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Abstract Humans can often handle daunting tasks with ease by developing a set of strategies 
to reduce decision-making into simpler problems. The ability to use heuristic strategies demands an 
advanced level of intelligence and has not been demonstrated in animals. Here, we trained macaque 
monkeys to play the classic video game Pac-Man. The monkeys’ decision-making may be described 
with a strategy-based hierarchical decision-making model with over 90% accuracy. The model 
reveals that the monkeys adopted the take-the-best heuristic by using one dominating strategy for 
their decision-making at a time and formed compound strategies by assembling the basis strategies 
to handle particular game situations. With the model, the computationally complex but fully quan-
tifiable Pac-Man behavior paradigm provides a new approach to understanding animals’ advanced 
cognition.

Editor's evaluation
Dr. Yang and colleagues trained nonhuman primates (rhesus monkeys) to play a semi-controlled 
version of the video game Pac-Man. This novel experimental paradigm allowed the authors to 
analyze and model the kinds of heuristic behavioral strategies monkeys use to solve relatively 
complex problems. The results provide insight into higher cognition in primates.

Introduction
Our lives are full of ambitious goals to achieve. Often, the goals we set out to accomplish are complex. 
For it to be acquiring a life with financial stability or winning the heart of your love of life, these ambi-
tious goals are often beyond the reach of any straightforward decision-making tactics. They, however, 
may be approached with a specific and elaborate set of basis strategies. With each strategy, individuals 
may prioritize their gains and risks according to the current situation and solve the decision-making 
within a smaller scope. As we live in a dynamic world that presents us with unexpected disturbances, it 
is also crucial to have the flexibility to alter our course of strategies accordingly. Additionally, the basis 
strategies can be pieced together and combined into compound strategies to reach grander goals.

For animals living in nature, the ability to flexibly formulate strategies for a complex goal is equally, 
if not more, crucial in their lives. Many have shown that animals exhibit complex strategy-like behav-
iors (Beran et al., 2015; Bird and Emery, 2009; Brotcorne et al., 2017; Gruber et al., 2019; Leca 
et al., 2021; Loukola et al., 2017; Reinhold et al., 2019; Sabbatini et al., 2014; Sanz et al., 2010), 
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but quantitative studies are lacking. Moreover, despite the continuing effort in studying complex 
behavior in animals and the underlying neural mechanisms (Haroush and Williams, 2015; Kira et al., 
2015; Ong et al., 2021; Yoo et al., 2020), the level of complexity of the existing animal behavioral 
paradigms is insufficient for studying how animals manage strategies to simplify a sophisticated task. 
A sufficiently complex behavior task should allow the animal to approach an overall objective with a 
variety of strategies in which both the objective, its associated rewards and cost, and the behaviors 
can be measured and quantified. Establishing such a behavior paradigm would not only help us to 
understand advanced cognitive functions in animals but also lay the foundation for a thorough inves-
tigation of the underlying neural mechanism.

Here, we adapted the popular arcade game Pac-Man. The game was tweaked slightly for the 
macaque monkeys. Just as in the original game, the monkeys learned to use a joystick to control the 
movement of Pac-Man to collect all the pellets inside an enclosed maze while avoiding ghosts. The 
monkeys received fruit juice as a reward instead of earning points. The animals were able to learn how 
each element of the game led to different reward outcomes and made continuous decisions accord-
ingly. While the game is highly dynamic and complex, it is essentially a foraging task, which may be 
the key to the successful training. More importantly, both the game states and the monkeys’ behavior 
were well-defined and could be measured and recorded, providing us opportunities for quantitative 
analyses and modeling.

The game has a clear objective, but an optimal solution is computationally difficult. However, a set 
of intuitive strategies would allow players to achieve reasonable performance. To find out whether the 
monkeys’ behavior can be decomposed into a set of strategies, we fit their gameplay with a dynamic 
compositional strategy model, which is inspired by recent advances in the artificial intelligence field 
in developing AI algorithms that solve the game with a multiagent approach (Foderaro et al., 2017; 
Rohlfshagen et al., 2018; Sutton et al., 1999; Van Seijen et al., 2017). The model consists of a set 
of simple strategies, each considering a specific aspect of the game to form decisions on how to move 
Pac-Man. By fitting the model to the behavior of the animals, we were able to deduce the strategy 
weights. The model was able to achieve over 90% accuracy for explaining the decision-making of 
the monkeys. More importantly, the strategy weights revealed that the monkeys adopted a take-the-
best (TTB) heuristic by using a dominant strategy and only focusing on a subset of game aspects at a 
time. In addition, the monkeys were able to use the strategies as building blocks to form compound 
strategies to handle particular game situations. Our results demonstrated that animals are capable 
of managing a set of compositional strategies and employing hierarchical decision-making to solve a 
complex task.

Results
The Pac-Man game
We trained two monkeys to play an adapted Pac-Man (Namco) game (Figure  1A). In the game, 
the monkeys navigated a character known as Pac-Man in a maze and their objective is to traverse 
through the maze to eat all the pellets and energizers. The game presented the obstacles of having 
two ghosts named Blinky and Clyde, who behaved as predators. As in the original game, each ghost 
followed a unique deterministic algorithm based on Pac-Man’s location and their own locations with 
Blinky chasing Pac-Man more aggressively. If Pac-Man was caught, the monkeys would receive a 
time-out penalty. Afterward, both Pac-Man and the ghosts were reset to their starting locations, and 
the monkeys could continue to clear the maze. If Pac-Man ate an energizer, a special kind of pellet, 
the ghosts would be cast into a temporary scared mode. Pac-Man could eat the scared ghosts to 
gain extra rewards. All the game elements that yield points in the original game provided monkeys 
juice rewards instead (Figure 1A, right). After successfully clearing the maze, the monkeys would also 
receive additional juice as a reward for completing a game. The fewer attempts the animals made to 
complete a game, the more rewards they would be given.

The game was essentially a foraging task for the monkeys. The maze required navigation, and to 
gain rewards, the animals had to collect pallets with the risk of encountering predators. Therefore, the 
game was intuitive for the monkeys, which was crucial for the training’s success. The training started 
with simple mazes with no ghosts, and more elaborated game elements were introduced one by one 
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Figure 1. The Pac-Man game and the performance of the monkeys. (A) The monkeys used a joystick to navigate Pac-Man in the maze and collect 
pellets for juice rewards. Also in the maze, there were two ghosts, Blinky and Clyde. The maze was fixed, but the pellets and the energizers were placed 
randomly initially in each game. Eating energizers turned the ghosts into the scared mode for 14 s, during which they were edible. There were also fruits 
randomly placed in the maze. The juice rewards corresponding to each game element are shown on the right. (B) The monkeys were more likely to 
move toward the direction with more local rewards. The abscissa is the reward difference between the most and the second most rewarding direction. 
Different grayscale shades indicate path types with different numbers of moving directions. Means and standard errors are plotted with lines and 
shades. See Figure 1—figure supplement 1 for the analysis for individual monkeys. (C) The monkeys escaped from normal ghosts and chased scared 
ghosts. The abscissa is the Dijkstra distance between Pac-Man and the ghosts. Dijkstra distance measures the distance of the shortest path between two 
positions on the map. Means and standard errors are denoted with lines and shades. See Figure 1—figure supplement 1 for the analysis for individual 
monkeys.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The performance of Monkey O (left) and Monkey P (right).

https://doi.org/10.7554/eLife.74500
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throughout the training process (see Materials and methods and Appendix 1—figure 1 for detailed 
training procedures).

The behavior analyses include data from 74 testing sessions after all the game elements were 
introduced to the monkeys and their performance reached a level that was subjectively determined 
reasonable. We recorded the joystick movements, eye movements, and pupil sizes of the animals 
during the game. On average, the animals completed 33 ± 9 (mean ± standard error [SE]) games in 
each session and each game took them 4.9 ± 1.8 attempts (Appendix 1—figure 2).

Optimal gameplay requires the monkeys to consider a large number of factors, and many of them 
vary throughout the game either according to the game rules or as a result of the monkeys’ own 
actions. Finding the optimal strategy poses a computational challenge not only for monkeys but also 
for human and AI agents alike. The monkeys learned the task and played the game well, as one can 
see from the example games (Appendix 1—video 1, Appendix 1—video 2, Appendix 1—video 3 
for Monkey O; Appendix 1—video 4, Appendix 1—video 5 for Monkey P). As a starting point to 
understand how the monkeys solved the task, we first studied if they understood the basic game 
elements, namely, the pellets and the ghosts.

First, we analyzed the monkeys’ decision-making concerning the local rewards, which included 
the pellets, the energizers, and the fruits, within five tiles from Pac-Man for each direction. The 
monkeys tended to choose the direction with the largest local reward (Figure 1B, Figure 1—figure 
supplement 1A and C). The probability of choosing the most rewarding direction decreased with 
the growing number of available directions, suggesting a negative effect of option numbers on the 
decision-making optimality.

The monkeys also understood how to react to the ghosts in different modes. The likelihood of 
Pac-Man moving toward or away from the ghosts in different modes is plotted in Figure 1C and 
Figure 1—figure supplement 1B and D. As expected, the monkeys tended to avoid the ghosts in 
the normal mode and chase them when they were scared. Interestingly, the monkeys picked up the 
subtle difference in the ghosts’ ‘personalities.’ By design, Blinky aggressively chases Pac-Man, but 
Clyde avoids Pac-Man when they get close (see Materials and methods for details). Accordingly, both 
monkeys were more likely to run away from Blinky but ignored or even followed Clyde when it was 
close by. Because the ghosts do not reverse their directions, it was actually safe for the monkeys to 
follow Clyde when they were near each other. On the other hand, the ghosts were treated the same 
by the monkeys when in scared mode. The monkeys went after the scared ghosts when they were near 
Pac-Man. This model-based behavior with respect to the ghosts’ ‘personalities’ and modes suggests 
sophisticated decision-making of the monkeys.

These analyses suggest that the monkeys understood the basic elements of the game. While they 
revealed some likely strategies of the monkeys, collecting local pellets and escaping or eating the 
ghosts, they did not fully capture the monkeys’ decision-making. Many other factors as well as the 
interaction between them affected the monkeys’ decisions. More sophisticated behavior was required 
for optimal performance, and to this end, the dynamic compositional strategy model was developed 
to understand the monkeys’ behavior.

Basis strategies
While the overall goal of the game is to clear the maze, the monkeys may adopt different strategies 
for smaller objectives in different circumstances. We use the term ‘strategy’ to refer to the solution for 
these sub-goals, and each strategy involves a smaller set of game variables with easier computation 
for decisions that form actions.

We consider six intuitive and computationally simple strategies as the basis strategies. The local 
strategy moves Pac-Man toward the direction with the largest reward within 10 tiles. The global 
strategy moves Pac-Man toward the direction with the largest overall reward in the maze. The ener-
gizer strategy moves Pac-Man toward the nearest energizer. The two evade strategies move Pac-Man 
away from Blinky and Clyde in the normal mode, respectively. Finally, the approach strategy moves 
Pac-Man toward the nearest ghost. At any time during the game, monkeys could adopt one or a 
mixture of multiple strategies for decision-making. These basis strategies, although not necessarily 
orthogonal to each other (Appendix 1—figure 3), can be linearly combined to explain the monkeys’ 
behavior.

https://doi.org/10.7554/eLife.74500
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At any time during the game, monkeys could adopt one or a mixture of multiple strategies for 
decision-making. We assumed that the final decision for Pac-Man’s moving direction was based on a 
linear combination of the basis strategies, and the relative strategy weights were stable for a certain 
period. We adopted a softmax policy to linearly combine utility values under each basis strategy, 
with the strategy weights as model parameters. To avoid potential overfitting, we designed a two-
pass fitting procedure to divide each game trial into segments and performed maximum likelihood 
estimation (MLE) to estimate the model parameters with the monkeys’ behavior within each time 
segment (see Materials and methods for details). When tested with simulated data, this fitting proce-
dure recovers the ground-truth weights used to generate the data (Appendix 1—figure 4).

Monkeys adopted different strategies at different game stages
Figure 2A shows the normalized strategy weights in an example game segment (Figure 2—video 
1). In this example, the monkey started with the local strategy and grazed pellets. With the ghosts 
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Figure 2. Fitting behavior with basis strategies. (A) The normalized strategy weights in an example game segment. The horizontal axis is the time 
step. Each time step is 417 ms, which is the time that it takes Pac-Man to move across a tile. The color bar indicates the dominant strategies across the 
segment. The monkey’s actual choice and the corresponding model prediction at each time step are shown below, with red indicating a mismatch. 
The prediction accuracy for this segment is 0.943. Also, see Figure 2—video 1. (B) Comparison of prediction accuracy across four models in four 
game contexts. Four game contexts were defined according to the criteria listed in Appendix 1—table 3. Vertical bars denote standard deviations. 
Horizontal dashed lines denote the chance-level prediction accuracies. See Appendix 1—tables 4–6 for detailed prediction accuracy comparisons. (C) 
The distribution of the three dominating strategies’ weights. The most dominating strategy’s weights (0.907 ± 0.117) were significantly larger than the 
secondary strategy (0.273 ± 0.233) and tertiary strategy (0.087 ± 0.137) by far. Horizontal white bars denote means, and the vertical black bars denote 
standard errors. (D) The distribution of the weight difference between the most and the second dominating strategies. The distribution is heavily 
skewed toward 1. In over 90% of the time, the weight difference was larger than 0.1, and more than 33% of the time the difference was over 0.9. (E) The 
ratios of labeled dominating strategies across four game contexts. In the early game, the local strategy was the dominating strategy. In comparison, in 
the late game, both the local and the global strategies had large weights. The weight of the approach strategy was largest when the ghosts were in the 
scared mode. See Figure 2—figure supplement 1 for the analysis for individual monkeys.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Fitting behavior with strategy labels for Monkey O (left) and Monkey P (right).

Figure 2—video 1. Example game segment.

https://elifesciences.org/articles/74500/figures#fig2video1

https://doi.org/10.7554/eLife.74500
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 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Yang et al. eLife 2022;11:e74500. DOI: https://​doi.​org/​10.​7554/​eLife.​74500 � 6 of 39

getting close, it initiated the energizer strategy and went for a nearby energizer. Once eating the 
energizer, the monkey switched to the approach strategy to hunt the scared ghosts. Afterward, the 
monkey resumed the local strategy and then used the global strategy to navigate toward another 
patch when the local rewards were depleted. The dynamic compositional strategy model (see Mate-
rials and methods for details) faithfully captures the monkey’s behavior by explaining Pac-Man’s move-
ment with an accuracy of 0.943 in this example.

Overall, the dynamic compositional strategy model explains the monkeys’ behavior well. The 
model’s prediction accuracy is 0.907 ± 0.008 for Monkey O and 0.900 ± 0.009 for Monkey P. In compar-
ison, a static strategy model, which uses the fixed strategy weights, achieves an overall accuracy of 
0.806 ± 0.014 and 0.825 ± 0.012 for monkeys O and P, respectively (Figure 2B). The static strategy 
model’s accuracy is still high, reflecting the fact that the monkeys were occupied with collecting 
pellets most of the time in the game. Thus, a combination of local and global strategies was often 
sufficient for explaining the monkeys’ choice. However, the average accuracy measurement alone and 
the fixed model could not reveal the monkeys’ adaptive behavior. The strategy dynamics are evident 
when we look at different game situations (Figure 2B). During the early game, defined as when there 
were more than 90% remaining pellets in the maze, the local strategy dominated all other strategies. 
In comparison, during the late game, defined as when there were fewer than 10% remaining pellets, 
both the local and the global strategies had large weights. The approach strategy came online when 
one or both scared ghosts were within 10 tiles around Pac-Man. The model’s prediction accuracies for 
the early game, the late game, and the scared-ghosts situations were 0.886 ± 0.0016, 0.898 ± 0.011, 
and 0.958 ± 0.010, which were significantly higher than the static strategy model’s accuracies (early: 
0.804 ± 0.025, p< ‍10−60‍ ; late: 0.805 ± 0.019, p< ‍10−35‍ ; scared ghosts: 0.728 ± 0.031, p< ‍10−11‍ ; 
two-sample t-test).

The dynamic compositional strategy decision-making model is hierarchical. A strategy is first 
chosen, and the primitive actions (i.e., joystick movements) are then determined under the selected 
strategy with a narrowed down set of features (Botvinick et  al., 2009; Botvinick and Weinstein, 
2014; Dezfouli and Balleine, 2013; Ostlund et al., 2009; Sutton et al., 1999). In contrast, in a flat 
model, decisions are computed directly for the primitive actions based on all relevant game features. 
Hierarchical models can learn and compute a sufficiently good solution much more efficiently due to 
its natural additive decomposition of the overall strategy utility.

To illustrate the efficiency of the hierarchical model, we tested two representative flat models. First, 
we considered a linear approximate reinforcement learning (LARL) model (Sutton, 1988; Tsitsiklis 
and Van Roy, 1997). The LARL model shared the same structure with a standard Q-learning algorithm 
but used the monkeys’ actual joystick movements as the fitting target. To highlight the flatness of this 
baseline model, we adopted a common assumption that the parameterization of the utility function is 
linear (Sutton and Barto, 2018) with respect to seven game features (see Materials and methods for 
details). Second, we trained a perceptron network as an alternative flat model. The perceptron had 
one layer of 64 units for Monkey P and 16 units for Monkey O (the number of units was determined 
by the highest fitting accuracy with fivefold cross-validation, see Materials and methods for details). 
The inputs were the same features used in our six strategies, and the outputs were the joystick move-
ments. Compared to our hierarchical models, neither flat model performed as well. The LARL model 
achieved 0.669 ± 0.011 overall prediction accuracy (Figure 2B, light gray bars) and performed worse 
than the hierarchical models under each game situation (early: 0.775 ± 0.021, p< ‍10−15‍ ; late: 0.621 ± 
0.018, p< ‍10−17‍ ; scared ghosts: 0.672 ± 0.025, p< ‍10−12‍ ; two-sample t-test). The perceptron model 
was even worse, both overall (0.624 ± 0.010, Figure 2B, white bars) and under each game situation 
(early: 0.582 ± 0.026, p< ‍10−40‍ ; late: 0.599 ± 0.019, p< ‍10−16‍ ; scared ghosts: 0.455 ± 0.030, p< ‍10−16‍ 
; two-sample t-test). The results were similar when we tested the models with individual monkeys 
separately (Figure 2—figure supplement 1A and E). Admittedly, one may design better and more 
complex flat models than the two tested here. Yet, even our relatively simple LARL model was more 
computationally complex than our hierarchical model but performed much worse, illustrating the 
efficiency of hierarchical models.

Monkeys adopted TTB heuristic
Neither our model nor the fitting procedure limits the number of strategies that may simultaneously 
contribute to the monkeys’ choices at any time, yet the fitting results show that a single strategy 

https://doi.org/10.7554/eLife.74500
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often dominated the monkeys’ behavior. In the example (Figure 2A, Figure 2—video 1), the monkey 
switched between different strategies with one dominating strategy at each time point. This was a 
general pattern. We ranked the strategies according to their weights at each time point. The histo-
grams of the three dominating strategies’ weights from all time points show that the most dominating 
strategy’s weights (0.907 ± 0.117) were significantly larger than those of the secondary strategy (0.273 
± 0.233) and tertiary strategy (0.087 ± 0.137) by a significant margin (Figure 2C). The weight differ-
ence between the first and the second most dominating strategies was heavily skewed toward one 
(Figure 2D). Individual monkey analysis results were consistent (Figure 2—figure supplement 1B, C, 
F and G). Taken together, these results indicate that the monkeys adopted a TTB heuristics in which 
action decisions were formed with a single strategy heuristically and dynamically chosen.

Therefore, we labeled the monkeys’ strategy at each time point with the dominating strategy. 
When the weight difference between the dominating and secondary strategies was smaller than 0.1, 
the strategy was labeled as vague. It may reflect a failure of the model to identify the correct strategy, 
a period of strategy transition during which a dominating strategy is being formed to replace the 
existing one, or a period during which the monkeys were indeed using multiple strategies. No matter 
which is the case, they are only a small percentage of data and not representative.

The local and the global strategy were most frequently used overall. The local strategy was partic-
ularly prevalent during the early game when the local pellets were abundant, while the global strategy 
contributed significantly during the late game when the local pellets were scarce (Figure 2E). Similar 
strategy dynamics were observed in the two monkeys (Figure 2—figure supplement 1D and H).

Strategy manifested in behavior
The strategy fitting procedure is indifferent to how the monkeys chose between the strategies, but 
the fitting results provide us with some hints. The probability of the monkeys adopting the local or 
the global strategy correlated with the availability of local rewards: abundant local rewards lead to 
the local strategy (Figure 3A, individual monkeys: Figure 3—figure supplement 1A and E). On the 
other hand, when the ghosts were scared, the decision between chasing the ghosts and going on 
collecting the pellets depended on the distance between Pac-Man and the scared ghosts (Figure 3B, 
individual monkeys: Figure 3—figure supplement 1B and F). In addition, during the global strategy, 
the monkeys often moved Pac-Man to reach a patch of pellets far away from its current location. They 
chose the shortest path (Figure 3C, individual monkeys: Figure 3—figure supplement 1C and G) 
and made the fewest turns to do so (Figure 3D, individual monkeys: Figure 3—figure supplement 
1D and H), demonstrating their goal-directed path-planning behavior under the particular strategy.

The fitting results can be further corroborated from the monkeys’ eye movements and pupil dila-
tion. Because different game aspects were used in different strategies, the monkeys should be looking 
at different things when using different strategies. We classified monkeys’ fixation locations into four 
categories: ghosts, energizers, pellets, and others (see Materials and methods for details). Figure 3E 
(individual monkeys: Figure  3—figure supplement 2A–E) shows the fixation ratio of these game 
objects under different strategies. Although a large number of fixations were directed at the pellets 
in all situations, they were particularly frequent under the local and energizer strategies. Fixations 
directed to the energizers were scarce, unless when the monkeys adopted the energizer strategy. On 
the other hand, monkeys looked at the ghosts most often when the monkeys were employing the 
approach strategy to chase the ghosts (p<0.001, two-sample t-test). Interestingly, the monkeys also 
looked at the ghosts more often under the energizer strategy than under the local strategy (p<0.001, 
two-sample t-test), which suggests that the monkeys were also keeping track of the ghosts when 
going for the energizer.

While the fixation patterns revealed that the monkeys paid attention to different game elements 
in different strategies, we also identified a physiological marker that reflected the strategy switches 
in general but was not associated with any particular strategy. Previous studies revealed that non-
luminance-mediated changes in pupil diameter can be used as markers of arousal, surprise, value, and 
other factors during decision-making (Joshi and Gold, 2020). Here, we analyzed the monkeys’ pupil 
dilation during strategy transitions. When averaged across all types of transitions, the pupil diam-
eter exhibited a significant but transient increase around strategy transitions (p<0.01, two-sample 
t-test, Figure 3F, also individual monkeys: Figure 3—figure supplement 2B–F). Such an increase was 
absent when the strategy transition went through a vague period. This increase was evident in the 

https://doi.org/10.7554/eLife.74500
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Figure 3. Monkeys’ behavior under different strategies. (A) The probabilities of the monkeys adopting the local or global strategy correlate with the 
number of local pellets. Solid lines denote means, and shades denote standard errors. (B) The probabilities of the monkeys adopting the local or 
approach strategy correlate with the distance between Pac-Man and the ghosts. Solid lines denote means, and shades denote standard errors. (C) 
When adopting the global strategy to reach a far-away patch of pellets, the monkeys’ actual trajectory length was close to the shortest. The column 
denotes the actual length, and the row denotes the optimal number. The percentages of the cases with the corresponding actual lengths are presented 
in each cell. High percentages in the diagonal cells indicate close to optimal behavior. (D) When adopting the global strategy to reach a far-away patch 
of pellets, the monkeys’ number of turns was close to the fewest possible turns. The column denotes the actual turns, and the row denotes the optimal 
number. The percentages of the cases with the corresponding optimal numbers are presented in each cell. High percentages in the diagonal cells 
indicate close to optimal behavior. (E) Average fixation ratios of ghosts, energizers, and pellets when the monkeys used different strategies. (F) The 
monkeys’ pupil diameter increases around the strategy transition (solid line). Such increase was absent if the strategy transition went through the vague 
strategy (dashed line). Shades denote standard errors. Black bar at the bottom denotes p<0.01, two-sample t-test. See Figure 3—figure supplement 1 
for the analysis for individual monkeys.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.74500
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transitions in both directions, for example, from local to global (Figure 3—figure supplement 2C–G) 
and from global to local (Figure 3—figure supplement 2D–H). Therefore, it cannot be explained by 
any particular changes in the game state, such as the number of local pellets. Instead, it reflected a 
computation state of the brain associated with strategy switches (Nassar et al., 2012; Urai et al., 
2017; Wang et al., 2021).

Compound strategies
The compositional strategy model divides the monkeys’ decision-making into different hierarchies 
(Figure 4). At the lowest level, decisions are made for actions, the joystick movements of up, down, 
left, and right, using one of the basis strategies. At the middle level, decisions are made between 
these basis strategies, most likely with a heuristic for the monkeys to reduce the complexity of the 
decision-making. The pupil dilation change reflected the decision-making at this level. In certain situa-
tions, the basis strategies may be pieced together and form compound strategies as a higher level of 
decision-making. These compound strategies are not simple impromptu strategy assemblies. Instead, 
they may reflect more advanced planning. Here, building on the strategy analyses, we describe two 
scenarios in which compound strategies were used by the monkeys.

The first scenario involves the energizers, which is an interesting feature of the game. They not 
only provide an immediate reward but also lead to potential future rewards from eating ghosts. 
With the knowledge that the effect of the energizers was only transient, the monkeys could plan 
accordingly to maximize their gain from the energizers. In some trials, the monkeys immediately 
switched to the approach strategy after eating an energizer and actively hunted nearby ghosts 
(Figure 5—video 1). In contrast, sometimes the monkey appeared to treat an energizer just as a 

Basis Strategy 1 Basis Strategy N

Compound
Strategy 1

Compound
Strategy N

ACTION

Basis
Strategy 1

Basis
Strategy 2

Basis
Strategy 3

Basis
Strategy 1

Basis
Strategy 2

Basis
Strategy 3

TASK

Figure 4. Monkeys’ decision-making in different hierarchies. At the lowest level, decisions are made for the joystick movements: up, down, left, or right. 
At the middle level, choices are made between the basis strategies. At a higher level, simple strategies may be pieced together for more sophisticated 
compound strategies. Monkeys may adopt one of the compound strategies or just a basis strategy depending on the game situation.

Figure supplement 1. Monkey’s behavior under different strategies for Monkey O (left) and Monkey P (right).

Figure supplement 2. Monkey’s eye movement patterns under different strategies for Monkey O (left) and Monkey P (right).

Figure 3 continued

https://doi.org/10.7554/eLife.74500
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more rewarding pellet. They continued collecting pellets with the local strategy after eating the 
energizer, and catching a ghost seemed to be accidental and unplanned (Figure  5—video 2). 
Accordingly, we distinguished these two behaviors using the strategy labels after the energizer 
consumption and named the former as planned attack and the latter as accidental consumption 
(see Materials and methods for details). With this criterion, we extracted 493 (Monkey O) and 463 
(Monkey P) planned attack plays, and 1970 (Monkey O) and 1295 (Monkey P) accidental consump-
tion plays in our dataset.

The strategy weight dynamics around the energizer consumption showed distinct patterns 
when the animals adopted the compound strategy planned attack (Figure 5A, individual monkeys: 
Figure 5—figure supplement 1A–E). When the monkeys carried out planned attacks, they started to 
approach the ghosts well before the energizer consumption, which is revealed by the larger weights 
of the approach strategy than that in the accidental consumption. The monkeys also cared less for 
the local pellets in planned attacks before the energizer consumption. The weight dynamics suggest 
that the decision of switching to the approach strategy was not an afterthought but planned well 
ahead. The monkeys strung the energizer/local strategy with the approach strategy together into the 
compound strategy to eat an energizer and then hunt the ghosts. Such a compound strategy should 
only be employed when Pac-Man, ghosts, and an energizer are in close range. Indeed, the average 
of distance between Pac-Man, the energizer, and the ghosts was significantly smaller in planned 
attack than in accidental consumption (Figure 5B, p<0.001, two-sample t-test, individual monkeys: 
Figure 5—figure supplement 1B–F).

Again, the planned attacks were also associated with distinct eye movement and pupil size 
dynamics. The monkeys fixated on the ghosts, the energizers, and Pac-Man more frequently before 
the energizer consumption in planned attacks than in accidental consumption (Figure 5C, p<0.001, 
two-sample t-test, individual monkeys: Figure 5—figure supplement 1C–G), reflecting more active 
planning under the way. In addition, the monkeys’ pupil sizes were smaller before they caught a ghost 
in planned attacks than in accidental consumption (p<0.01, two-sample t-test), which may reflect a 
lack of surprise under planned attacks (Figure 5D, individual monkeys: Figure 5—figure supplement 
1D–H). The difference was absent after the ghost was caught.

The second scenario involves a counterintuitive move in which the monkeys moved Pac-Man 
toward a normal ghost to die on purpose in some situations. Although the move appeared to be 
suboptimal, it was beneficial in a certain context. The death of Pac-Man resets the game and returns 
Pac-Man and the ghosts to their starting positions in the maze. As the only punishment in the monkey 
version of the game is a time-out, it is advantageous to reset the game by committing such suicide 
when local pellets are scarce, and the remaining pellets are far away.

To analyze this behavior, we defined the compound strategy suicide using strategy labels. We 
computed the distances between Pac-Man and the closest pellets before and after its death. In suicides, 
Pac-Man’s death significantly reduced this distance (Figure 6A, upper histogram, Figure 6—video 
1, individual monkeys: Figure 6—figure supplement 1A–E). This was not true when the monkeys 
were adopting the evade strategy but failed to escape from the ghosts (failed evasions, Figure 6A, 
bottom histogram, Figure 6—video 2, individual monkeys: Figure 6—figure supplement 1A–E). In 
addition, the distance between Pac-Man and the ghosts was greater in suicides (Figure 6B, p<0.001, 
two-sample t-test, individual monkeys: Figure 6—figure supplement 1B and F). Therefore, these 
suicides were a proactive decision. Consistent with the idea, the monkeys tended to saccade toward 
the ghosts and pellets more often in suicides than in failed evasions (Figure 6C, p<0.001, two-sample 
t-test, individual monkeys: Figure 6—figure supplement 1C and G). Their pupil size decreased even 
before Pac-Man’s death in suicides, which was significantly smaller than in failed evasions, suggesting 
that the death was anticipated (Figure 6D, p<0.01, two-sample t-test, individual monkeys: Figure 6—
figure supplement 1D and H).

Together, these two examples demonstrated how monkeys’ advanced gameplay can be under-
stood with concatenated basis strategies. The compositional strategy model not only provides a good 
fit for the monkeys’ behavior but also offers insights into the monkeys’ gameplay. The compound 
strategies demonstrate that the monkeys learned to actively change the game into desirable states 
that can be solved with planned strategies. Such intelligent behavior cannot be explained with a 
passive foraging strategy.

https://doi.org/10.7554/eLife.74500
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Figure 5. Compound strategies: planned attack. (A) Average strategy weight dynamics in planned attacks (left) and accidental consumptions (right). 
Solid lines denote means, and shades denote standard errors. (B) The average distance between Pac-Man, the energizer, and the ghosts in planned 
attacks and accidental consumptions. Vertical dashed lines denote means. ***p<0.001, two-sample t-test. (C) Ratios of fixations on the ghosts, 
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Discussion
Just as one cannot gain a full understanding of the visual system by studying it with bars and dots, 
pursuing a deeper insight into the cognitive capability of the brain demands sophisticated behavior 
paradigms in which an ensemble of perception, attention, valuation, executive control, decision-
making, motor planning, and other cognitive processes need to work together continuously across 
time. Naturally, quantifying and modeling these behaviors in such paradigms is challenging, but here 
we demonstrated that the behavior of monkeys during a complex game can be understood and 
described with a set of basis strategies that decompose the decision-making into different hierarchies.

Our hierarchical model explains the monkeys’ joystick movements well (Figure 2B). Importantly, 
the strategies derived from the model can be verified with independent behavior measurements. 
The monkeys' fixation pattern, a measure of their attention, reflected the features associated with 
the current strategy (Figure 3E). Moreover, an increase in pupil dilation (Figure 3F), which was not 
associated with any particular changes of game states, was found at the deduced strategy switches. 
This is consistent with the prediction from the hierarchical model that there should be crucial decision-
making of strategies around the strategy transitions.

In contrast to hierarchical models in which the decision-maker divides decision-making into multiple 
levels and at each level focuses on an increasingly refined smaller set of game features (Botvinick 
et al., 2009; Botvinick and Weinstein, 2014; Dezfouli and Balleine, 2013; Ostlund et al., 2009; 
Sutton et al., 1999), a flat model’s decisions are directly computed at the primitive action level, and 
each action choice is evaluated with all game features. Although in theory a flat model may achieve 
equal or even greater performance than a hierarchical model, flat models are much more compu-
tationally costly. Especially when working memory has a limited capacity, as in the case of the real 
brain, hierarchical models can achieve a faster and more accurate performance (Botvinick and Wein-
stein, 2014). Our Pac-Man task contains an extensive feature space while requiring real-time decision-
making that composes limitations on the cognitive resources. Even for a complex flat model such as 
Deep Q-Network, which evaluates primitive actions directly with a deep learning network structure 
without any temporally extended higher-level decisions (Mnih et al., 2015), the game performance is 
much worse than a hierarchical model (Van Seijen et al., 2017). In fact, the most successful AI player 
to date uses a multiagent solution, which is hierarchical in nature (Van Seijen et al., 2017). Our study 
shows that the monkeys also adopted a hierarchical solution for the Pac-Man game.

Although the particular set of basis strategies in the model is hand-crafted, we have good reasons to 
believe that they reflect the decision-making of the monkeys. Our model fitting procedure is agnostic 
to how one should choose between the strategies, yet the resulting strategies can be corroborated 
both from monkeys’ route planning, eye movements, and pupil dilation patterns. This is evidence for 
both the validity of the model and the rationality behind monkeys’ behavior. The correlation between 
the results of strategy fitting and the fixation patterns of the monkeys indicates that the animals 
learned to selectively attend to the features that were relevant for their current strategy while ignoring 
others to reduce the cognitive load for different states. Similar behaviors have also been observed 
in human studies (Leong et al., 2017; Wilson and Niv, 2011). In particular, the pupil dilation at the 
time of strategy transitions indicated the extra cognitive processing carried out in the brain to handle 
the strategy transitions. Lastly, the model, without being specified so, revealed that a single strategy 
dominates monkeys’ decision-making during most of the game. This is consistent with the idea that 
strategy-using is a method that the brain uses to simplify decision-making by ignoring irrelevant game 
aspects to solve complex tasks (Binz et al., 2022; Moreno-Bote et al., 2020).

consumption. The black bar near the abscissa denotes data points where the two traces are significantly different (p<0.01, two-sample t-test). Shades 
denote standard errors at every time point. See Figure 5—figure supplement 1 for the analysis for individual monkeys.

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Planned attacks in Monkey O (upper) and Monkey P (lower).

Figure 5—video 1. Planned attack game segment.

https://elifesciences.org/articles/74500/figures#fig5video1

Figure 5—video 2. Accidental consumption game segment.

https://elifesciences.org/articles/74500/figures#fig5video2

Figure 5 continued

https://doi.org/10.7554/eLife.74500
https://elifesciences.org/articles/74500/figures#fig5video1
https://elifesciences.org/articles/74500/figures#fig5video2
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Figure 6. Compound strategies: suicide. (A) Distance difference between Pac-Man and closest pellet before and after the death is smaller in suicides 
than in failed evasions. Vertical dashed lines denote means. ***p<0.001, two-sample t-test. (B) Average distance between Pac-Man and the ghosts was 
greater in suicides than in failed evasions. Vertical dashed lines denote means. ***p<0.001, two-sample t-test. (C) The monkeys fixated more frequently 
on the ghosts and the pellets in suicides than in failed evasions. Vertical bars denote standard errors. ***p<0.001, two-sample t-test. (D) The monkeys’ 
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In some previous animal studies, strategies were equated to decision rules (Bunge and Wallis, 
2007; Genovesio and Wise, 2007; Hoshi et al., 2000; Mante et al., 2013; Tsujimoto et al., 2011). 
The rules were typically mutually exclusive, and the appropriate rule was either specified with explicit 
sensory cues or the trial-block structure. The rules in these studies can be boiled down to simple 
associations, even in cases when the association may be abstract (Genovesio and Wise, 2007). In this 
study, however, we defined a set of strategies as a heuristic that reduces a complex computation into 
a set of smaller and more manageable problems or computations. There were no explicit cues or trial-
block structures to instruct animals on which strategies to choose. Nevertheless, the same prefrontal 
network, including the dorsolateral prefrontal cortex, orbitofrontal cortex, and polar cortex that are 
suggested to engage in rule use and rule switching (Bunge and Wallis, 2007; Genovesio and Wise, 
2007; Hoshi et al., 2000; Mante et al., 2013; Tsujimoto et al., 2011), may also play important roles 
in strategy-based decision-making, too.

Our Pac-Man paradigm elicits monkeys’ more complex and natural cognitive ability. First, the game 
contains an extensive state space. This requires monkeys to simplify the task by developing temporally 
extended strategies to accomplish sub-goals. Second, there exists nonexclusive solutions or strate-
gies to solve the Pac-Man task appropriately. Instead of spoon-feeding monkeys the exact solution in 
simple tasks, we trained them with all relevant game elements during the training phases and allowed 
them to proactively coordinate and select strategies freely. Therefore, our Pac-Man paradigm does 
not restrict monkeys’ behavior with a small number of particular rules and allows the brain and its 
neural circuitry to be studied in a more natural setting (Krakauer et al., 2017).

In summary, our model distilled a complex task into different levels of decision-making centered 
around a set of compositional strategies, which paved the way for future experiments that will provide 
key insights into the neural mechanisms underlying sophisticated cognitive behavior that go beyond 
what most of the field currently studies.

Materials and methods
Subjects and materials
Two male rhesus monkeys (Macaca mulatta) were used in the study (O and P). They weighed on 
average 6–7  kg during the experiments. All procedures followed the protocol approved by the 
Animal Care Committee of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 
(CEBSIT-2021004).

Training procedure
To help monkeys understand the Pac-Man game and develop their decision-making strategies, we 
divided the training procedures into the following three stages. In each stage, we gradually increased 
game depth based on their conceptual and implementational complexity.

Stage 1: Reward
In the first stage, the monkeys were trained to use the joystick to control Pac-Man to navigate in 
simple mazes for collecting pellets (Appendix 1—figure 1A). Training began with the horizontal and 
the vertical linear mazes. In each maze, Pac-Man started from the center where pellets were at one 
end and a static ghost was at the other end. Monkeys earned two drops of juice (one drop = 0.5 mL) 

pupil size decreased before Pac-Man’s death in suicides. The black bar near the abscissa denotes data points where the two traces are significantly 
different (p<0.01, two-sample t-test). Shades denote standard errors at every time point. See Figure 6—figure supplement 1 for the analysis for 
individual monkeys.

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Suicides in Monkey O (left) and Monkey P (right).

Figure 6—video 1. Suicide game segment.

https://elifesciences.org/articles/74500/figures#fig6video1

Figure 6—video 2. Failed evasion game segment.

https://elifesciences.org/articles/74500/figures#fig6video2

Figure 6 continued
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immediately when consuming a pellet. Monkeys could earn an extra-large amount of juice by clearing 
all pellets. Running toward the static ghost would lead to the end of the trial with a time-out penalty 
(5 s). When the monkeys completed more than 100 correct trials with above 80% accuracy, we intro-
duced two slightly more complex mazes, the T and the upside-down T maze. After the monkeys 
completed more than 50 correct trials in the T-mazes with above 80% accuracy, we introduced the 
H-maze. Stage 1 training included 58 sessions for Monkey O and 84 sessions for Monkey P.

Stage 2: Ghost
In the second stage, the monkeys were trained to deal with the ghosts (Appendix 1—figure 1B). In 
addition, the mazes used in this stage were closed and had loops. A ghost would block one of the 
routes leading to the pellets, forcing the monkeys to take alternative routes. In the first phase, the 
ghost was stationary in a square maze. Pac-Man started from one of the four corners, and pellets 
were distributed in the two adjacent arms. The ghost was placed at the corner where the two arms 
joined, forcing Pac-Man to retreat after clearing the pellets in one arm. In the second phase, the ghost 
moved within the arm. In the third phase, the ghost would chase Pac-Man. Stage 2 training included 
86 sessions for Monkey O and 74 sessions for Monkey P.

Stage 3: Energizer
In this stage, the monkeys were trained to understand the energizer (Appendix 1—figure 1C). In 
the first phase, the monkeys were trained to understand the distinction between normal and scared 
ghosts. We used the square maze with a normal or a scared ghost randomly placed across trials. 
Blinky in the normal mode would chase Pac-Man, while in scared mode move in random directions 
at half of Pac-Man’s speed. Monkeys earned eight drops of juice after eating a scared ghost. In the 
second phase, the monkeys were trained with the maze that the scared mode could only be triggered 
by an energizer. Two energizers were randomly placed in each maze. Monkeys earned four drops 
of juice when eating an energizer and turned ghosts into the scared mode immediately. The scared 
mode lasted 14 s. As a reminder, ghosts in the scared mode flashed for 2 s before turning back into 
the normal mode. In the third phase, we adopted the maze used in our final gameplay recording 
(Figure 1A). The detailed game rules can be found in the following ‘Task paradigm’ session. Stage 3 
training included 248 sessions for Monkey O and 254 sessions for Monkey P.

Task paradigm
The Pac-Man game in this study was adapted from the original game by Namco. All key concepts of 
the game are included. In the game, the monkey navigates a character named Pac-Man through a 
maze with a four-way joystick to collect pellets and energizers. The maze is sized at 700 × 900 pixels, 
displayed at the resolution of 1920 × 1080 on a 27-inch monitor placed at 68  cm away from the 
monkey. The maze can be divided into square tiles of 25 × 25 pixel.(Binz et al., 2022). The pellets and 
energizers are placed at the center of a tile, and they are consumed when Pac-Man moves into the 
tile. In the recording sessions, there are 88 or 73 pellets in the maze, each worth two drops of juice, 
and three or four energizers, each worth four drops of juice. We divided the maze into four quarters, 
and the pellets and energizers are randomly placed in three of them, with one randomly chosen 
quarter empty. In addition, just as in the original game, there are five different kinds of fruits: cherry, 
strawberry, orange, apple, and melon. They yield 3, 5, 8, 12, and 17 drops of juice, respectively. In 
each game, one randomly chosen fruit is placed at a random location at each game. As in the original 
game, the maze also contains two tunnels that teleport Pac-Man to the opposite side of the maze.

There are two ghosts in the game, Blinky and Clyde. They are released from the Ghost Home, 
which is the center box of the maze, at the beginning of each game. Blinky is red and is more aggres-
sive. It chases Pac-Man all the time. Clyde is orange. It moves toward Pac-Man when it is more than 
eight tiles away from Pac-Man. Otherwise, it moves toward the lower-left corner of the maze. The 
eyes of the ghosts indicate the direction they are traveling. The ghosts cannot abruptly reverse their 
direction in the normal mode. Scared ghosts move slowly to the ghost pen located at the center of the 
maze. The scared state lasts 14 s, and the ghosts flash as a warning during the last 2 s of the scared 
mode. Monkeys get eight drops of juice if they eat a ghost. Dead ghosts move back to the ghost pen 
and then respawn. The ghosts can also move through the tunnels, but their speed is reduced when 

https://doi.org/10.7554/eLife.74500
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inside the tunnel. For more explanations on the ghost behavior, please refer to https://gameinternals.​
com/understanding-pac-man-ghost-behavior.

When Pac-Man is caught by a ghost, it and the ghosts return to the starting location. The game 
is restarted after a time-out penalty. When all the pellets and energizers are collected, the monkey 
receives a reward based on the number of rounds that takes the monkey to complete the game: 20 
drops if the round number is from 1 to 3; 10 drops if the round number is from 4 to 5; 5 drops if the 
round number is larger than 5.

Behavioral data recording and preprocessing
We monitored the monkeys’ joystick movements, eye positions, and pupil sizes during the game. The 
joystick movements were sampled at 60 Hz. We used Eyelink 1000 Plus to record two monkeys’ eye 
positions and pupil sizes. The sampling rate was 500 Hz or 1000 Hz.

The data we presented here are based on the sessions after the monkeys went through all the 
training stages and were able to play the game consistently. On average, monkeys completed 33 ± 
9 games in each session and each game took them 4.86 ± 1.75 attempts. The dataset includes 3217 
games, 15,772 rounds, and 899,381 joystick movements. The monkeys’ detailed game statistics are 
shown in Appendix 1—figure 2.

Basic performance analysis
In Figure  1B, we compute the rewards for each available moving direction at each location by 
summing up the rewards from the pellets (one unit) and the energizers (two units) within five steps 
from Pac-Man’s location. Locations are categorized into four path types defined in Appendix 1—table 
1. For each path type, we calculate the probability that the monkey moved in the direction with the 
largest rewards conditioned on the reward difference between the most (‍Rmax‍) and the second most 
rewarding directions (‍R2max‍). In Figure 1C, we compute the likelihood of Pac-Man moving toward or 
away from the ghosts in different modes with different Dijkstra distance between Pac-Man and the 
ghosts. We classified Pac-Man’s moving action into two types, toward and away, according to whether 
the action decreased or increased the Dijkstra distance between Pac-Man and the ghosts. Dijkstra 
distance is defined as the distance of the shortest path between two positions in the maze.

Basis strategies
We include six basis strategies in the hierarchical strategy model. In each basis strategy, we compute 
the utility values for all directions (‍D‍={left, right, up, down}), expressed as a vector of length 4. Notice 
that not all directions are available, utility values for unavailable directions are set to be negative 
infinity. The moving direction is computed according to the largest average utility value for each 
strategy.

We determine the utility associated with each direction and its possible trajectories. Specifically, 
let ‍p‍ represents Pac-Man’s position and ‍τ

(
p
)
‍ represent a path starting from p with the length of 10. 

We define ‍g = gB, gC‍ to be the position of two ghosts, Blinky and Clyde, and ‍r = rp, re, rf ‍ to be the 
positions of pellets, energizers, and fruits, respectively. We compute the utility of each path ‍τ

(
p
)
‍ as 

follows (without specific noting, ‍τ
(
p
)
‍ is denoted as ‍τ ‍ for simplicity).

We use the local strategy to describe the local graze behavior within a short distance with the utility 
function defined as

	﻿‍
U
(
τ
)

=
∑

r′∈τ∩re,rp,rf

Reward
(
r′
)
‍�

(1)

where ‍τ ∩ re, rp, rf ‍ denotes the pellets/energizers/fruits on the path. Specific parameters for 
awarded and penalized utilities of each game element in the model can be found in Appendix 1—
table 2.

Evade strategy focuses on dodging close-by ghosts. Specifically, we create two evade strategies 
(evade Blinky and evade Clyde) that react to the respective ghost, with the utility function defined as

	﻿‍

U
(
τ
)

=



I(g is normal) × Penalty(g), if g ∈ τ

0, otherwise‍�
(2)

https://doi.org/10.7554/eLife.74500
https://gameinternals.com/understanding-pac-man-ghost-behavior
https://gameinternals.com/understanding-pac-man-ghost-behavior
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with ‍g = gB‍ and ‍g = gC‍, respectively. Here, ‍I
(
s
)
‍ is an indication function, where ‍I

(
s
)

= 1‍ when 
statement ‍s‍ is true, otherwise ‍I

(
s
)

= 0‍.
Energizer strategy moves Pac-Man toward the closest energizer. In this case, the rewards set ‍r‍ only 

contains the positions of energizers (i.e., ‍r = re‍):

	﻿‍ U
(
τ
)

=
∑

r′∈τ∩re
Reward

(
r′
)
‍� (3)

Approach strategy moves Pac-Man toward the ghosts, regardless of the ghosts’ mode. Its utility 
function is

	﻿‍ U
(
τ
)

=
∑

r′∈τ∩gB,gC
Reward

(
r′
)
‍� (4)

Global strategy does not use a decision tree. It counts the total number of pellets in the whole 
maze in each direction without considering any trajectories. For example, the utility for the down 
direction is the total number of pellets that sit vertically below Pac-Man’s location.

We construct the utility of each agent as a vector 

‍Ua ∈ R4, for a ∈
{

local, global, evade Blinky, evade Clyde, approach, energizer
}
‍ of the four directions. 

For each direction ‍d ∈ D‍, its utility is obtained by averaging utilities ‍U
(
τ
)
‍ on all the path sets ‍τ ∈ T ‍ 

in that direction:

	﻿‍

Ua,d =





1
|T |

∑
τ∈T

Ua(τ ), if d is available

−∞, otherwise ‍�

(5)

Models and model fitting
We adopted a softmax policy to linearly combine the utility values under each basis strategy and used 
MLE to estimate the model parameters with the monkeys’ behavior.

Utility preprocessing
To combine the strategies and produce a decision, we first preprocess the utility data computed from 
the decision trees with two steps. First, because two evade strategies have negative utility values, we 
calculate their difference to the worst-case scenario within a trial and use the difference, which is a 
positive value, as the utility for the two evade strategies:

	﻿‍
U
(

t
)

a = U
(

t
)

a − mint

(
U
(

t
)

a

)
for a ∈

{
evade Blinky, evade Clyde

}
‍�

(6)

Second, because the scale of utility value varies in different strategies, we normalize the utilities 
within each strategy:

	﻿‍
U
(

t
)

a = U
(

t
)

a

max
(

U
(

t
)

a

) for a ∈ A
‍�

(7)

with ‍A = local, global, evade Blinky, evade Clyde, approach, energizer‍.

Softmax policy
With the adjusted and normalized utility values, each strategy a is associated with a set of utility values 

‍Ua,d‍ for four directions ‍d ∈ D‍. We compute the utility for each direction d by simply combining them 
linearly with strategy weights ‍w ∈ R6‍ :

	﻿‍ Q
(

t
)

d =
∑

a∈A waU
(

t
)

a,d .‍� (8)

The final decision is based on a softmax policy:

	﻿‍
π
(
d|w

)
=

exp
(

Q
(

t
)

d

)

∑
d′∈D exp

(
Q

(
t
)

d′

) ,
‍�

(9)

https://doi.org/10.7554/eLife.74500
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where ‍π
(
d|w

)
‍ describes the probability of choosing d given weights w.

Maximum likelihood estimate
We use the MLE approach to estimate monkeys’ strategy weights ‍w‍ in a time window ‍δ‍. Based on 
Pac-Man’s actual moving directions ‍d∗‍ , we compute the likelihood as

	﻿‍
L
(
d∗|w, δ

)
=

∏
t∈δ

exp
(

Q
(

t
)

d∗

)

∑
d′∈D exp

(
Q

(
t
)

d′

)
‍�

(10)

The strategy weights within a time window can be estimated by maximizing the log-likelihood:

	﻿‍
ŵ = argmax

w

∑
t∈δ

(
Q(t)

d∗ − log

(
∑

d′∈D
exp(Q(t)

d′ )

))

‍�
(11)

Dynamic compositional strategy model
The dynamic compositional strategy model estimates the strategy weights using time windows of 
flexible length. We assume that the relative strategy weights are stable for a period. The weights can 
be estimated from the monkeys’ choices during this period. We design a two-pass fitting procedure to 
divide each trial into segments of stable strategies and extract the strategy weights for each segment, 
avoiding potential overfitting caused by segmentations too fine with too many weight parameters 
while still capturing the strategy dynamics. The procedure is as follows:

1.	 We first formulate fine-grained time windows ‍∆ = δ1, δ2, · · · , δk‍ according to the following 
events: Pac-Man direction changes, ghost consumptions, and energizer consumptions. The 
assumption is that the strategy changes only occurred at those events.

2.	 The first-pass fitting is done by using the fine-grained time windows to get the maximum likeli-
hood estimates of the strategy weights as a time series of ‍wδ1 , · · · , wδk‍ .

3.	 We then use a change-point detection algorithm to detect any changes in the strategy weights 
in the time series of ‍wδ1 , · · · , wδk‍ . Specifically, we select a changing-points number ‍K ‍ and 
used a forward dynamic programming algorithm (Truong et al., 2020) to divide the series into 
‍K ‍ segments ‍∆K = δ1, δ2, · · · , δK ‍ by minimizing the quadratic loss 

‍
c
(
∆K

)
=

∑
δ∈∆K

||wδ − −w||22
‍
 . Here, 

‍
−w‍ is the empirical mean of these fine-grained weights corresponding to segment sets, ‍∆K ‍ . 
With ‍∆K ‍ , we construct the coarse-grained time windows by combining the fine-grained time 
windows.

4.	 The second-pass fitting is then done using the coarse-grained time windows ‍∆K ‍ with MLE, and 
the sum of log-likelihood 

‍
L
(
K
)

=
∑

δ ∈ ∆K

logL
(

d∗|wδ , δ
)
‍
 is the loss function.

5.	 We repeat the steps 3 and 4 with hyperparameter ‍K ‍ traversing through 2, 3, ..., 20 to find out 

‍K
∗ = argmax L

(
K
)
‍ . The final fitting results are based on the normalized fitted weights with ‍K∗‍ 

coarse-grained time windows ‍∆K∗‍ .

To ensure that the fitted weights are unique (Buja et al., 1989) in each time window, we combine 
utilities of any strategies that give exactly the same action sequence and reduce multiple strategy 
terms (e.g., local and energizer) to one hybrid strategy (e.g., local + energizer). After MLE fitting, 
we divide the fitted weight for this hybrid strategy equally among the strategies that give the same 
actions in the time segments.

Static strategy model
The static strategy model uses all data to estimate a single set of strategy weights.

LARL model
The model shares the same structure with a standard Q-learning algorithm but uses the monkeys' 
actual joystick movements as the fitting target. To highlight the flatness of the model, we adopt a 
common assumption that the parameterization of the utility function is linear (Sutton and Barto, 
2018) with respect to the seven game features: 

‍
Qθ

(
s, d

)
=
∑

i
θi · xi

(
s, d

)
‍
 . These features include the 

https://doi.org/10.7554/eLife.74500
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local pellet number within five steps in four directions ‍xlocal‍ , the Dijkstra distance to the closest pellet 

‍xclosest‍ , the Dijkstra distance to the closest energizer ‍xe‍ , the global pellet number (distance larger 
than five steps) weighted by their inverse Dijkstra distances to Pac-Man ‍xglobal‍ , the Dijkstra distance 
to Blinky ‍xgB‍ , the Dijkstra distances to Clyde ‍xgC‍, and the Dijkstra distance to the closest scared ghost 

‍xgS‍ . If a feature is not available in some game context (e.g., ‍xgS‍ is not available when ghosts are in 
the normal mode or the dead mode), we denote it to be null. The update rule follows the standard 
temporal-difference learning rule:

	﻿‍ θ′i = θi + α
(
r
(
s, d, s′

)
+ γQθ

(
s′, d′

)
− Qθ

(
s, d

))
· xi

(
s, d

)
‍� (12)

where ‍α‍ is the learning rate, ‍γ‍ is the discount factor, and ‍r
(
s, d, s′

)
‍ is the reward that the agent 

received from state ‍s‍ to ‍s‍ via action ‍d‍. All the reward values are the actual rewards that the monkeys 
received in the game. Compared to a typical TD update rule, the max operation in the utility-to-go 
term ‍r

(
s, d, s′

)
+ γ maxd′ Qθ

(
s′, d′

)
‍ is replaced with the utility under the monkeys’ actual joystick 

movement ‍r
(
s, d, s′

)
+ γ Qθ

(
s′, d′

)
‍ . Feature weights are randomly initialized, and we use the monkey 

behavioral data to update these weights. There are two model hyper-parameters:  learning rate ‍α‍ and 
discount factor ‍γ‍. They are selected through threefold cross-validation. The best hyperparameters are 
‍α = 0.01‍, ‍γ = 0.3‍ for Monkey O and ‍α = 0.025‍, ‍γ = 0.3‍ for Monkey P. The trained feature weights ‍θ‍ are 
shown in Appendix 1—table 7.

Linear perceptron model
We build a linear perceptron as another representative flat descriptive model (without calculating 
utilities and strategies) to describe monkeys’ decision-making based on the same 20 features included 
in the other models. These features include the modes of Blinky and Clyde (two features), Dijkstra 
distances between Blinky and Pac-Man in four directions (four features), Dijkstra distances between 
Clyde and Pac-Man in four directions (four features), Dijkstra distances between the closest energizer 
and Pac-Man in four directions (four features), distances between fruits and Pac-Man in four direc-
tions (four features), the number of pellets within 10 steps of Pac-Man, and the number of pellets left 
in the maze. For unavailable directions, the corresponding feature value is filled with a none value. 
We trained a three-layer perceptron with monkeys’ choice behavior: an input layer for 20 features, 
a hidden layer, and an output layer for four directions. We used scikit-learn (https://scikit-learn.org/). 
The size of the hidden layer was selected from ‍nhidden =‍{16, 32, 64, 128, 256} with the largest average 
prediction accuracy on all data. For Monkey O, the best hidden unit number is 64, and for Monkey 
P, the best hidden unit number is 128. Each model uses Adam for optimization, training batch size = 
128, learning rate = 0.001, regularization parameter = 0.0001, and the activation function ‍f

(
·
)
‍ for the 

hidden layer is an identity function.

Model comparison
We compare four models (static strategy model, dynamic strategy model, LARL, and linear percep-
tron model) in four game contexts shown in Figure 2B, Figure 2—figure supplement 1A and E, and 
Appendix 1—table 4. Fivefold cross-validations are used to evaluate the fitting performance of these 
models with each monkeys’ behavior data.

Strategy heuristic analysis
We label the behavior strategy as vague when the weight difference between the largest and the 
second largest strategies is less than 0.1 (Figure 2D). Otherwise, the labels are based on the strategy 
with the largest weight.

In Figure 3A and B, Figure 3—figure supplement 1A, B, E, and F, we evaluate the strategy 
probability dynamics with respect to two features: local pellet density (the number of pellets within 
10 steps from Pac-Man) and scared ghost distance. We group the behavior data based on these two 
features and calculate the frequency of the relevant strategies in each. Means and standard deviations 
are computed by bootstrapping 10 times with a sample size of 100 for each data point (Figure 3A and 
B, Figure 3—figure supplement 1A, B, E and F).

In Figure 3C and D and Figure 3—figure supplement 1C, D, G and H, monkeys’ moving trajec-
tories with at least four consecutive steps labeled as global strategy are selected. We use Dijkstra’s 

https://doi.org/10.7554/eLife.74500
https://scikit-learn.org/
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algorithm to compute the shortest path from the starting position when the monkey switched to 
global strategy to the ending position when the monkey first reached a pellet. The trajectory with the 
fewest turns is determined by sorting all possible paths between the starting and the ending position.

Eye movement analysis
We label monkeys’ fixation targets based on the distance between the eye position and the relevant 
game objects: Pac-Man, ghosts, pellets, and energizer. When the distances are within one tile (25 
pixel), we add the corresponding target to the label. There can be multiple fixation labels because 
these objects may be close to each other.

In Figure 3E and Figure 3—figure supplement 2A and E, we select strategy periods with more 
than 10 consecutive steps and compute the fixation ratio by dividing the time that the monkeys spent 
looking at an object within each period by the period length. As pellets and energizers do not move 
but Pac-Man and ghosts do, we do not differentiate between fixations and smooth pursuits when 
measuring where the monkeys looked at. We compute the average fixation ratio across the periods 
with the same strategies.

In the pupil dilation analyses in Figure 3F and Figure 3—figure supplement 2B, C, D, F, G, and 
H, we z-score the pupil sizes in each game round. Data points that are three standard deviations away 
from the mean are excluded. We align the pupil size to strategy transitions and calculate the mean 
and the standard error (Figure 3F, solid line and shades). As the control, we select strategy transitions 
that go through the vague strategy and align the data to the center of the vague period to calculate 
the average pupil size and the standard error (Figure 3F, Figure 3—figure supplement 2B and F, 
dashed line and shades). Figure 3—figure supplement 2C, D, G and H are plotted in a similar way 
but only specific strategy transitions.

Compound strategy analysis
Planned attack
We define planned attack and accidental consumption trials according to the strategy labels after the 
energizer consumption: when at least 8 out of the 10 time steps after the energizer consumption are 
labeled as the approach strategy, the trial is defined as planned attack; otherwise, this trial is defined 
as accidental consumption. There are 478 (Monkey O) and 459 (Monkey P) planned attack trials and 
1984 (Monkey O) and 1257 (Monkey P) accidental consumption trials. These trials are aligned to the 
time of energizer consumption in Figure 5A and Figure 5—figure supplement 1A and E.

In Figure  5B and Figure  5—figure supplement 1B and F, the average of Pac-Man-energizer 
distance, energizer-ghost distance, and Pac-Man-ghost distance is computed at the beginning of 
the planned attack and accidental consumption trials. The beginning of each trial is defined as the 
position where Pac-Man started to take the direct shortest route toward the energizer. The average 
fixation ratios in Figure 5C and Figure 5—figure supplement 1C and G are computed from the 
beginning of each planned attack or accidental consumption till when the energizer is eaten.

In some of the accidental consumption trials (Monkey O: 625/31.5%; Monkey P: 477/37.9%), Pac-
Man caught a ghost although the monkeys did not pursue the ghosts immediately after the energizer 
consumption. In contrast, all planned attack trials resulted in Pac-Man catching the ghosts success-
fully. These trials are aligned to the ghost consumption in Figure 5D and Figure 5—figure supple-
ment 1D and H.

Suicide
We define suicide and failed evasion trials based on the strategy labels in the last ten steps before 
Pac-Man’s death: a trial is defined as suicide when all 10 steps are labeled as approach and as failed 
evasion when all steps are labeled as evade.

In Figure 6A and Figure 6—figure supplement 1A and E, the distance between Pac-Man and the 
closest pellet and the distance between Pac-Man reset location and the ghost are computed at the 
time point when the monkeys switched to the approach (suicide) or evade (failed evasion) strategy. 
Also, in Figure 6B and Figure 6—figure supplement 1B and F, the average distance between Pac-
Man and two ghosts is computed in the same condition. The average fixation ratios in Figure 6C and 
Figure 6—figure supplement 1C and G are computed from that time point until Pac-Man’s death. In 

https://doi.org/10.7554/eLife.74500
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Figure 6D and Figure 6—figure supplement 1D and H, the relative pupil sizes are aligned to Pac-
Man’s death.
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Appendix 1

A 

C

B

Appendix 1—figure 1. Training procedure. (A) Stage 1 training mazes. From left to right: (1) Vertical maze. Pac-Man 
started from the middle position, with several pellets in one direction and a static ghost in the other. The monkeys 
learned to move the joystick upward and downward. (2) Horizontal maze. The monkeys learned to move the joystick 
toward left and right. (3) T-maze. Pac-Man started from the vertical arm, and the monkeys learned to move out of it by 
turning left or right. Pellets were placed in one arm and a static ghost in the other. (4) H-maze. Pac-Man started from 
the middle of the maze. There were pellets placed on the way leading to one of the three arms, and a static ghost 
was placed at the crossroad on the opposite side. (B) Stage 2 training mazes. From left to right: (1) Square maze with 
a static ghost. Pac-Man started from one of the four corners, and pellets were placed in two adjacent sides with a 
static ghost placed at the corner connecting the two. (2) Square maze with a moving ghost. Pac-Man started from the 
middle of one of the four sides, and pellets were placed on the opposite side. A ghost moved from one end of the 
pellet side and stopped at the other end. (3) Eight-shaped maze with a moving ghost. Pac-Man stated from one of 
the four corners. The pellets were placed in the middle tunnel. A ghost started from a corner and moved toward the 
pellets. (C) Stage 3 training mazes. From left to right: (1) Square maze with Blinky. Pac-Man started from the middle of 
the bottom side with pellets placed on both sides. Blinky in normal mode started from its home. (2) Square maze with 
a ghost in a permanent scared mode. The scared ghost started from its home. Once caught by Pac-Man, the ghost 
went back to its home. (3) Maze with an energizer and Blinky. An energizer was randomly placed in the maze. Once 
the energizer was eaten, the ghost would be turned into the scared mode. The scared mode lasted until the ghost 
was eaten by Pac-Man. Once the ghost was eaten, it returned to its home immediately and came out again in the 
normal mode. After the monkeys were able to perform the task, we limited the scared mode to 14 s.

https://doi.org/10.7554/eLife.74500
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Appendix 1—figure 2. Basic game statistics of Monkey O (left) and Monkey P (right). (A, G) The number of rounds 
to clear all pellets in each game. Vertical dashed lines denote means. (B, H) The number of games accomplished 
on each day. Vertical dashed lines denote means. (C, I) The average number of rounds to clear a maze plotted 
against the number of games in a session. Vertical lines denote standard deviations. Playing more games in each 
session can slightly improve the monkey’s game performance. (D, J) The average number of rounds during the 
training. (E, K) The time needed to clear a maze. Vertical dashed lines denote means. (E, K) The time needed to 
clear a maze. Vertical dashed lines denote means.

https://doi.org/10.7554/eLife.74500
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evade(B)

evade(C)

approach

energizer

random

1.00 0.55 0.25 0.15 0.30 0.17 0.59

0.55 1.00 0.15 0.05 0.16 0.26 0.49

0.25 0.15 1.00 0.49 0.55 0.01 0.26

0.15 0.05 0.49 1.00 0.37 -0.00 0.18

0.30 0.16 0.55 0.37 1.00 0.01 0.30

0.17 0.26 0.01 -0.00 0.01 1.00 0.15

0.59 0.49 0.26 0.18 0.30 0.15 1.00

Pearson Correlation of Strategy Action Sequence

Appendix 1—figure 3. Strategy basis correlation matrix. We computed the Pearson correlations between the 
action sequences chosen with each basis strategy within each coarse-grained segment determined by the two-
pass fitting procedure. As a control, we computed the correlation between each basis strategy and a random 
strategy, which generates action randomly, as a baseline. Most strategy pairs' correlation was lower than the 
random baseline.

https://doi.org/10.7554/eLife.74500
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Appendix 1—figure 4. Recovering the strategy labels of an artificial agent with the dynamic compositional 
strategy model based on simulated gameplay data. The confusion matrix between the fitted strategy labels and 
the ground-truth strategy labels from an artificial agent is shown. The artificial agent used time-varying strategy 
weights to combine six strategies illustrated in the method. Strategy weights were selected based on two 
monkeys’ choices at the same game context determined by the location and state of Pac-Man, the pellets, the 
energizers, and the ghosts. We used the dynamic compositional strategy model to estimate the strategy labels 
from 2050 rounds of simulated data and produced the confusion matrix. In most cases, the model was able to 
recover the correct strategy (diagonal boxes).

Appendix 1—table 1. Four path types in the maze.

Path type Selection criteria

Straight
Contains two opposite moving 
directions

L-shape
Contains two orthogonal moving 
directions

Fork Contains three moving directions

Cross Contains four moving directions

https://doi.org/10.7554/eLife.74500
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Appendix 1—table 2. Awarded and penalized utilities for each game element in the model.

‍Reward
(
rp
)
‍ ‍Reward

(
re
)
‍ ‍Reward

(
rf
)
‍(1–5) ‍Reward

(
g
)
‍ ‍Penalty

(
g
)
‍

2 4 3, 5, 8, 12, 17 8 -8

Appendix 1—table 3. Special game contexts and corresponding selection criteria.

Context Selection criteria

All stage n.a.

Early game Remaining number of pellets ‍≥ 90%‍ of total (80 for O and 65 for P)

Late game Remaining number of pellets ‍≤ 10%‍ of total (10 for O and 7 for P)

Scared ghost Any scared ghosts within 10 steps away from Pac-Man

Appendix 1—table 4. Comparison of prediction accuracy (± SE) across four models in four game 
contexts for the two monkeys.

Strategy

Context Dynamic Static LARL Perceptron

Overall 0.904 ± 0.006 0.816 ± 0.010 0.669 ± 0.011 0.624 ± 0.010

Early game 0.886 ± 0.0016 0.804 ± 0.025 0.775 ± 0.021 0.582 ± 0.026

Late game 0.898 ± 0.011 0.805 ± 0.019 0.621 ± 0.018 0.599 ± 0.019

Scared ghosts 0.958 ± 0.010 0.728 ± 0.031 0.672 ± 0.025 0.455 ± 0.030

LARL: linear approximate reinforcement learning.

Appendix 1—table 5. Comparison of prediction accuracy (± SE) across four models in four game 
contexts for Monkey O.

Strategy

Context Dynamic Static LARL Perceptron

Overall 0.907 ± 0.008 0.806 ± 0.014 0.659 ± 0.016 0.632 ± 0.013

Early game 0.868 ± 0.0132 0.772 ± 0.054 0.765 ± 0.042 0.548 ± 0.037

Late game 0.901 ± 0.016 0.786 ± 0.027 0.595 ± 0.026 0.598 ± 0.026

Scared ghosts 0.952 ± 0.019 0.729 ± 0.047 0.658 ± 0.046 0.545 ± 0.050

LARL: linear approximate reinforcement learning.

Appendix 1—table 6. Comparison of prediction accuracy (± SE) across four models in four game 
contexts for Monkey P.

Strategy

Context Dynamic Static LARL Perceptron

Overall 0.900 ± 0.009 0.825 ± 0.012 0.679 ± 0.015 0.615 ± 0.014

Early game 0.898 ± 0.017 0.824 ± 0.021 0.781 ± 0.022 0.605 ± 0.035

Late game 0.894 ± 0.016 0.826 ± 0.026 0.653 ± 0.025 0.599 ± 0.028

Scared ghosts 0.962 ± 0.011 0.723 ± 0.041 0.682 ± 0.027 0.456 ± 0.037

LARL: linear approximate reinforcement learning.

https://doi.org/10.7554/eLife.74500
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Appendix 1—table 7. Trained feature weights in the LARL model for Monkey O and Monkey P.

Feature

Monkey ‍xgB‍ ‍xgC‍ ‍xgS‍ ‍xlocal‍ ‍xclosest‍ ‍xglobal‍ ‍xe‍

O 0.3192 0.0049 –0.0758 2.4743 –0.7799 1.0287 –0.9717

P 0.5584 0.0063 –0.0563 2.5802 –0.6324 1.6068 –1.1994

LARL: linear approximate reinforcement learning.

https://doi.org/10.7554/eLife.74500
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Appendix 1—video 1. Example game trials. Monkey O’s moving trajectory, actual and predicted actions, and 
labeled strategies are plotted in these example game trials.

https://​elifesciences.​org/​articles/​74500/​figures#​video1

https://doi.org/10.7554/eLife.74500
https://elifesciences.org/articles/74500/figures#video1
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Appendix 1—video 2. Example game trials. Monkey O’s moving trajectory, actual and predicted actions, and 
labeled strategies are plotted in these example game trials.

https://​elifesciences.​org/​articles/​74500/​figures#​video2
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Appendix 1—video 3. Example game trials. Monkey O’s moving trajectory, actual and predicted actions, and 
labeled strategies are plotted in these example game trials.

https://​elifesciences.​org/​articles/​74500/​figures#​video3
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Appendix 1—video 4. Example game trials. Monkey P’s moving trajectory, actual and predicted actions, and 
labeled strategies are plotted in this example game segment.

https://​elifesciences.​org/​articles/​74500/​figures#​video4
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Appendix 1—video 5. Example game trials. Monkey P’s moving trajectory, actual and predicted actions, and 
labeled strategies are plotted in this example game segment.

https://​elifesciences.​org/​articles/​74500/​figures#​video5
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