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Urothelial bladder cancer (UBC) is a global challenge of public health with limited
therapeutic options. Although the emergence of cancer immunotherapy, most notably
immune checkpoint inhibitors, represents a major breakthrough in the past decade, many
patients still suffer from unsatisfactory clinical outcome. A thorough understanding of the
fundamental cellular and molecular mechanisms responsible for antitumor immunity may
lead to optimized treatment guidelines and new immunotherapeutic strategies. With
technological developments and protocol refinements, single-cell approaches have
become powerful tools that provide unprecedented insights into the kaleidoscopic
tumor microenvironment and intricate cell-cell communications. In this review, we
summarize recent applications of single-cell analysis in characterizing the UBC
multicellular ecosystem, and discuss how to leverage the high-resolution information for
more effective immune-based therapies.

Keywords: urothelial bladder cancer, immunotherapy, immune checkpoints, single-cell analysis,
tumor microenvironment
INTRODUCTION

Urothelial bladder cancer (UBC) accounts for more than half a million new diagnoses and 212,536
deaths annually (1). Approximately 75% of primary UBC cases are non-muscle invasive bladder
cancer (NMIBC), which is typically treated with transurethral resection (TURBT) followed by
intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin (BCG) (2–4). Muscle
invasive bladder cancer (MIBC) is the minor yet more lethal disease modality, for which optimizing
medical care and reducing morbidity after radical cystectomy are major goals (4–6). Clinical
management of UBC patients is undergoing rapid changes as tumor immunotherapies, molecular
targeted agents, and antibody-drug conjugates have increasingly become viable options (7, 8). In
particular, immune checkpoint inhibitors (ICIs) harness patients’ own immune system to
counteract malignant cells and represent a major breakthrough in recent years. Since 2016, up to
five different ICIs targeting programmed cell death protein 1 (PD-1), i.e., pembrolizumab and
nivolumab, or programmed cell death ligand 1 (PD-L1), i.e., atezolizumab, avelumab and
durvalumab, are approved by FDA for the treatment of late-stage urothelial carcinoma. However,
only about 20% of UBC patients show an effective response to anti-PD-1/PD-L1 monotherapy,
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which often fails to translate into long-term survival benefit
compared with standard chemotherapy (9–14).

Extensive studies have been focused on dissecting the cellular
and molecular mechanisms underlying the immune response of
UBC, in order to identify clinical biomarkers to predict ICI
treatment efficacy, and to design novel single or combination
trials of more effective regimens (15–17). Accumulative evidence
suggests that tumor cells and the associated nontumor
constituents in UBC microenvironment interact to modulate
cancer immunogenicity and immunotherapeutic outcomes (18–
20). Therefore, a comprehensive characterization of diverse cell
types and states in the context of UBC oncogenesis and
treatment is of paramount importance. Conventional
methodologies often yield incomplete and mixed signals
attributable to both malignant and nonmalignant cells,
precluding precise evaluation on the biological determinants of
ICI effects (21, 22). The emerging single-cell technologies, along
with blossoming bioinformatic tools, promise to provide a high-
resolution tumor immune landscape and exert a prominent
impact on the field of UBC immunotherapy. By analyzing the
genomic (23), transcriptomic (24–27), and proteomic (28, 29)
features at a high-throughput manner, single-cell approaches
generate new insights into complex systems like UBC. The rich
information allows to infer heterogeneous cellular compositions,
study dynamic cell state transitions, and construct cell-cell
communication networks, which collectively may transform
our understanding of responsiveness and resistance to PD-1/
PD-L1 inhibitors, and fuel rational development of new
immune-modulating therapies and combinations.

In this review, we update the current progress of cancer
immunotherapy in UBC, summarize the applications of
cutting-edge single-cell analysis in decoding the tumor
multicellular ecosystem, and discuss future prospects for using
these high-dimensional multi-faceted data to guide more
effective immune checkpoint therapies.
THE ADVANCES AND CHALLENGES OF
IMMUNOTHERAPY FOR UBC

Conventional Therapies for UBC
UBC can be divided into NMIBC and MIBC according to the
depth of tumor invasion. The two disease entities have unique
pathological characteristics and distinct standard treatment
guidelines (7). NMIBCs refer to neoplasms staged as Ta, T1, or
CIS (carcinoma in situ), and are usually managed with TURBT
followed by a single dose of intravesical chemotherapy to kill
free-floating tumor cells. After the initial TURBT, patients with
intermediate or high likelihood of recurrence will receive
adjuvant intravesical BCG as maintenance therapy to reduce
the risk of progression (30, 31). For patients who have intolerable
adverse effects or fail BCG therapy owing to persistent or
worsening disease, the most effective treatment is radical
cystectomy (32). UBC lesions invading the muscular layer or
perivesical tissues (T2-T4) are categorized as MIBC.
Neoadjuvant platinum-based chemotherapy (NAC) plus
Frontiers in Oncology | www.frontiersin.org 2
radical cystectomy is the standard of care for localized MIBC.
However, only 20% of patients are eligible to receive NAC (33),
and almost half of them still have residual disease after NAC,
leading to poor prognosis (34). Moreover, approximately 4% of
newly diagnosed UBCs present distal metastasis (4), for which
the mainstay of treatment has long been systemic cytotoxic
chemotherapy. It is noteworthy that bladder preservation is
associated with better quality of life and therefore under active
investigations as an attractive alternative in the management of
both NMIBC and MIBC. While the survival improvement
achieved with conventional therapies has reached a plateau
and there are few advances in UBC treatment over the past
decades, the paradigm is being considerably shifted with the
development and application of immune checkpoint
therapeutics (Figure 1).

Immune Checkpoint Inhibitors for UBC
Second-Line Therapy
Second-line ICIs are suitable for UBC patients with advanced
disease who have previously received platinum-based
chemotherapy and subsequently progressed or metastasized. In
the KEYNOTE-045 phase III trial (11), patients receiving
pembrolizumab experienced improved overall survival (OS)
compared to second-line physician’s choice of chemotherapy
(10.3 vs 7.4 months; HR, 0.73 [95% CI, 0.59-0.91]; P = .002).
Based on these results, pembrolizumab was approved as a
second-line treatment for those whose disease progressed
during or after platinum-based chemotherapy. In addition,
avelumab (JAVELIN Solid Tumor) (12) and nivolumab
(CheckMate 275) (13) also gained accelerated FDA approval as
second-line agents, both of which demonstrated clinical benefit
in the advanced or metastatic setting.

Unfortunately, a major setback emerged as some ICIs
originally granted accelerated approval on the basis of phase II
trials did not achieve clinical confirmation in subsequent phase
III studies. For example, despite promising phase II data
(IMvigor210) (14), atezolizumab did not improve OS in a
phase III randomized trial (IMvigor211) compared with
second-line chemotherapy (11.1 vs 10.6 months; HR, 0.87
[95% CI, 0.63-1.21]; P = .41) (35). Likewise, according to the
phase III study (DANUBE), durvalumab failed to prolong OS
(14.4 vs 12.1 months; HR, 0.89 [95% CI, 0.71-1.11]; P = .30) (36).
As a result, these two drugs have been officially withdrawn from
the second-line treatment of bladder cancer (7).
First-Line Therapy
Pembrolizumab and atezolizumab were given accelerated
approval for the first-line treatment of cisplatin-ineligible
advanced or metastatic UBC, following KEYNOTE-052 (37)
and IMvigor210 (14) phase II trials. Nevertheless, treatment
with pembrolizumab and atezolizumab only yielded an
objective response rate (ORR) of 24% and 23%, respectively.
Both studies assessed the ICI efficacy in relation to PD-L1
expression status and found that PD-L1 score alone was not
sufficient to precisely predict the treatment responsiveness.
Other potential predictive biomarkers, such as tumor
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mutational burden (TMB) and relevant gene expression profiling
(GEP), are being investigated without consensus guidelines
in practice.

In contrast, three recent trials with cisplatin-eligible patients
consistently showed that first-line ICI monotherapy was not
superior to chemotherapy in unresectable locally advanced or
metastatic UBC. All these large randomized phase III trials, i.e.,
IMvigor130, KEYNOTE-361, and DANUBE, observed similar
performance of three ICI drugs and platinum-containing
chemotherapy in the front-line setting (36, 38–40). Even
though the chemoimmunotherapy combo showed some
efficacy signals, this result, as it currently stands, appears not to
be practice-changing. The next step is to further explore the
combination of different ICIs, as well as immunotherapy plus
other targeted drugs, in multiple ongoing phase III trials
including CheckMate 901, NILE, LEAP-011 and EV-302
(41–44).

Maintenance Therapy
Javelin Bladder 100 was the first phase III trial to establish the
role of maintenance immunotherapy immediately following
first-line chemotherapy in advanced or metastatic urothelial
carcinoma (45). For patients who did not have disease
progression with standard chemotherapy (4-6 cycles of
gemcitabine plus cisplatin or carboplatin), the addition of
maintenance avelumab to best supportive care significantly
prolonged overall survival (21.4 vs 14.3 months; HR, 0.69 [95%
CI, 0.56-0.86]; P = .001). The evident improvement of patient
Frontiers in Oncology | www.frontiersin.org 3
outcomes has led to the FDA approval of avelumab as
maintenance therapy in this disease setting (46). However,
although no new safety signals were identified, there was a
higher incidence of adverse events in the avelumab group than
in the control group and 11.9% of the patients receiving
maintenance avelumab discontinued the therapy because of
side effects.

Adjuvant Therapy
The role of adjuvant immunotherapy in MIBC patients after
cystectomy remains to be elucidated by prospective clinical
studies. One phase III trial (IMvigor010) did not meet its
primary endpoint of improved disease-free survival in the
atezolizumab group over observation (19.4 vs 16.6 months;
HR, 0.89 [95% CI, 0.74-1.08]; P = .24) (47). On the other hand,
first results from the phase III CheckMate 274 trial supported use
of nivolumab in MIBC after radical surgery (48). Additional
high-quality evidence is required to formulate treatment
guidelines recommending adjuvant ICIs for MIBC patients
with high-risk pathologic features.

Neoadjuvant Therapy
Clinical trials of perioperative immunotherapy are ongoing in
patients with advanced urothelial carcinoma. In PURE-01 phase
II study, 42% of patients treated with pembrolizumab achieved
pathologic complete response (pCR) and up to 54% downstaged
to pT1 or lower disease (49). The ABACUS phase II study
reported a pCR rate of 31% and the majority of patients
FIGURE 1 | Clinical management of UBC with immune checkpoint inhibitors (ICIs). Dark-colored antibodies: currently approved ICIs; circled light-colored antibodies:
in clinical trials. BCG, Bacillus Calmette-Guérin; CIS, carcinoma in situ.
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underwent surgery successfully after neoadjuvant atezolizumab
therapy (50). Encouraged by these results, a series of phase III
trials assessing ICIs as monotherapy or in combination have
been initiated (51). Although neoadjuvant ICIs demonstrate
promising antitumor activity, they also pose new challenges in
clinical decision-making (52). First, the evaluation criteria of
neoadjuvant therapy efficacy are not unified at present. Second,
when the patients meet the standard of surgical treatment, and
whether curative surgery should be averted or delayed if pCR is
achieved are all issues to be considered (4). Third, not all patients
benefit from neoadjuvant ICI treatment and selective biomarkers
are urgently needed. Finally, during the treatment, immune cells
may infiltrate into tumor tissues, causing lesion enlargement and
pseudoprogressive imaging findings. Therefore, distinguishing
between real progression and so-called “tumor flare” is of
necessity (53).

Bladder-Sparing Therapy
As a reasonable alternative to radical cystectomy, trimodal
therapy (TMT) combines maximal TURBT with concomitant
radiosensitizing chemotherapy and external-beam radiotherapy
to devise bladder-sparing strategies in well-selected patients.
Given that ICIs may further augment the immune response
triggered by radiotherapy-induced tumor cell death (5), several
studies are evaluating the potential synergy between
chemoradiation and immunotherapy, including KEYNOTE-
992 and SWOG S1806, two phase III randomized trials
investigating ICIs in bladder-sparing treatment of MIBC (4, 54,
55). Of particular note, the incorporation of clinical biomarkers
is a major consideration to carefully gauge which patients are
optimal candidates for organ-preserving opportunities and if
salvage cystectomy is needed during the course of less
aggressive treatment.
BCG-Refractory NMIBC
For patients having BCG-refractory NMIBC with CIS who are
unable or unwilling to undergo cystectomy, pembrolizumab was
recently approved on the basis of results from KEYNOTE-057
phase II study (56, 57). The complete response (CR) rate was
40.6%, and nearly half of responding patients experienced a CR
lasting at least 12 months. During the course of pembrolizumab
treatment, no patient’s disease progressed to muscle-invasive or
metastatic bladder cancer. Additional trials evaluating the use of
immunotherapy in NMIBC including the phase III KEYNOTE-
676 are underway (58).
Mechanism of Action for PD-1/PD-L1
Checkpoint Blockade
To fulfill a robust and durable clinical benefit of tumor
immunotherapy, immense efforts have been taken to
comprehensively understand the mechanism of action for PD-
1/PD-L1 checkpoint blockade (20). Under physiological
conditions, to avoid damaging autologous cells during
prolonged immune response, the activation of T lymphocytes
is strictly counterbalanced by inhibitory signals, such as immune
Frontiers in Oncology | www.frontiersin.org 4
checkpoint pathways, resulting in hyporesponsive adaptation
while limiting detrimental immunopathology. As a particularly
important regulatory axis, PD-L1 binds to the PD-1 receptor and
functions as the brake of immune cells by suppressing
lymphocyte proliferation and cytokine secretion (59, 60). In
the process of neoplastic initiation and development,
accumulating somatic aberrations give rise to tumor-specific
neoantigens, which can be recognized by host defense system
as nonself (60, 61). To elicit effective immune responses, a serial
of stepwise events, termed the ‘cancer-immunity cycle’
(Figure 2), must proceed and expand iteratively (62). In brief,
the release of neoantigens (step 1) and their presentation by
dendritic cells (step 2), is followed by effector T cell priming and
activation (step 3), trafficking to (step 4) and infiltrating the
tumor bed (step 5), consequently resulting in recognition (step 6)
and killing of target cells (step 7) to deliver additional tumor-
associated antigens (step 1 again). This cyclic process leads to an
accumulation of immune-stimulatory factors that amplify and
broaden T cell responses. However, the generation of immunity
to cancer is not always optimal, and can be halted by immune
regulatory feedback mechanisms. For example, tumor cells often
abnormally express PD-L1 to engage PD-1 and resist immune
attack. Currently approved ICIs in UBC target the PD-1/PD-L1
interaction and reinvigorate the cytotoxic capacity of T
lymphocytes against malignant cells (63). Nonetheless, other
modes of immunosuppression may exist to impair the intact
cancer-immunity cycle and tumor responsiveness to ICI
treatment (20, 64–66). At present, immunohistochemistry
staining, lymphocyte cell surface protein labeling, and bulk-
level high-throughput sequencing, are commonly used to
analyze the relevant immune characteristics. However, these
approaches yield incomplete or mixed signals from the
multicellular microenvironment, which largely ignore
biological complexity and intratumoral heterogeneity. With
recent advances in single-cell technologies, comprehensive
profiling of tumor immune components and their functional
properties would facilitate the characterization of diverse cell
types and states, shed light on the inherent immune biology
related to bladder cancer, and provide unique and nuanced
insights into primary or acquired resistance to anticancer
immunotherapies (67).
APPLYING SINGLE-CELL TECHNOLOGIES
TO UBC

Samples for Consideration
Generally, FFPE (formalin-fixed and paraffin-embedded) or
snap-frozen clinical samples, though readily available, can only
be used for single-nucleus sequencing (68). The method may
work well for DNA but not RNA detection, because the profiling
of nuclear RNA ignores its cytoplasmic counterpart and cannot
represent the whole picture of cellular transcriptome (69).
Therefore, single-cell workflows based on viable cell suspension
remain the preferred approach, despite technical challenges
associated with immediate collection and processing of fresh
May 2021 | Volume 11 | Article 696716
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tissues (68). In addition, longitudinal observation of cell types
and states during a treatment course is of vast importance but
requires repeated tumor biopsies, which is usually unfeasible due
to ethical issues. To circumvent this limitation, murine bladder
cancer induced by continuous exposure to carcinogenic
chemicals serves as an alternative system. Genetically
engineered mouse model (GEMM) or patient-derived
xenograft (PDX) in immunodeficient animals can also be
exploited (18, 70, 71). Of note, co-engraftment of human
hematopoietic stem cells partly recapitulates the human tumor
Frontiers in Oncology | www.frontiersin.org 5
immune microenvironment and may be helpful to enable
interactions between PDX and immune cells, allowing for
experimental evaluation of immunotherapy (71). Moreover,
patient-derived organoid (PDO) provides an ex vivo platform
for studying tumor evolution and drug response (72, 73). Of
special note, the urine from UBC patients, compared to
peripheral blood, is a faithful and rich source of tumor-derived
materials including DNA, protein, and exfoliated cells (74–77).
Thus, single-cell analysis of urinary lymphocytes can be
potentially employed as a noninvasive strategy to monitor
FIGURE 2 | The cancer-immunity cycle in UBC. The cancer-immunity cycle is based on the illustration by Chen and Mellman (62). The cancer-immunity cycle can be
divided into seven major steps, starting with the release of neoantigens from the cancer cells (step 1) and ending with the killing of cancer cells (step 7). DC, dendritic cell.
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tumor immune microenvironment at the cellular level. Indeed,
there is evidence that the number of urinary lymphocytes is
significantly increased following intravesical BCG instillation in
patients with NMIBC (78). In MIBC, urine-derived and tumor-
infiltrating lymphocytes closely resemble each other in immune
checkpoint landscape and T cell receptor repertoire (75).
Therefore, urinary exfoliated immune cells represent a
dynamic liquid biopsy for UBC that may be subjected to
single-cell interrogation.
Single-Cell Analysis of UBC
Single-Cell RNA Sequencing
To date, single-cell RNA sequencing (scRNA-seq) is the most
mature single-cell genomic approach and has a wide spectrum of
novel analytic tools to facilitate data interpretation (79–83). The
major application of scRNA-seq is to systematically characterize
heterogeneous cell types and molecular states in both healthy
tissues and malignant conditions. For instance, a recent study
created a single-cell transcriptomic map of human and mouse
bladders, unveiling both conservative and heterogeneous aspects
of bladder evolution (24). A subsequent study generated a single-
cell atlas of primary bladder carcinoma and uncovered the
protumor function of inflammatory cancer-associated
fibroblasts (25). Sfakianos et al. identified lineage plasticity of
human and mouse bladder cancer at single-cell resolution, which
may contribute to innate tumor heterogeneity (26). In addition,
comparative scRNA-seq analysis between pre- and post-
tipifarnib MIBC PDX revealed an increased population of
dormant drug-refractory tumor cells and simultaneous
remodeling of tumor-supporting microenvironment (27).

Single-Cell T Cell Receptor Sequencing
T cells play a vital role in adaptive immunity and represent the
major target of antitumor immunotherapy (84). T cell receptor
(TCR) locates on the surface of T cells and recognizes antigenic
peptides presented by major histocompatibility complex (MHC)
molecules. Genetic recombination creates a diverse TCR
repertoire during ontogeny or disease. The majority of TCRs
are comprised of a and b chains (85), which can be reconstructed
by single-cell T cell receptor sequencing (scTCR-seq) to elucidate
T cell clones involved in immune response (86). Furthermore,
the combined analysis of scRNA-seq and paired scTCR-seq may
link the cellular phenotypes with specific clonotypes of T
lymphocytes. Using this approach, Oh et al. demonstrated that
CD4+ T cells in bladder cancer exhibit multiple distinct tumor-
specific states of regulatory T cells and cytotoxic CD4+ T cells,
which were clonally expanded (87, 88). In contrast, the states
and repertoires of CD8+ T cells, which were traditionally
recognized as the main killers in immuno-oncology (89), were
indistinguishable in bladder tumors compared with non-
malignant tissues.

Single-Cell DNA Sequencing
According to the genomic coverage, single-cell DNA sequencing
(scDNA-seq) mainly includes whole-genome scDNA-seq,
Frontiers in Oncology | www.frontiersin.org 6
whole-exome scDNA-seq, and panel scDNA-seq detecting a
few genes of interest. Whole-genome or whole-exome scDNA-
seq covers large genomic regions but is limited by sequencing
depth, while panel scDNA-seq focuses on a narrow list of target
genes but can achieve higher throughput and sequencing depth
(90). Despite in its infancy, scDNA-seq has been applied to
identify driver mutations and investigate cancer evolution. A
notable example was that Yang et al. demonstrated the co-
mutation of ARID1A, GPRC5A, and MLL2 were the major self-
renewal driver of human bladder cancer stem cells. Through
phylogenetic analysis, the study also suggested the biclonal origin
of bladder cancer stem cells from both bladder cancer non-stem
cells and bladder epithelial stem cells (23).

CyTOF Mass Cytometry
Cytometry by time of flight (CyTOF) adopts the single-cell
format of flow cytometry technique for multiparameter
detection of protein expression using the precision of mass
spectrometry (91). By employing a pre-selected panel of metal-
labeled antibodies, dozens of surface or intracellular markers can
be quantified at the same time to infer the potential identity and
functionality of target cells. In a study to evaluate NMIBC
response to BCG treatment, CyTOF was employed to observe
a decreasing trend of T cell subsets in peripheral blood and
corresponding tissue recruitment of immune cells in treated
tumors (28), thus supporting the rationale of combining
immunotherapy to overcome BCG resistance in NMIBC
patients. Likewise, Megan et al., via CyTOF and RNA-seq
analyses, uncovered higher CD8+ T cell populations in murine
bladder cancer upon DDR2 depletion and anti-PD-1 treatment,
implying that DDR2 inhibition might fuel tumor response to
ICIs (29).
Emerging Single-Cell Technologies
As an evolving field, numerous novel single-cell technologies are
in rapid development to extract additional layers of biological
information. For example, surface protein levels can also be
measured in single cells by oligonucleotide-barcoded antibodies,
as illustrated by various methods including CITE-seq and REAP-
seq (92, 93). Another relevant knowledge tier is the cellular
epigenetic state, and recently described scATAC-seq and
scDNase-seq, among others, enable high-throughput
examination of chromatin accessibility at single-cell resolution
(94). One key attribute of tumor ecosystem is the spatial
distribution of cellular niches which directly determines
physical cell-cell interactions and intercellular signaling
communications (95). Specialized tools integrating spatially
resolved transcriptomics and advanced imaging infrastructure
characterize gene expression profiles within a broader tissue
context. Additionally, single-cell metabolomics is being added
to the toolbox for metabolic deconvolution but currently is too
premature to allow large-scale applications (96). We envision
that future studies in UBC leveraging these rising single-cell
technologies hold a great deal of promise to enrich our
understanding of disease biology and accelerate the discovery
of new therapeutic strategies.
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POTENTIAL INSIGHTS FROM SINGLE-
CELL ANALYSIS

Tumor Multicellular Ecosystem
It is increasingly evident that various cell populations residing at
neoplastic lesions and the interplay of these cellular
compartments strongly affect cancer progression and response
to immunotherapeutics. Recently, single-cell studies have
provided in-depth insights into the composition and
architecture of tumor multicellular ecosystem in UBC. By
profiling the transcriptome of 52,721 single cells from bladder
urothelial carcinoma or peritumor mucosa samples, Chen et al.
discovered seven annotated cell types including epithelial cells,
endothelial cells, fibroblasts, B cells, myeloid cells, T cells, and
mast cells (25). Despite the presence of adaptive lymphocytes,
cancer cells exhibited intrinsic ability to evade immune
surveillance by expressing lower levels of MHC-II molecules
than normal epithelial cells. In addition to diverse clusters of
myeloid cells, two distinct fibroblast subtypes were identified in
UBC: inflammatory fibroblasts and myofibroblasts with the
former expressing various cytokines and displaying pro-
proliferative effects. It is especially noteworthy that a number
of important observations in other cancers are recapitulated in
UBC. First, unrelated human malignancies surprisingly harbour
analogous cell types (97). Second, tumor cells consistently show a
patient-specific expression pattern, whereas immune and
stromal infiltrates are more homogenous across different
subjects (98–101). Third, both innate and adaptive immunity
are involved in cancer pathogenesis (102, 103). Fourth,
individual cellular components crosstalk with each other and
form intricate interaction networks (104). Collectively, the
single-cell transcriptomic atlas reveals cellular and molecular
complexity of the UBC ecosystem, and highlights ongoing
intratumoral immune suppression as a potential therapeutically
actionable abnormality.

T Cell Subsets and States in Cancer
The T cell infiltrates in human cancer largely determine natural
disease behavior and also the probability of immunotherapeutic
response. It has long been known that intratumoral T
lymphocytes span across a spectrum of subsets and states, with
the simplest distinction of CD4+ and CD8+ T cell populations
(84). While the evidence for a predominant function of CD8+ T
cells in tumor control is compelling, the role of CD4+ T cells used
to be conceptualized as indirect by either supporting CD8+ T
cell-mediated tumor killing via a helper phenotype or restricting
such processes via a regulatory phenotype (105). Oh et al. applied
scRNA-seq and paired scTCR-seq to characterize the immune
milieu of 7 MIBC patients (87). Reminiscent of heterogeneous T
cell infiltrates defined in previous studies (106–108), a diverse
range of T cell subtypes also existed in UBC, including both
CD4+ and CD8+ T cells that could be further clustered into
different functional subgroups. However, in contrast to the
canonical view, two cytotoxic CD4+ T cell populations were
unexpectedly identified in bladder cancer that correlated with a
significantly increased likelihood of clinical response to PD-L1
inhibition (87). Importantly, cytotoxic CD4+ T Cells were
Frontiers in Oncology | www.frontiersin.org 7
clonally expanded in tumor lesions and possessed lytic capacity
against autologous tumor cells in an MHC class II-dependent
fashion. Although there are a number of caveats about this
elegant work, e.g., mixed analysis of both treatment-naive
and chemotherapy or immunotherapy-treated samples, the
findings have substantial implications by pinpointing the
underappreciated potential of cytotoxic CD4+ T cells in UBC.
Considering that ICIs ultimately rely on the activity of a
pre-existing or newly induced tissue-resident T cell pool to
achieve tumor elimination, the identification of cytotoxic CD4+

T cells therefore redefines our thinking regarding UBC
immunotherapies and further raises several crucial questions,
such as whether these cells are associated with an ongoing
tumor-specific immune response and how the current
checkpoint inhibitors would impact them.
Tumor Cell Heterogeneity
and Plasticity
As aforementioned, single-cell analyses highlight the divergent
nature of cancer cells underlying the prevalent heterogeneity
between and within individual tumors. This observation is
perhaps not surprising given that each malignant cell is
featured by a unique evolutionary trajectory and inherent
biological stochasticity (109–111). Despite the diversity, specific
transcriptional states may still be shared across a subpopulation
of neoplastic cells or cancer patients. In the case of UBC, a string
of studies on bulk gene expression profiles have identified
distinct molecular subtypes in MIBC, including luminal-
papillary, luminal, basal-squamous, luminal-infiltrated, and
neuronal (16). Such a classification again attests to the
differential transcriptome-wide programs operating in separate
tumor cells and can be useful to stratify patients for prognosis or
treatment. Remarkably, several reports suggest that responses to
chemotherapy and immunotherapy are enriched in certain
MIBC subtypes (112). Recent scRNA-seq of human and
murine bladder cancers, however, revealed a hidden layer of
complexity by demonstrating marked cell-autonomous
heterogeneity and multidirectional plasticity of the urothelial
lineage (26). Therefore, although the initial predominant
molecular subtypes may substantially dictate UBC progression
kinetics and therapeutic response, they also undergo dynamic
changes during tumor growth or clinical treatment, e.g.,
chemotherapy (113) and immunotherapy. In turn, this subtype
transition will presumably engender functional consequences,
which should be discreetly considered in the use of immune-
modulating agents.
OUTSTANDING QUESTIONS AND FUTURE
PROSPECTS

Novel applications of single-cell technologies in characterizing
UBC are currently limited in comparison to the rapid progress
that has been seen in other human malignancies (114–117). As
a result, our understanding of bladder cancer cell hierarchy and
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tumor microenvironment is not complete, and more studies
will be required to better delineate the abundance, localization,
and functional orientation of each cellular component. For
instance, the innate immune landscape like myeloid cell
populations in UBC remains to be fully elucidated by single-
cell analysis. Likewise, the makeup of antigen presenting cells as
a crucial factor for efficient immune activation has been
insufficiently described. Ideally, all the information should be
decoded in a spatiotemporal context (19). As a relevant
example, tertiary lymphoid structures (TLS) in human cancer,
which are highly organized cellular aggregates resembling
lymph nodes, have recently emerged as key sites for the
generation of antitumor immunity with a prominent impact
on disease outcome and immunotherapeutic response (118–
121). We anticipate that single-cell analysis will soon become
essential to resolve TLS composition, location, density and
degree of maturation during UBC tumorigenesis and treatment.
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The success of cancer immunotherapy has prompted intensified
interest in defining the specific effector immune cells and
fundamental mechanisms responsible for anti-tumor immunity.
In addition, certain oncogenic pathways and transcriptional
programs in malignant cells are associated with intrinsic
sensitivity or resistance to immunotherapeutics (122, 123). These
cumulative findings hold enormous promise to facilitate biomarker
identification that can predict or monitor which patients would
benefit from immunotherapy. The treatment stratification and
surveillance are of paramount importance for UBC as ICI
therapy is being aggressively advanced into the neoadjuvant and
bladder-sparing settings, where inappropriate regimens could be
potentially detrimental. Unfortunately, individual parameters have
been proved unreliable and such a model has to take different
elements that affect tumor-host interactions into account (17,
124). Thus, taking advantage of cutting-edge approaches such
as single-cell sequencing and mass cytometry, which enable
FIGURE 3 | Workflow and applications for single-cell analysis in the immunotherapy of UBC. After sampling before and after ICI monotherapy or combination
therapy from UBC patients or alternative experimental models, single-cell suspensions with myriad cell types and states are preprocessed for downstream analysis.
The longitudinal and noninvasive single-cell profiling on liquid biopsies from peripheral circulation or urine may aid dynamic monitoring of UBC patients (left panel). A
variety of single-cell technologies enable comprehensive assessment of tumor, immune, and stromal cells to yield high-dimensional information (middle panel).
Findings from the single-cell approaches promise to allow a detailed dissection of the mechanisms underlying immunotherapeutic response and resistance, and
facilitate designing rational single or combination immune-based therapies (right panel). GEMM, genetically engineered mouse model; PDX, patient-derived xenograft;
PDO, patient-derived organoid; scRNA-seq, single-cell RNA sequencing; scTCR-seq, single-cell T cell receptor sequencing; scDNA-seq, single-cell DNA sequencing;
CyTOF, cytometry by time of flight; NK, natural killer; TAMs, tumor-associated macrophages; RBCs, red blood cells.
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high-dimensional molecular analyses during the whole course
of ICI treatment, will be valuable to simultaneously probe a
wide range of immune subsets and regulators, and systemically
nominate biomarker candidates for further detailed investigations.

Beyond anti-PD-1/PD-L1 monotherapy, a breadth of basic
research and clinical trials are ongoing to explore the strategy of
combined therapy in UBC treatment, such as different ICI pairs
(e.g., nivolumab and ipilimumab), immunotherapy and targeted
small molecules (e.g., erdafitinib) or antibody-drug conjugates
(e.g., enfortumab vedotin and sacituzumab govitecan) (125–127).
At the moment, many drug-development pipelines evaluate the
efficacy of combo agents on the basis of a simple try-and-see
approach. There are continued concerns about whether adverse
effects will be additive and whether the antitumor response will
be improved. We argue that data-driven design of synergistic
drug combinations may most likely make a breakthrough for
maximizing patient benefit from these transformative
therapies, based on a comprehensive understanding of the
bladder cancer ecosystem at the single-cell level.

Ultimately, the multiparametric data derived from single-cell
technologies ought to assist UBC patient care and inform
treatment recommendations. Achieving the ambitious goal will
need joint efforts to develop standard operating procedures for
benchmarking and implementing single-cell workflows that
meet ethical, regulatory, and temporal requirements. With all
foreseeable challenges, this venture would be imperative to
transform bladder cancer management and necessitate very
close collaboration among physicians, basic researchers and
translational scientists. Recently launched large-scale
initiatives, including the Human Tumor Atlas Network
(HTAN) and the Tumor Profiler (TuPro) study, are poised
to accelerate the standardization of key protocols, best-
practice guidelines, quality control solutions, metadata
schemata, and analytic pipelines (128, 129). These projects
may lead to refined diagnostics in precision oncology and
pave the way for the translation of single-cell profiling into
clinical decision-making.
CONCLUSIONS

The recent decade has witnessed unprecedented advances in the
clinical management of urothelial carcinoma with the advent of
various ICIs. The ever-expanding applicable range of ICI
therapies in UBC highlights the significant potential of
immune-targeted agents and advocates a more thorough
Frontiers in Oncology | www.frontiersin.org 9
interrogation of their mechanistic underpinnings. Despite
remaining questions, a number of studies using high-resolution
single-cell techniques begin to reveal the identity and state of
multiple cell types, the variety and uniqueness of tumor-
infiltrating T lymphocytes, as well as the heterogeneity and
plasticity of bladder cancer cells. This wealth of information
has allowed a better understanding of dysfunctional antitumor
immunity in UBC and variable responses to immunotherapy
across patients (Figure 3). However, single-cell methods are still
nascent, and over the coming years, an emerging repertoire of
multiplexed assays with spatial readout will further enhance their
capabilities. In addition, single-cell approaches coupled with
noninvasive blood- or urine-based liquid biopsies are
instrumental to dynamically evaluate therapeutic efficacy and
monitor disease relapse. With these innovative toolkits available,
future work should focus on establishing a molecular taxonomy
for each cell composition, defining the cellular geography within
neoplastic lesions, unravelling passive or adaptive changes upon
immune-modulating regimens, and deploying single-cell
analysis in prospective trials and clinical practice. The renewed
insights are likely to offer novel opportunities for developing
companion biomarkers to assign UBC patients into the most
effective treatment modalities, and designing rational single or
combination immunotherapies with improved response rate and
prolonged overall survival.
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