test is presented for Seen (Table 5) and Unseen (Table 6) 
analysis. MedCalc software (Osteen, Belgium) was used 
to carry out all the tests.

Table 1   Dice Similarity table for the nine AI models

Dice Similarity: Solo Deep Learning
Seen-AI Unseen-AI

Model CRO-CRO ITA-ITA CRO-ITA ITA-CRO
PSPNet 0.93 0.93 0.93 0.88
SegNet 0.95 0.96 0.89 0.91
UNet 0.93 0.95 0.92 0.9
µ 0.94 0.95 0.91 0.90
σ 0.01 0.02 0.02 0.02
Dice Similarity: Hybrid Deep Learning

Seen-AI Unseen-AI
Model CRO-CRO ITA-ITA CRO-ITA ITA-CRO
VGG-PSPNet 0.93 0.94 0.94 0.9
VGG-SegNet 0.94 0.96 0.95 0.92
VGG-UNet 0.96 0.95 0.93 0.84
ResNet-PSPNet 0.95 0.95 0.95 0.91
ResNet-SegNet 0.96 0.97 0.95 0.94
ResNet-UNet 0.96 0.97 0.94 0.93
µ 0.95 0.96 0.94 0.91
σ 0.01 0.01 0.01 0.04
% Improvement 1% 1% 3% 1%

Table 2   Jaccard Index table for the nine AI models

Jaccard Index: Solo Deep Learning
Seen-AI Unseen-AI

Model CRO-CRO ITA-ITA CRO-ITA ITA-CRO
PSPNet 0.86 0.87 0.87 0.8
SegNet 0.9 0.93 0.8 0.83
UNet 0.87 0.92 0.87 0.83
µ 0.88 0.91 0.85 0.82
σ 0.02 0.03 0.04 0.02
Jaccard Index: Hybrid Deep Learning

Seen-AI Unseen-AI
Model CRO-CRO ITA-ITA CRO-ITA ITA-CRO
VGG-PSPNet 0.85 0.95 0.9 0.81
VGG-SegNet 0.89 0.93 0.85 0.86
VGG-UNet 0.92 0.9 0.88 0.74
ResNet-PSPNet 0.89 0.91 0.9 0.83
ResNet-SegNet 0.93 0.94 0.91 0.88
ResNet-UNet 0.93 0.95 0.89 0.88
µ 0.90 0.93 0.89 0.83
σ 0.03 0.02 0.02 0.05
% Improvement 3% 3% 5% 2%

Table 3   Correlation Coefficient (P < 0.0001) for the nine AI models 

CC: Solo Deep Learning
Seen-AI Unseen-AI

Models CRO-CRO ITA-ITA CRO-ITA ITA-CRO
PSPNet 0.98 0.98 0.97 0.77
SegNet 0.99 0.99 0.98 0.97
UNet 0.95 0.97 0.95 0.97
µ 0.97 0.98 0.97 0.90
σ 0.02 0.01 0.02 0.12
CC: Hybrid Deep Learning

Seen-AI Unseen-AI
Models CRO-CRO ITA-ITA CRO-ITA ITA-CRO
VGG-PSPNet 0.99 0.98 0.98 0.92
VGG-SegNet 0.98 0.99 0.96 0.98
VGG-UNet 0.99 0.98 0.98 0.85
ResNet-PSPNet 0.99 1 0.99 0.99
ResNet-SegNet 0.99 1 0.98 0.99
ResNet-UNet 0.99 1 0.97 0.99
µ 0.99 0.99 0.98 0.95
σ 0.00 0.01 0.01 0.06
% Improvement 2% 1% 1% 6%
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Fig. 22   Cumulative frequency 
plot of DS for MedSeg for ITA 
(left) and CRO (right) data sets

Fig. 23   Cumulative frequency 
plot of JI for MedSeg for ITA 
data (left) and CRO data (right)

Fig. 24   CC plot for MedSeg 
vs. GT for ITA (left) and CRO 
(right)

Fig. 25   BA plot for MedSeg vs. GT for ITA (left) and CRO (right)
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Discussion

This proposed study presented nine automated CT 
lung segmentation techniques in AI framework using 
three SDL, namely, (i) PSPNet, (ii) SegNet, (iii) UNet 
and six HDL models, namely, (iv) VGG-PSPNet, (v) 
VGG-SegNet, (vi) VGG-UNet, (vii) ResNet-PSPNet, 
(viii) ResNet-SegNet, (ix) ResNet-UNet. To prove our 
hypothesis, we use automated HU adjustment to optimize 
values of (1600, -400) and train our AI models to predict 
on test data (Fig. 26). After HU adjustment for DS, JI, 
and CC, the percentage improvement for Seen AI is 1%, 
3%, and 6%, and for the Unseen AI is ~ 4%, ~ 5%, and 6%, 
respectively. We concluded that Unseen AI is possible 
using automated HU adjustment. Further, HDL was found 
to be superior to SDL (Table 1, 2 and 3).

Table 4   The Figure of Merit for the nine AI models for Seen-AI vs. 
Unseen-AI

Seen-AI Unseen-AI

Models CRO-CRO ITA-ITA CRO-ITA ITA-CRO

PSPNet 90.93 94.41 91.84 96.47
SegNet 92.76 96.51 95.89 82.25
UNet 87.51 94.21 99.12 80.85
VGG-PSPNet 85.67 96.84 96.68 99.06
VGG-SegNet 92.48 98.79 81.33 91.56
VGG-UNet 98.74 91.63 88.60 72.49
ResNet-PSPNet 95.19 95.86 93.21 82.96
ResNet-SegNet 95.99 97.24 92.06 85.38
ResNet-UNet 99.85 99.26 86.83 94.77

Table 5   Statistical tests for Seen-AI analysis on nine AI models

CRO-CRO ITA-ITA

Models Paired t-Test Mann–Whitney Wilcoxon Paired t-Test Mann–Whitney Wilcoxon

PSPNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
SegNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
UNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
VGG-PSPNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
VGG-SegNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
VGG-UNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
ResNet-PSPNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
ResNet-SegNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
ResNet-UNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

Table 6   Statistical tests for Unseen-AI analysis on nine AI models

CRO-ITA ITA-CRO

Models Paired t-Test Mann–Whitney Wilcoxon Paired t-Test Mann–Whitney Wilcoxon

PSPNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
SegNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
UNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
VGG-PSPNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
VGG-SegNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
VGG-UNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
ResNet-PSPNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
ResNet-SegNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
ResNet-UNet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
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Comparison and Contrast of the Nine AI Models

The proposed study uses a total of nine AI architectures with 
three SDL (PSPNet, SegNet and UNet) and six HDL models 
(VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, 
ResNet-SegNet, and ResNet-UNet). ResNet-PSPNet was the 
AI model with the highest # of NN layers and model size, 
equally. The training for all the AI models was implemented 
on NVIDIA DGX V100 using python [97] and adapting mul-
tiple GPUs to speed up the training time (Table 7 and Fig. 27).

Benchmarking

Table 8 shows the benchmarking table using CT imaging. Our 
proposed study (row #7) took 10,000 CT scans of 152 patients 
and implemented 9 different models that consisted of three SDL, 
namely, PSPNet, SegNet, UNet, and six HDL models, namely, 
VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, 
ResNet-SegNet, ResNet-UNet. The four scenarios (CRO-CRO, 
ITA-ITA, CRO-ITA, and ITA-CRO) correspond to SDL and HDL.

A Special note on Tissue Characterization

Lung segmentation can be considered as a tissue 
characterization (TC) process and was tried before using 
ML such as in plaque TC [66, 98], lung TC [99], coronary 
artery disease characterization [100], liver TC [101], or 
in cancer application such as skin cancer [102], ovarian 
cancer [103]. Other types of advanced TC can be using 
hybrid models such as [24, 36, 51].

Strength, Weakness, and Extensions

This proposed study, COVLIAS 1.0-Unseen proves our 
two hypotheses, (i) contrast adjustment is vital for AI, and 
(ii) HDL is superior to SDL using nine models considering 
5,000 CT scans. The system was validated against MedSeg 
and tested for reliability and stability.

It can also be noted that while training the AI model for 
COVID-19 infected lungs, it is necessary to adjust the HU 
levels to get the results of the segmentation accurately. Even 
though we used HU adjustments (i) it can be extended by 
adjusting the contrast, removing noise, and adjusting the 
window level [104]. (ii) Multimodality cross-validation such 
as ultrasound [105]. (iii) More advanced image processing 
tools such as level sets [106], stochastic segmentation 
[107], and computer-aided diagnostic tools [108, 109] can 
be integrated with AI models for lung segmentation. (iv) 
Recently, there have been studies to compute the bias in AI 
and it would be interesting to evaluate the bias models using 
AP(ai)Bias (AtheroPoint, Roseville, CA, USA) and other 
competitive models [42]. (v) CVD assessment of patients 
during the CT imaging [110]. Ta

bl
e 

7  
N

in
e 

A
I a

rc
hi

te
ct

ur
es

 a
nd

 th
ei

r c
om

pa
ris

on

M
B 

M
eg

aB
yt

es
, M

 M
ill

io
n,

 N
N

 N
eu

ra
l N

et
w

or
k

*i
n 

m
in

ut
es

3 
SD

L 
M

od
el

s
6 

H
D

L 
M

od
el

s

SN
A

ttr
ib

ut
es

PS
PN

et
Se

gN
et

U
N

et
VG

G
-P

SP
N

et
VG

G
-S

eg
N

et
VG

G
-U

N
et

R
es

N
et

-P
SP

N
et

R
es

N
et

-S
eg

N
et

R
es

N
et

-U
N

et

1
B

ac
kb

on
e

N
A

V
G

G
-1

9
V

G
G

-1
9

V
G

G
-1

6
V

G
G

-1
6

V
G

G
-1

6
Re

s-
50

Re
s-

50
Re

s-
50

2
Lo

ss
 F

un
ct

io
n

C
E

C
E

C
E

C
E

C
E

C
E

C
E

C
E

C
E

3
# 

Pa
ra

m
et

er
s

 ~
 4.

4 
M

 ~
 3.

8 
M

 ~
 4.

6 
M

 ~
 18

.2
 M

 ~
 11

.6
 M

 ~
 12

.4
 M

 ~
 31

 M
 ~

 15
 M

 ~
 16

.5
 M

4
# 

N
N

 L
ay

er
s

54
39

42
47

33
36

20
2

16
0

16
5

5
Si

ze
 (M

B
)

50
43

52
20

9
13

3
14

2
35

5
17

1
18

8
6

# 
Ep

oc
h

50
50

50
50

50
50

50
50

50
7

B
at

ch
 S

iz
e

8
8

8
2

4
4

2
4

4
8

Tr
ai

ni
ng

 T
im

e*
 ~

 17
 ~

 15
 ~

 16
 ~

 60
 ~

 50
 ~

 50
 ~

 70
 ~

 60
 ~

 60
9

Pr
ed

ic
tio

n 
Ti

m
e

 <
 2 

s
 <

 2 
s

 <
 2 

s
 <

 2 
s

 <
 2 

s
 <

 2 
s

 <
 2 

s
 <

 2 
s

 <
 2 

s

62   Page 22 of 29 Journal of Medical Systems (2022) 46: 62



1 3

Fig. 26   Overlay of segmenta-
tion results from the ResNet-
SegNet model trained without 
adjusting the HU level (red) 
and after adjusting the HU level 
(green). The white arrow repre-
sents the under-estimated region 
and the red arrows represent the 
same region estimated accu-
rately by the ResNet-SegNet 
model

Fig. 27   Left: Number of NN layers. Right: Size of the final AI models used in COVLIAS 1.0

Page 23 of 29    62Journal of Medical Systems (2022) 46: 62



1 3

Conclusions

The proposed research compares three SDL models, namely, 
PSPNet, SegNet, UNet, and six HDL models, namely, VGG-
PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-
SegNet, and ResNet-UNet against MedSeg for CT lung 
segmentation. It also performed the benchmarking of three 
SDL and 6 HDL models against MedSeg. The multicentre 
CT data was collected from Italy (ITA) with low-GGO, and 
Croatia (CRO with high-GGO hospitals, each with ~ 5000 
COVID-19 images. These CT images were annotated by two 
trained, blinded senior radiologists, thus creating an inter-
variable multicentre dataset. To prove our hypothesis, we use 
an automated Hounsfield Units (HU) adjustment methodology 
to train the AI models, leading to four combinations of two 
Unseen sets: train-CRO:test-ITA, train-ITA:test-CRO, and 
two Seen sets: train-CRO:test-CRO, train-ITA:test-ITA. To 
keep the test set unique for each fold, we adapted a five-fold 
cross-validation technique. Five types of performance metrics, 
namely, (i) DS, (ii) JI, (iii) BA plots, (iv) CC plots, and (v) 
Figure-of-Merit. For DS and JI, HDL (Unseen AI) > SDL 
(Unseen AI) by 4% and 5%, respectively. For CC, HDL 
(Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-
MedSeg difference was < 5%, thus proving the hypothesis 
and making it fit in clinical settings. Statistical tests such as 
Paired t-Test, Mann–Whitney, and Wilcoxon were used to 
demonstrate the stability and reliability of the AI system.

Supplementary Information  The online version contains supplementary 
material available at https://​doi.​org/​10.​1007/​s10916-​022-​01850-y.

Declarations 

For Italian Dataset:
IRB for the retrospective analysis of CT lung in patients affected by 
COVID19 granted by the Hospital of Novara to Professor Alessandro 
Carriero, Co-author of the research you are designing in the artificial 
intelligence application in the detection and risk stratification of 
COVID patients.

Ethic Committee Name  Assessment of diagnostic performance of 
Computed Tomography in patients affected by SARS COVID 19 
Infection.

Approval Code  131/20.

Approval  authorized by the Azienda Ospedaliero Universitaria 
Maggiore della Carità di Novara on June 25th, 2020.

Informed Consent  Consent was waived.

For Crotian Dataset:
IRB for the retrospective analysis of CT lung in patients affected by 
COVID19 granted by the Hospital of Novara to Professor Alessandro 
Carriero, Co-author of the research you are designing in the artificial 
intelligence application in the detection and risk stratification of 
COVID patients.

Ethic Committee Name  The use of artificial intelligence for multislice 
computer tomography (MSCT) images in patients with adult respira-
tory diseases syndrome and COVID-19 pneumonia.

Table 8   Benchmarking table

# number, HDL Hybrid Deep Learning, AE Area Error, DS Dice Similarity, JI Jaccard Index, BA Bland–Altman, ACC​ Accuracy, Dim Dimen-
sion (2D vs. 3D), R# Row number, #M number of AI models

- C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

R# Author # Patients # Images Image Dim #M Model Types Solo vs. HDL Dim AE DS JI BA ACC​
R1 Paluru et al. [80] 69  ~ 4339 5122 1 AnamNet Solo 2D  ✖  ✔  ✖  ✖  ✔
R2 Saood and Hatem [85] -  ~ 100 2562 2 UNet, SegNet Solo 2D  ✖  ✔  ✖  ✖  ✔
R3 Cai et al. [86] 99  ~ 250 - 1 UNet Solo 2D  ✖  ✔  ✔  ✖  ✖
R4 Suri et al. [40] 72  ~ 5000 7682 4 NIH,

SegNet,
VGG-SegNet,
ResNet-SegNet

Both 2D  ✔  ✔  ✔  ✔  ✔

R5 Suri et al. [39] 72  ~ 5000 7682 3 PSPNet,
VGG-SegNet,
ResNet-SegNet

Both 2D  ✔  ✔  ✔  ✔  ✔

R6 Suri et al. [38] 79  ~ 5500 7682 2 VGG-SegNet,
ResNet-SegNet

HDL 2D  ✔  ✔ ✔   ✔  ✔

R7 Suri et al. (Proposed) 152  > 10,000 5122 9 PSPNet,
SegNet,
UNet,
VGG-PSPNet, 

VGG-SegNet,
VGG-UNet,
ResNet-PSPNet,
ResNet-SegNet,
ResNet-UNet

Both 2D  ✔  ✔  ✔  ✔  ✔
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