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1  | INTRODUC TION

The “epigenetic clock” based on DNA methylation (DNAm) has 
emerged as a widely used biomarker of aging that surpasses telomere 

length assays in its accuracy and utility (Breitling et al., 2016; Marioni 
et al., 2018). Often referred to as DNAm age (DNAmAge), the CpG-
based estimator of biological age comes in a few different versions for 
both humans and mice (Hannum et al., 2013; Horvath, 2013; Levine 
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Abstract
DNA methylation (DNAm) is shaped by genetic and environmental factors and mod-
ulated by aging. Here, we examine interrelations between epigenetic aging, body 
weight (BW), and life span in 12 isogenic strains from the BXD family of mice that ex-
hibit over twofold variation in longevity. Genome-wide DNAm was assayed in 70 liver 
specimens from predominantly female cases, 6–25 months old, that were maintained 
on normal chow or high-fat diet (HFD). We defined subsets of CpG regions associ-
ated with age, BW at young adulthood, and strain-by-diet-dependent life span. These 
age-associated differentially methylated CpG regions (age-DMRs) featured distinct 
genomic characteristics, with DNAm gains over time occurring in sites such as pro-
moters and exons that have high CpG density and low average methylation. CpG 
regions associated with BW were enriched in introns, tended to have lower meth-
ylation in mice with higher BW, and were inversely correlated with gene expression 
(i.e., higher mRNA levels in mice with higher BW). CpG regions associated with life 
span were linked to genes involved in life span modulation, including the telomerase 
reverse transcriptase gene, Tert, which had both lower methylation and higher ex-
pression in long-lived strains. An epigenetic clock defined from age-DMRs revealed 
accelerated aging in mice belonging to strains with shorter life spans. Both higher BW 
and the HFD were associated with accelerated epigenetic aging. Our results highlight 
the age-accelerating effect of heavier BW. Furthermore, we demonstrate that the 
measure of epigenetic aging derived from age-DMRs can predict genotype and diet-
induced differences in life span among female BXD members.
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et al., 2018; Petkovich et al., 2017; Stubbs et al., 2017; Thompson 
et al., 2018; Wang et al., 2017). All these clocks share a common 
feature—they rely on the methylation status of preselected subsets 
of CpGs that are each assigned weights and are used collectively 
to estimate age. A critical question has been: are these DNAmAge 
clocks detecting changes that are purely a function of time, and 
therefore, correlates of chronological age? Or are they providing a 
measure of the intrinsic pace of biological aging that can be related 
to health, fitness, and life expectancy? Evidence from human epide-
miological studies indicates that some versions of the clock perform 
well at predicting life expectancy, and a younger DNAmAge relative 
to chronological age implies decelerated biological aging, and is as-
sociated with a lower risk of disease and increased longevity (Chen 
et al., 2016; Levine et al., 2018; Lu et al., 2019; Marioni, Shah, McRae, 
Chen, et al., 2015; Marioni, Shah, McRae, Ritchie, et al., 2015).

In mice, life span extending interventions such as calorie restric-
tion (CR) and treatment with rapamycin, or strong genetic muta-
tions that drastically reduce body weight (e.g., Ames and Snell dwarf 
mice), have been shown to significantly decelerate the epigenetic 
clock (Cole et al., 2017; Petkovich et al., 2017; Sziraki, Tyshkovskiy, 
& Gladyshev, 2018; Thompson et al., 2018; Wang et al., 2017). 
However, to date, most DNAmAge estimations in mice have been 
modeled on the canonical C57BL/6J (B6) background strain (Cole 
et al., 2017; Petkovich et al., 2017; Stubbs et al., 2017; Thompson 
et al., 2018; Wang et al., 2017). Similar to interindividual variation in 
humans, aging trajectories vary considerably among different mouse 
strains, and common DNA variants contribute to the pace of nor-
mal aging and longevity (Yuan et al., 2009). Whether the differential 
rates of epigenetic aging can discern normative life span differences 
between mouse strains remains an open question. Furthermore, if 
body weight reduction due to CR or dwarfing mutations can slow 
down the clock, then another question is: can subtle differences in 
normal body weight also have an impact on DNAmAge?

The BXD recombinant inbred strains are the most deeply pheno-
typed mouse genetic reference panel, and have a long history in aging 
and longevity research (De Haan & Van Zant, 1999; Gelman, Watson, 
Bronson, & Yunis, 1988; Haan, Gelman, Watson, Yunis, & Van Zant, 
1998). Notably, the different BXD sibling strains exhibit wide varia-
tion in life expectancy. Some strains have a mean life expectancy of 
less than 15 months (e.g., BXD13, BXD5), while others typically live 
well over two or even 3 years (e.g., BXD19, BXD65) (Gelman et al., 
1988; Haan et al., 1998; Lang et al., 2010; Roy et al., 2019). Longevity 
data in the BXDs have been collected since the 1980s. Life span data 
continue to be collected from an enlarged family that now consists 
of 150 sets of isogenic siblings (Ashbrook et al., 2019; Gelman et al., 
1988; Roy et al., 2019). The BXDs were derived by crossing two pa-
rental strains, B6 and DBA/2J (D2), and then inbreeding the progeny 
(Ashbrook et al., 2019). Genomes of the BXDs therefore represent 
random recombinations of the B6 and D2 genomes, and each strain 
is a unique mosaic of homozygous B6 or D2 genotypes. The D2 
strain is considered to have a more accelerated aging profile, and 
has consistently shorter life span than B6 (Yuan, Peters, & Paigen, 
2011; Yuan et al., 2009). Other age-associated parameters include 

rapid thymic involution (Hsu, Li, Zhang, & Mountz, 2005), quicker 
replicative senescence of hematopoietic stem cells (De Haan & Van 
Zant, 1999), and increased tail tendon breakage in D2 compared to 
B6 (Sloane et al., 2011). Due to random assortment of gene variants, 
the progeny BXDs have a greater range of variation in life span and 
aging traits (De Haan & Van Zant, 1999; Roy et al., 2019), and provide 
a unique resource with which to dissect the interrelations between 
epigenetic aging and longevity.

Here, we leveraged the extensive longevity data generated for 
the BXDs (Roy et al., 2019) to evaluate associations between body 
weight, epigenetic aging, and life span. We used affinity-capture 
enrichment with the methyl-CpG-binding domain protein (MBD), 
followed by deep sequencing (MBD-seq) to profile the aging liver 
methylome of 12 BXD strains (Aberg, Chan, Xie, Shabalin, & van den 
Oord, 2018). To examine the impact of a common metabolic stressor, 
we also quantified the methylome on a subset of BXD cases main-
tained on a high-fat diet (HFD), a diet that decreased life span by as 
much as 12% (Roy et al., 2019). Our goal was to chart differentially 
methylated regions related to aging, and to strain differences in body 
weight and life span, and to examine correlation with gene expres-
sion. We computed a simple DNAm clock using the age-dependent 
CpG regions, and this revealed strain differences in rates of epigene-
tic aging. Overall, our results show that both higher body weight and 
HFD can have an accelerating effect on the epigenetic age, and this 
can then be related to life span.

2  | RESULTS

2.1 | BXD strain selection and life span and body 
weight characteristics

The present work is based on data collected from two separate co-
horts of BXD mice. Life span data were collected from a group of 
female BXDs, referred to as the “longevity cohort,” that were kept 
either on ad libitum standard chow (control diet or CD) or on HFD, 
and allowed to age until mortality. The BXD strains exhibited a wide 
range in natural life span, and HFD reduced overall longevity. Details 
on this longevity cohort are reported in Roy et al. (2019). Based on the 
life span data, 12 members of the BXD panel (including F1 hybrids) 
were selected for DNAm assays as they were representative of the 
wide variation in life span. This included related sub-strains with dif-
ferences in life span (BXD65/BXD65b, and BXD73/BXD73b; Table 1 
and Figure 1a). Figure 1a plots the ages at natural death for mice 
in the longevity cohort, and sample sizes for life span determination 
for these selected strains range from 6 to 22. For five of these, we 
included mice maintained on HFD as these strains showed signifi-
cant reduction in life span (specifically, BXD65 on HFD; Figure 1a) or 
were related sub-strains with variable response to HFD (e.g., BXD48 
had slight life span reduction, but BXD48a appeared unaffected by 
HFD; Table 1). Based on life span averages, each strain-by-diet group 
was classified as short-lived (mean life span <600  days), medium-
lived (600–750 days), and long-lived (>800 days; no strain on HFD 
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were in this group). Note that a strain classified as long-lived on CD 
may be classified as short-lived on HFD (Table 1).

A parallel, identically treated and strain-matched group, the 
“biospecimen cohort,” was maintained for tissue collection at differ-
ent ages, and liver samples were obtained from this. We selected 
70 liver specimens for the corresponding 17 strain-by-diet groups. 
These were chosen so that distribution of age at time of tissue col-
lection was closely matched across the life span groups (Figure 1b; 
individual-level sample information in Table S1). We note that aside 
from three male cases for BXD102, B6D2F1, and D2B6F1 (Table S1), 
all liver specimens were from females. Mice were initially weighed at 
young adulthood (mean age of 134 ± 81 days), and at this stage, age 
was a significant correlate of weight (Figure 1c). We refer to this as 
baseline body weight or BW0. The mice assigned to HFD were intro-
duced to the diet at the time of initial weighing, with the exception of 
four that were introduced 90 days later (see Figure 1d). Mice spent 
73–614 days on HFD (Table S1) before final weighing on the day of 
sample collection, by which time, the group on HFD had become 
significantly heavier to the matched strains on CD (HFD = 41 ± 12 g 
vs. CD  =  26  ±  6  g, p  <  0.0001; n  =  34). For the HFD group, the 
final weight was uncorrelated with the number of days on HFD. The 
weight of the liver on HFD was slightly heavier but the effect was 
not statistically significant, likely due to the modest sample size for 

HFD (HFD = 1.29 ± 0.23 g vs. CD = 1.22 ± 0.23 g; p = 0.37, n = 34). 
There was significant strain variation in BW0 even after adjusting 
for age, and the long-lived F1s in particular, had higher body weights, 
and this hybrid vigor was apparent with or without the male cases 
(Figure 1e). The final weight of mice also showed significant strain 
variation (Figure 1e). Liver weight appeared fairly consistent across 
strains. By final weighing, age was no longer a significant correlate 
of body weight (r  =  0.01) or liver weight (r  =  0.12). Instead, BW0 
remained a significant predictor of final weight in both the CD and 
HFD mice (Figure 1f). We performed a multivariable regression to 
evaluate the degree to which the final body weight was predicted by 
BW0, diet, strain, and chronological age. This showed that the stron-
gest predictors of final weight were diet (F(1,55) = 61, p = <0.0001), 
followed by baseline weight (F(1,55)  =  7, p  =  0.009), and strain 
(F(11,55) = 3, p = 0.0095), but not the final age of mice.

We next examined correlations between the individual weight 
measures from the biospecimen cohort and strain-level life span from 
the longevity cohort. The F1s exhibited vigor in both longevity and 
body weight and including the F1s resulted in no significant correla-
tion between weight and life span. After excluding the F1s, both 
BW0 and final weight showed inverse correlations with all the strain-
level indicators of life span (mean, median, maximum, and minimum 
life span) (Table S2). When separated by diet group, the correlation 

TA B L E  1  Characteristics of selected strains from the BXD family.

Strain/line
Mean life span 
(days)a 

Longevity trait

Dietc 

Biospecimen

Median life span 
(days)a  Range (days)a 

Life span 
Groupb  Nc 

Age range 
(days)c 

B6D2F1 933 ± 86 896 856–1080 Long CD 5d  216–726

BXD102 861 ± 222 891 514–1131 Long CD 5d  183–714

BXD40 585 ± 239 577 172–949 Short CD 8 284–719

BXD48 695 ± 124 684 516–948 Med CD 3 188–731

BXD48 523 ± 152 517 167–821 Short HFD 3 189–595

BXD48a 617 ± 196 670 161–881 Med CD 3 233–604

BXD48a 635 ± 113 650 424–800 Med HFD 3 233–543

BXD65 824 ± 199 896 275–938 Long CD 6 181–711

BXD65 534 ± 128 551 236–736 Short HFD 3e  230–541

BXD65b 726 ± 91 751 536–854 Med CD 4 187–748

BXD73 702 ± 116 687 553–854 Med CD 4 206–759

BXD73 699 ± 112 715 480–889 Med HFD 3 206–694

BXD73b 820 ± 129 807 656–1055 Long CD 3 237–743

BXD73b 742 ± 193 790 154–951 Med HFD 3 237–729

BXD79 417 ± 155 330 241–703 Short CD 7 217–570

BXD9 507 ± 135 462 337–956 Short CD 3 245–548

D2B6F1 771 ± 143 791 585–996 Long CD 4d  210–744

aLife span for strains under standard or high-fat diet estimated from an aging cohort of mice co-housed with mice used for biospecimen collection 
and methylome assays. 
bGroups based on phenotypic life span: short = average life span <600 days; med = average 640–750 days, and long = average life span >800 days. 
cDiet, sample size, and age range of mice used to generate methylome data. CD = control diet; HFD = high-fat diet. 
d One male case; see Table S1 for individual-level data.  
eOne case excluded due to uncertain identity. 



4 of 14  |     SANDOVAL-SIERRA et al.

between mean life span and BW0 was significant only for the CD 
group (Figure 1g). A multivariable regression with strain, BW0, and 
diet showed that only strain (F(9,48)  =  42, p  =  <0.0001) and diet 
(F(1,48) = 45, p = <.0001), but not BW0 (F(1,48) = 1.5, p = 0.2), were 
significant predictors of strain mean life span. Since BW0 is highly 
dependent on strain, the variance attributed to BW0 may have less-
ened after accounting for the effect of strain. However, a similar 
multivariable regression with strain, final weight, and diet showed 
that along with strain (F(9,48) = 49, p = <0.0001) and diet (F(1,48) = 8, 
p = 0.007), the final weight (F(1,48) = 7, β = −2.9, p = 0.009) was also 
a significant predictor of mean life span. Overall, the results indicate 
that mice with higher body weight are more likely to belong to strains 
with shorter life span, and these observations are consistent with the 
strong inverse correlation between body weight and longevity that is 
seen in the larger BXD longevity panel (Roy et al., 2019).

2.2 | Strain-dependent patterns in global 
features of the methylome

Following genome-wide MBD-sequencing, we retained a set of 
368,300 regions, each 150 bp in length, with sufficient coverage in 
the 70 samples. The majority of the CpG regions (83%) contained 
no sequence variants (SNPs or small insertions/deletions) segregat-
ing in the BXDs. For the 17% (62,422) with sequence variants, there 
was an average of 2 ± 1.6 variants within the 150 bp bin. Consistent 
with the DNA enrichment and filtering protocols, the 368,300 CpG 
regions were enriched in annotated gene features such as UTR, in-
trons, exons and CpG islands, and also rRNA and LTRs compared to 
the background genome (Table S3).

We started with a principal component analysis (PCA). A plot of 
the top principal components, PC1 and PC2 (captured 19% and 13% 

F I G U R E  1   Age distribution, and life span and body weight characteristics. (a) Each point depicts a longevity cohort mouse that was 
allowed to age till mortality either on control diet (CD; black circles) or high-fat diet (HFD; red crosses). There was a total of 225 mice, and 
mean sample size was 13 (ranging from 6 to 22) per strain-by-diet. (b) Each point depicts a biospecimen cohort mouse used for tissue harvest 
and methylome assay. Age distribution (y-axis) is uniform across the three life span groups. (c) At baseline, before introduction to HFD, 
age was significantly correlated with body weight. (d) Individual trajectory of change in body weight from baseline to final age is plotted 
with each mouse colored by strain. Mice in the HFD group were introduced to the diet at the time of initial weight measurement, with the 
exception of 4 mice belonging to BXD48a, BXD65, and BXD73b (black arrows) that were placed on HFD at age ~145 (entry to HFD marked 
by black rectangles for the 4 mice). (e) The bar plots show average body weight at young adulthood (original baseline weight, and residual 
values after adjustment for age), and final body weight. Error bars are standard error. (f) The baseline body weight (x-axis) was a significant 
predictor of individual body weight at older age (y-axis); r = 0.53 (p < 0.0001) for all mice; r = 0.77 (p < 0.0001) CD group; r = 0.53 (p = 0.04) 
for 15 HFD group. (g) Baseline weight was negatively correlated with mean life span (y-axis) for the strain-by-diet groups. However, when 
separated by diet group, this inverse correlation was significant only for the CD group; r = –0.27 (p = 0.04) for all mice; r = –0.31 (p = 0.04) 
for the CD group; ns for HFD groups

(a) (d)

(e)

(f)

(g)

(b)

(c)
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of the variance, respectively), showed clustering of samples by strain 
identity, irrespective of diet (Figure 2a). The one exception was a 
BXD65 on HFD that plotted away from the BXD65 cluster, and 
due to its questionable identity, it was excluded from downstream 
analyses, and remaining statistical tests were done in 69 samples. 
Sub-strains (e.g., BXD73/BXD73b; BXD65/BXD65b) also clustered 
in close proximity. Unsupervised hierarchical clustering confirmed 
the clustering of samples by strain identity rather than age or diet 
groups (QC plots in Figure S1).

The top 5 PCs collectively explained 58% of the variance (Table 
S1), and we examined whether these were associated with age, diet, 
body and liver weights, and strain life span. Age was not a significant 
correlate of any of the 5 PCs. For strains with matched CD and HFD 
samples, the PCs did not differentiate between the diets. For the 
weight measurements, PC1 was a significant negative correlate of 
BW0 (Figure 2b), and final body and liver weights (correlations with 
and without F1s in Table S4). When partitioned by diet, the negative 
correlations remained significant only for the CD group. None of the 
other PCs were associated with the weight measurements. For the 
strain longevity data, PC4 (8% of variance) was the strongest cor-
relate of mean, median, minimum, and maximum life span (Figure 2c; 
Table S4). PC2 and PC3 (11% of variance) were also significantly cor-
related with maximum life span (Table S4). These correlations be-
tween PCs and life span remained significant when restricted to the 
CD group.

We computed the overall mean methylation for genic regions 
(i.e., CpG regions that overlap annotated gene features), and inter-
genic regions, to examine whether these global features would ex-
plain the variance captured by the top PCs. Global methylation was 
highly strain specific (Figures S2a and S2b; Table S1), and the mean 
methylation of intergenic CpGs was significantly correlated with 
PC1 and PC3 (Figures S2c and S2d). Mean methylation of genic CpGs 
was significantly correlated with PC4. However, the mean methyla-
tion values were not directly correlated with the longevity traits. For 
the weight measurements, only the mean methylation of intergenic 
sites showed a consistent and significant positive correlation with 
liver weight (Table S4).

Taken together, the methylome-wide analysis showed that the 
PCs capture strain-dependent differences in overall mean methyla-
tion. These PCs were also associated with body weight, and strain-
level life span, but not age and diet.

2.3 | Characterizing differentially methylated 
CpG regions

We next applied an epigenome-wide association study (EWAS) ap-
proach to identify CpG regions that were associated with age, BW0, 
and strain median life span using a multiple linear mixed model. Age 
was a significant predictor of site-specific DNAm (Figure 3a), and 

F I G U R E  2   Global features of the 
methylome. (a) Scatter plot between the 
top 2 principal components—PC1 (19% 
of variance) and PC2 (13% of variance)—
shows a strong population structure with 
mice clustering by strain identity (color 
coded). For strains with cases on both 
standard chow (CD; solid circles) and 
high-fat diet (HFD; squares), the HFD and 
CD samples co-cluster. (b) Body weight at 
young adulthood has a significant negative 
correlation with PC1 (r = –0.3, p = 0.02, 
n = 69). When partitioned by diet, the 
negative correlation is significant only 
for the CD (r = –0.30, p = 0.05). For HFD 
group, the negative correlation does not 
reach statistical significance (r = –0.35, 
p = 0.22). (c) The methylome in turn may 
be predictive of life span, and PC4 is 
strongly correlated with life span (r = 0.85, 
p = <0.0001, n = 69). When partitioned 
by diet group, the correlation is significant 
for the CD (r = 0.90; p < 0.0001), but not 
for the HFD group (r = 0.35; p = 0.22)

(a)

(b) (c)
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26 regions, covering 319 CpGs, were above the 10% Bonferroni 
threshold (unadjusted p ≤ 2.7 × 10−7). These strong age-dependent 
differentially methylation regions (age-DMRs) were mostly located 
within genes, and 25 of the 26 bins were associated with increased 
methylation with age (age hypermethylation; Table S5). Although 
BW0 and the life span traits had strong associations with global 
DNAm patterns, after partly accounting for the strain-dependent 
effects with the mixed model, only seven CpG regions were sig-
nificantly associated with BW0 at the 10% Bonferroni threshold 
(Figure 3b). All these BW0 associated differentially methylation 
regions (BW0-DMRs) had lower methylation among mice with 
higher BW0 (negative regression estimates; Table S6). At the same 
Bonferroni threshold, only three CpG regions were associated 
with strain-level median life span and are referred to as LS-DMRs 
(Figure 3c; Table S7).

Given the non-independence of adjacent CpG regions, we then 
applied a lenient threshold of uncorrected p ≤ 1.0 × 10−4 to define 
the general characteristics of the sites associated with age, BW0, and 
life span. In total, 306 CpG regions were age-DMRs at this sugges-
tive threshold (Figure 3a; Table S5). Of these, 57% were age-hyper-
methylated (Table 2). Compared to the background set of 368,300 
CpG bins, the age-DMRs were highly enriched in genic regions such 
as promoters and exons, and CpG island, and depleted in intergenic 
regions (enrichment and depletion p-values in Table S3). For each 
age-DMR, we computed the average methylation and CpG density, 
and compared these to the age regression coefficients, which convey 
the change as a function of age. The regression estimates appeared 
to be highly dependent on local genomic characteristics, and the 
most pronounced changes involved age hypermethylation (positive 
regression coefficients) in bins with high CpG density (Figure 3d) and 

F I G U R E  3   Features of differentially methylated CpGs regions (DMRs). Each point in the Manhattan plot represents the location of a 
CpG region (x-axis: autosomal chromosomes 1–19, and chromosome X as 20), and the association –log10p (y-axis) for (a) age effect, (b) body 
weight at young adulthood (BW0), and (c) median life span (LS). The genome-wide significant threshold is set at –log10(2.7e−7) (red line; 
10% Bonferroni threshold for 368,300 tests) and the suggestive threshold at –log10(1.0e−4) (blue line). For the age-DMRs, the regression 
coefficients for age (i.e., change in DNA methylation per unit change in age in days, log10 scale), and whether a site gained (positive 
coefficients, burgundy) or lost methylation (negative coefficients; sandy brown) was highly dependent on (d) the CpG density, and (e) mean 
methylation. For BW0-DMRs, the body weight associated coefficients also showed correlations with the CpG counts within the bin (f), and 
sites that were negatively associated with BW0 (blue) had lower mean methylation than the sites that were positively associated with BW0 
(red) (g). For the LS-DMRs, whether a site was positively (red) or negatively (blue) associated with strain median life span was only modestly 
dependent on (h) the CpG counts, and not dependent on (i) the mean methylation levels

(a)

(b)

(d) (e)

(f) (g)

(h) (i)

(c)
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lower average methylation (Figure 3e). In contrast, age-DMRs that 
lost methylation with age (age-hypomethylated; negative regression 
coefficients) featured lower CpG density, and higher average meth-
ylation (Figure 3d,e). Functional annotations of these regions iden-
tified significant enrichment in gene sets involved in establishment 
of cellular polarity (e.g., Wnt5a, Lrrd1, Ptk7) (Table S8). We consulted 
the human GWAS catalog to identify genes represented by the age-
DMRs that have been significantly associated with human aging and 
longevity (Table S5), and this identified only one gene, Cux2 (Buniello 
et al., 2019).

At the suggestive threshold, 689 CpG regions were classified 
as BW0-DMRs, and the majority of these (517 or 75%) were nega-
tively correlated with BW0 (Table 2). Introns were the most enriched 
gene feature (Tables S3 and S6). Compared to the age-DMRs, the 
BW0-DMRs were in regions with relatively lower CpG density and 
had only 3 regions within CpG islands (Figure 3f). The regions that 
were negatively correlated with BW0 in particular featured lower 
CpG densities and also lower mean methylation levels (Figure 3g). 
Significantly enriched gene ontologies (GO) included regulation of 
protein homooligomerization, actin cytoskeleton reorganization, 
and GTPase-mediated signal transduction (Table S8). We also note 
that several of these genes have been associated with weight in 
human GWAS, including Hmga2, Fto, and Ntrk2 (Table S6) (Metrustry 
et al., 2014; Thorleifsson et al., 2009; Weedon et al., 2007).

For life span, there were 124 LS-DMRs (Table S7), and a slight 
majority of these (59%, mostly intergenic sites) were positively cor-
related with higher median life span (Table 2). The LS-DMRs did 
not show any enrichment or depletion in gene features compared 
to the background set, and the LS-DMRs featured lower CpG den-
sity (Figure 3h). There was no difference in methylation levels be-
tween the DMRs that had positive or negative regression estimates 
(Figure 3i). The LS-DMRs were not enriched in any particular bio-
logical GO category. However, there was a significant enrichment 
in genes that result in premature death in single knockout mice, 
and this included an intronic DMR in the telomerase reverse tran-
scriptase gene (Tert) (Table S8). Also enriched were genes related to 
abnormal eating behavior and a decrease in body mass index (e.g., 
Igfbp3, Mc4r, Lpar1), and genes related to abnormal mineral levels 
(Calcr, Sptb, Wwox).

In terms of the potential effect of underlying sequence differ-
ences, we examined what fraction of the DMRs were sites that 
overlapped DNA variants segregating in the BXDs (Table 2). Since 
the background set has 62,422 bins with variants, the 51 variant 
containing age-DMRs did not represent a biased enrichment of such 

regions (hypergeometric enrichment p = 0.58). The BW0-DMRs and 
LS-DMRs were only slightly enriched in sequence variants (enrich-
ment p = 0.02 and p = 0.09, respectively) (Table 2).

2.4 | Relating differentially methylated regions to 
gene expression

Fifty-two of the samples with liver MBD-seq also had matched 
liver RNA-seq data, and we used this group to examine whether the 
DMRs were associated with gene expression. We linked the age-, 
BW0-, and LS-DMRs to the corresponding transcript. Of the 306 
age-DMRs, 279 were paired with mRNA. For these pairs, we tested 
how many of the DMRs were cis-correlated with gene expression, 
and how many of the transcripts were also correlated with age of 
mice (Table S9). At an uncorrected p ≤ 0.05 (|r| ≥ 0.27), 79 age-DMRs 
were correlated with the expression of cognate genes (Figure 4a). 
The age-hypermethylated DMRs mostly showed positive correla-
tions with gene expression such that the transcripts also showed 
increased expression with age (e.g., Jak3, Amn, Tradd). The age-hypo-
methylated DMRs were more likely to be negatively correlated with 
gene expression, and this set of transcripts also showed increased 
expression with age (Nfkbia, Slit3).

For the BW0-DMRs, 614 of the CpG regions were paired to cor-
responding transcripts. At p ≤ 0.05 (|r| ≥ 0.27), 121 BW0-DMRs were 
correlated with gene expression (Table S10). The overall pattern indi-
cated that the DMRs that had lower methylation in mice with higher 
BW0 (i.e., negative regression estimates) tended to be negatively 
correlated with gene expression, and there was higher expression of 
these genes in mice with higher BW0 (Figure 4b). This included Mc5r, 
Nfkb1, and Tcf4. The few DMRs that had positive associations with 
BW0 were more likely to be positively correlated with gene expres-
sion (e.g., Aldh18a1, Madd, Rap2a).

For the LS-DMR, 111 paired to corresponding transcripts, 
and only 19 CpG regions were cis-correlated with gene expression 
(Figure 4c; Table S11). The strongest cis-correlations were between 
the LS-DMRs linked to Hpse and Dapp1 (r  =  –0.70 for both). Both 
CpG regions had positive regression values for life span, and the cor-
responding transcripts had lower expression in mice belonging to 
strains with longer life span. The LS-DMR in Tert was also negatively 
correlated with the expression of the Tert mRNA (Figure 4c, r = –0.32, 
p = 0.02), and the mRNA itself had a modest positive correlation with 
life span (r = 0.26, p = 0.07). Comparison of Tert methylation and gene 
expression among the three life span groups showed that the longer 

TA B L E  2   Tally of differentially methylated regions.

Positive coefficients Negative coefficients

VariantsN Genic Intergenic N Genic Intergenic

Age-DMR 175 146 (48%) 29 (9%) 131 94 (31%) 37 (12%) 51 of 306 (17%)

BW0-DMR 172 93 (14%) 79 (11%) 517 368 (53%) 149 (22%) 137 of 689 (20%)

LS-DMR 73 25 (20%) 48 (39%) 51 31 (25%) 20 (16%) 27 of 124 (21.77%)
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lived group had significantly lower methylation levels compared to 
both the medium- and short-lived groups (F2,66 = 7.67, p = 0.001), and 
the long-lived group had significantly higher gene expression com-
pared to the short-lived group (F2,49 = 3,31, p = 0.04; Figure 4d).

2.5 | Measure of age acceleration from age-
associated CpG regions

We next evaluated whether we can derive a measure of differential 
rates of aging from the age-DMRs that could be predictive of life 
span differences. We first summarized the age-dependent changes 
by computing the weighted averages for the set of 306 age-DMRs. 
The weighted averages, as expected, had a strong correlation with 
the chronological age of mice, and for a more direct comparison, the 

values were scaled to the age range for the 69 samples (Table S1). 
We refer to this DMR-based age estimate as DMRmAge, and this 
showed a nearly linear correlation with chronological age at r = 0.88 
(p  <  0.0001, n  =  69; Figure 5a). Age acceleration was derived as 
the residuals from the regression of DMRmAge on chronological 
age (Horvath, 2013; Thompson et al., 2018), with positive values 
indicating an older or accelerated biological age, and negative val-
ues indicating a decelerated biological age, and we refer to this as 
DMRmAge-acc (Table S1).

The DMRmAge-acc showed a significant negative correlation 
with strain maximum life span, indicating higher age acceleration in 
mice belonging to short-lived strains (r = –0.35, p = 0.003, n = 69; 
Figure 5b). The correlation remained significant when the analy-
sis was limited to only the CD mice (r = –0.30, p = 0.03, n = 55). 
There were notable strain differences in average DMRmAge-acc 

F I G U R E  4   Comparison between DMRs and expression of cognate genes. (a) The plot shows correlations between the age-DMRs and 
expression of corresponding transcripts (Pearson r on x-axis), and the correlation between the transcript and age of mice (y-axis). The 
dashed lines demarcate the nominally significant |r| = 0.27 threshold (p ≤ 0.05; n = 52 samples with matched MBD-seq and RNA-seq). Most 
of the age-hypermethylated DMRs (burgundy circles) are positively correlated with mRNA, and these mRNAs also tend to be positively 
correlated with age (top right square of graph). A few of the age-hypomethylated-DMRs (sandy brown triangles) have negative correlation 
with gene expression, and the corresponding transcripts are positively correlated with age (top-left square). (b) Majority of the BW0-DMRs 
are negatively associated with BW0 (blue triangles), and most of the DMR-mRNA pairs are located in the top-left square of the plot, that 
is, gene expression is negatively correlated with DNA methylation and positively correlated with BW0. A few of the BW0-DMRs that have 
positive associations with BW0 (red circles) also have positive correlations with gene expression (top right square). (c) The few LS-DMRs 
have modest correlations with gene expression. The DMR for Tert is negatively correlated with transcript (arrow), and the transcript has 
modest correlation with median life span at r = 0.26 (p = 0.07). (d) Comparison of DNA methylation levels (top) in the three life span groups 
shows significantly lower methylation in the long-lived group (F2,66 = 7.67, p = 0.001). A similar comparison for gene expression shows a 
significantly higher gene expression in the long-lived group (F2,49 = 3,31, p = 0.04)

(a) (b)

(c) (d)
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(Figure 5c). We note that BXD65, which was the strain with the 
largest reduction in life span on HFD (Figure 1a), also showed a 
much higher age acceleration in the HFD group (mean DMRmAge-
acc  =  54.94) compared to the CD group (mean DMRmAge-
acc  =  –0.17). The DMRmAge-acc showed a significant positive 
correlation with both BW0 (r = 0.23, p = 0.05; Figure 5d) and final 
body weight of mice (r = 0.31, p = 0.009; Figure 5e) that suggests 
more accelerated aging with higher body weight. Limiting to only 
the CD mice (n  =  55), the correlation with BW0 became slightly 
stronger (r = 0.29, p = 0.03), but the correlation with final weight 
became weaker (r = 0.23, p = 0.09, n = 14). We tested the effect of 
diet on the DMRmAge-acc in the BXDs that had matched samples 
from both diets (n = 33), and this showed a significantly higher age 
acceleration in the HFD group (36.13 ± 27.32 in HFD, –3.22 ± 36.99 
in CD, p = 0.002; Figure 5e). With the exception of one BXD73 sam-
ple that had spent 614 days on HFD, all the remaining HFD samples, 
including the ones that spent <100 days on HFD, showed positive 
DMRmAge-acc values (Table S1).

We then treated the DNAmAge-acc as the outcome variable, and 
used multivariable regression to evaluate the association with body 
weight (BW0 or final weight), diet, and the strain maximum life span. 
In the model with BW0 as an explanatory variable, the DNAmAge-acc 

was significantly associated with life span (F(1,65) = 6.3, β = –0.15, 
p = 0.01), BW0 (F(1,65) = 6.2, β = 2.4, p = 0.02), and diet (F(1,65) = 4.5, 
p = 0.04). In the model with final body weight, life span (F(1,65) = 6.8, 
β = –0.16, p = 0.01) and body weight (F(1,65) = 3.9, β = 1.5, p = 0.05), 
but not diet, were significant predictors. This suggests that the ef-
fect of diet on the clock is primarily mediated by the increase in final 
body weight.

To verify that these associations are robust, we repeated the 
EWAS using a randomly selected subset of 55 female methylomes 
(these are identified in Table S1). With the reduced sample size, 237 
CpG regions were age-DMRs at p  ≤  1.0 ×  10−4. Using these age-
DMRs and respective regression coefficients from the subsample 
analysis, we re-calculate the DMRmAge and DMRmAge-acc (Table 
S1), and evaluated whether the age acceleration will show consistent 
associations with life span, body weight, and diet in the 55 subsam-
ples, and also in the 14 excluded samples (the 3 male samples were 
assigned to this test set). The DMRmAge was significantly correlated 
with chronological age in both sets with r = 0.83 in the 55 subsa-
mples, and r = 0.92 in the test set of 14 samples (Figure S3a). The 
DMRmAge-acc defined from this continued to show inverse cor-
relation with life span, and this was highly significant in the test set 
(Figure S3b). Notably, the two BXD102 (long-lived strain) samples in 

F I G U R E  5   Age-DMR-based measure 
of epigenetic aging. (a) The epigenetic 
age of mice was estimated by taking 
the weighted averages of the 306 age-
DMRs. These age estimates, referred 
to as DMRmAge, have a strong positive 
correlation with the chronological age 
of mice (n = 69). (b) The age acceleration 
residuals (DMRmAge-acc) derived from 
this clock have a significant negative 
correlation with the maximum life span 
data for the 17 strain-by-diet groups. (c) 
The bar plots show the mean DMRmAge-
acc values for each strain-by-diet group 
(error bars are standard error) with the 
graph ordered by increasing mean life 
span (x-axis). The DMRmAge-acc is 
positively correlated with both (d) body 
weight at young adulthood and (e) final 
body weight. (f) In the BXD strains with 
matched samples from both control 
diet (CD) and high-fat diet (HFD), the 
DMRmAge-acc is significantly higher in 
the HFD group compared to the CD group 
(–3.22 ± 36.99 in CD, 36.13 ± 27.32 in 
HFD, p = 0.002, n = 33).

(a) (d)

(b)

(c)

(f)

(e)
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the test set, including the male BXD102, had the most decelerated 
clocks among the 14 (Table S1). Both BW0 and the final body weight 
were positively correlated with the DMRmAge-acc, although this 
did not reach statistical significance in either sets. Four HFD mice 
had been randomly assigned to the test set, and all four had positive 
DMRmAge-acc. In the subsampled set, the HFD group had signifi-
cantly higher age acceleration compared to the strain-matched CD 
mice (60.49 ± 33.05 for HFD, 3.87 ± 55.40 for CD, p = 0.008, n = 25; 
Figure S3c). Similarly, HFD was associated with accelerated epigene-
tic aging in the strain-matched samples in the test set (43.57 ± 19.83 
for HFD, –12.02 ± 19.98 for CD, p = 0.008, n = 8; Figure S2c).

Taken together, the analysis demonstrates three points. First, 
that the age-DMR-based estimates of age acceleration are pre-
dictive of strain-dependent differences in life span among female 
BXDs; second, that higher body weight, even before introduction 
to HFD, is associated with more accelerated aging; and third, HFD, 
which results in strain-dependent increase in body weight, signifi-
cantly accelerates aging, as measured by DMRmAge-acc.

3  | DISCUSSION

3.1 | Genomic features of differentially methylated 
regions

In the present study, we parsed the variance in the methylome and 
defined site-specific methylation differences that may be attributed 
to a strain-level phenotype, median life span, and two individual-
level variables—age and BW0. For the age-DMRs, the time-depend-
ent patterns were consistent with previous reports (Ciccarone, 
Tagliatesta, Caiafa, & Zampieri, 2018; Sziraki et al., 2018). As in 
Sziraki et al. (2018), methylation loss over time occurred mostly 
in regions with higher average DNAm, and methylation gains oc-
curred mostly in regions with lower average DNAm. Since DNAm 
was quantified over 150 bp non-overlapping bins, we were also able 
to relate the differential methylation patterns to the local CpG den-
sity. In particular, for the age-hypermethylated DMRs, the increase 
in DNAm with aging had a strong positive correlation with CpG den-
sity. This too is consistent with reports that CpG dense regions—a 
feature of CpG islands, which typically remain unmethylated—are 
the sites that tend to gain methylation with age (Rakyan et al., 
2010). The genes represented by the age-DMRs included a few 
notable members such as Cyp46a1 and Abca7, which are involved 
in cholesterol metabolism and implicated in Alzheimer's disease 
(Carter, 2007), and few members of the WNT signaling and mesen-
chyme developmental pathways (e.g., Fzd1, Fzd8, Wnt5a, Jak3, Ptk7, 
Nrp2). The current data replicated the CpG islands in C1ql3 and 
Ptk7, which we previously reported as age-hypermethylated sites 
in the BXD parental strains, B6 and D2 (Mozhui & Pandey, 2017). A 
region-based functional annotation analysis revealed a significant 
enrichment in genes involved in cell polarity, an aspect of cells that 
is established during development through interaction with the 
WNT polarity signaling pathway, and which becomes dysregulated 

during aging (Berger, Wodarz, & Borchers, 2017; Budovsky, Fraifeld, 
& Aronov, 2011).

Body weight, even at young adulthood and before introduction 
to HFD, was significantly associated with the global methylome pat-
terns and was also predictive of strain longevity. We therefore in-
cluded BW0 as a predictor variable in the multiple regression model. 
The BW0-DMRs included a few genes that have been previously as-
sociated with body weight in human GWAS at p < 5 × 10−8(Buniello 
et al., 2019). This included an intron DMR in the fat mass and obesity 
associated Fto gene, which plays a key role in energy homeostasis, 
and consistently shown to influence body weight in humans (Zhou, 
Simmons, Lai, Hambly, & McLachlan, 2017). The BW0-DMRs were 
mostly located within genes, particularly introns, and a striking as-
pect of the BW0-DMRs was that 75% were negatively associated 
with BW0. For the BW0-DMRs that were linked to the correspond-
ing transcript, the overall pattern indicated a negative correlation 
between DNAm and gene expression. This means that while DNAm 
at these sites were, in general, inversely correlated with body weight, 
the transcript levels of the corresponding genes generally had higher 
expression in mice that were heavier.

For the longevity trait, only 124 CpG regions were significant at 
the suggestive threshold. A point of distinction for the LS-DMRs is 
that, while the age- and BW0-DMRs were related to individual-level 
variables, the LS-DMRs were related to life expectancy based on the 
strain and the diet. This indirect association with the phenotype may 
explain why only few DMRs were uncovered by the current mixed 
model. Given this small number of genes, it is particularly striking 
that the region-based annotation revealed that genes that cause pre-
mature death in single knockout mice are the most enriched gene set 
among the LS-DMRs (phenotype ID MP:0002083, defined as “death 
after weaning, but before the normal life span” in http://www.infor​
matics.jax.org). Among the LS-DMRs, both Tert and Igfbp2 have also 
been linked to aging and longevity by human GWAS (Lu et al., 2018; 
Teumer et al., 2016).

3.2 | Building clocks from age-dependent 
CpG regions

Several different versions of the DNAmAge estimator are now avail-
able for both mice and humans (Hannum et al., 2013; Horvath, 2013; 
Petkovich et al., 2017; Stubbs et al., 2017; Thompson et al., 2018; 
Wang et al., 2017). The standard protocol for developing DNAmAge 
clocks starts by applying a regression algorithm in a training dataset, 
followed by age estimation in validation cohorts to gauge the ac-
curacy of the clock. Our goal in this study was not to develop an-
other DNAmAge clock. Given the sample size of the present study, 
that would not have been a feasible pursuit. Instead, our goal was 
to test whether the age-dependent CpG regions could provide an 
estimate of epigenetic aging that could discern life span differences 
between the mouse strains, and that could be related to body weight 
and diet. For this, we simply summarized the age-DMRs by comput-
ing the weighted averages for each sample. The weighted averages, 

http://www.informatics.jax.org
http://www.informatics.jax.org
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unsurprisingly, correlated strongly with the chronological age of 
mice. More importantly, the age acceleration derived from the age-
DMR-based clock was (a) inversely correlated with the strain life 
span phenotype, (b) was significantly more accelerated in the HFD 
group, and (c) was positively correlated with body weight. This con-
veys that the age-DMRs can estimate genetically modulated differ-
ences in rates of biological aging and life span, and is a modifiable 
outcome. Furthermore, the results highlight the interdependence 
between body weight, diet, and health and aging, and our observa-
tions agree with the well-known influence of body mass on longev-
ity, and the more favorable health profile associated with lower body 
mass within a species (Bartke, 2012).

The strain with the most decelerated clock, and presumably 
slowest rate of biological aging, was BXD102 on CD, which is among 
the longest-lived BXD strain we had in the study. The DMRmAge-
acc for this strain ranged from –78 to –196 days for the females and 
–66 days for the one male sample. The subsamples analysis in the 
55 female cases recapitulated this decelerated clock in BXD102. 
However, we note that there were a few mismatches between strain 
life span classification and the DMRmAge-acc. BXD40 on CD, al-
though classified as short-lived, was the only short-lived strain with 
a mean negative DMRmAge-acc. B6D2F1, on the other hand, al-
though classified as long-lived, was the only long-lived group with 
mean positive DMRmAge-acc. Unlike the inbred BXDs, the hetero-
zygous F1s have hybrid vigor in both body weight and life span, and 
this likely explains the inconsistency.

3.3 | Technical considerations and limitations

Before concluding, we should address a few caveats. The sequence 
alignment was done to the mm10 B6 reference genome, which means 
that for regions with genetic variants segregating in the BXDs, the se-
quence differences could compromise alignment. Chronological age, 
at least in the biospecimen cohort, is independent of genetic back-
ground, and the age-DMRs are expected to be less susceptible to the 
confounding effect of DNA sequence variants. For body weight and 
life span, the interpretation is complicated by the fact that both phe-
notypes are closely linked to genotype, and the DMRs may reflect 
true differences in DNAm levels, or differential quantification due to 
sequence effects. To partly control for this, we used a mixed model 
that fitted each strain-diet group as a random intercept. For the age-
DMRs, 17% of the CpG regions contained sequence variants, and 
this is similar to the 17% of variant containing bins in the background 
set of 368,300 regions. The BW0-DMRs and LS-DMRs were only 
slightly enriched in variant containing bins, and for the most part, the 
CpG regions were devoid of sequence differences.

To our knowledge, almost all existing DNAm clocks have relied on 
bisulfite-based assays, which have the advantage of providing single 
CpG resolution (Hannum et al., 2013; Horvath, 2013; Levine et al., 
2018; Petkovich et al., 2017; Stubbs et al., 2017; Thompson et al., 
2018; Wang et al., 2017). For the mouse model, the reduced repre-
sentation data (RRBS) generated by Petkovich et al. (2017) from ~141 

B6 mice have been used in different studies to define tens of thou-
sands of age-dependent CpG sites (over 43,000 CpGs in Lowe et al. 
(2018), and over 146,000 in Sziraki et al. (2018)). Compared to these, 
the present work identified only 306 age-DMRs at the suggestive 
threshold that covered 2691 CpG sites. This is still a relatively mod-
est number of age-dependent CpGs, and this is likely due to the small 
sample size and the genotype heterogeneity of the present cohort. 
Another contributing factor may be the methylome assay we used, 
as MBD-seq provides lower quantitative sensitivity (Gujar, Liang, 
Wong, & Mozhui, 2018). Nonetheless, MBD-sequencing still deliv-
ers highly sensitive and replicable quantification of genome-wide 
methylation (Aberg et al., 2018). Using alternate assay methods also 
demonstrates that the DNAm age estimators are robust to the tech-
niques used to quantify DNAm.

We note that the present study is specific to females. We in-
cluded a few male cases in the methylome assay, and the age-DMR-
based clock closely estimated the chronological ages of the three 
males as well. Longevity is reported to be highly strain-dependent 
in the BXD panel, with significant correlation in median life span 
between male and female BXDs, but also with notable sex differ-
ences in the underlying genetics (Lang et al., 2010). The decelerated 
DMRmAge-acc in the one male BXD102 also suggests strain similar-
ity in epigenetic aging rate between a male and the females of a long-
lived strain. However, with such a limited sampling of male cases, no 
conclusion can be drawn, and their inclusion may have added more 
heterogeneity than information. However, excluding the male cases, 
as was done for the subset analysis in the 55 female samples, did not 
alter the main findings of the study.

4  | E XPERIMENTAL PROCEDURES

4.1 | Statistical analyses

Descriptions of animal protocols, sample processing for MBD-seq, 
sequence alignment, initial bioinformatics, data filtering, and quality 
checks are provided in Appendix S1 and Figure S1. Additional de-
scription of statistics and transcriptome analysis are also described 
in Appendix S1.

For the EWAS to detect DMRs, we applied the following 
model using the lme4 R package (v4_1.1-21) (Bates, Mächler, 
Bolker,  & Walker, 2015): lmer(logRPKM ~age  +  BW0  +  median-
LifeSpan  +  (1|StrainDiet)). This was first applied to the full set of 
69 samples. Manhattan plots were generated using the qqman R 
package (Turner, 2018). For the DMRs, we evaluated relative en-
richment in genomic features (i.e., introns, exons, and CpG islands) 
compared to the background set using the hypergeometric test in 
R (R codes in Table S3). Following that, we carried out functional 
annotation and enrichment analysis against the whole background 
genome using the GREAT application (version 4.0.4) (McLean et al., 
2010). Enrichment was calculated using both a binomial test and a 
hypergeometric test, and we report only categories that were sig-
nificant by both methods (FDR < 0.05). To search for human GWAS 
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hits, we referred to the GWAS catalog (Buniello et al., 2019), and 
searched for the terms “body weight”, “aging”, and “longevity”. For 
variants with reported association p ≤ 5 × 10−8, the mapped human 
gene symbols were then matched to the corresponding mouse genes 
associated with the DMR.

4.2 | Estimating epigenetic age and age acceleration

To estimate epigenetic age, we computed the weighted averages 
with each of the 306 age-DMRs weighed by the respective age 
regression coefficient. The weighted averages were then scaled 
to the age range in the 69 samples using the following formula: 
DMRmAge  =  [(((weighted.average  − min.weighted.average) ×  age.
range)/weighted.average.range)  +  min.age], where min.weighted.
average and weighted.average.range are the minimum value and 
range for the weighted averages in the 69 BXD samples, and age.
range = 578 days is the range of chronological age in the 69 BXDs, 
and min.age  =  181 days is the minimum age for the 69 BXDs. As 
recommended in Thompson et al. 2018 (Thompson et al., 2018), the 
“age acceleration” was computed as the residuals after fitting the 
predicted age to chronological ages: residuals(lm(DMRmAge ~Age)).

The DMR EWAS was repeated using the same mixed model 
(lmer(logRPKM ~age  +  BW0  +  medianLifeSpan  +  (1|StrainDiet))) 
in a randomly selected subset of 55 female samples. Random sub-
sampling was done using the R function, sample() with n = 55 and 
replace = FALSE, after excluding the 3 males. From this, age-DMRs 
(age-associated at p  ≤  1.0  ×  10−4, 237 CpG regions) and the re-
spective regression coefficients were then used to re-compute the 
DMRmAge using the same weighted averaging method described 
above. We then used the 14 samples excluded from the EWAS as a 
test set to examine the association of DMRmAge-acc with life span, 
body weight, and diet.

5  | CONCLUSION

Our results demonstrate that the epigenetic clock defined from age-
DMRs is sensitive to subtle differences in natural life span among 
female mice that arise from common genetic variants, and is modifi-
able by environmental interventions, such as diet. The intercorre-
lations between epigenetic aging, body weight, and longevity also 
provide evidence that the methylome could provide a mechanistic 
link between the well-known effect of body mass on aging and life 
span.
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