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Abstract: In this study, we used amines electrolyte solution with layer-by-layer (LbL) technique to
modify and increase the CO2 adsorption capacity of highly porous polymer from high internal phase
emulsion template polymer. This perspective presents the extraordinary versatility of emulsion
templating polymerization, which has emerged with the growing numbers of HIPE systems and
modification. In this study, we used polyHIPE prepared from styrene (S) and divinylbenzene (DVB)
with varying ratios; 80:20, 20:80, and 0:100 to improve the surface area, thermal properties, and
mechanical properties of the materials. Furthermore, the surface of the polyHIPE was modified by
LbL technique to increase the adsorption efficiency. This technique consisted of two main layers, the
primary layer of poly(diallyldimethylammonium chloride) (PDADMAC) and polystyrene sulfonate
(PSS) and the secondary layer, which was the CO2 adsorbing layer, of polyethylene imine (PEI) or
tetraethylene pentamine (TEPA). Poly(S/DVB)HIPE modified by PEI terminated as the secondary
coating showed the highest CO2 adsorption capacity, with up to 42% (from 0.71 to 1.01 mmol/g).
The amine-multilayered modified material still possessed an open cell structure, since the solution
did not block the pore structure of the poly(S/DVB)HIPE and was suitable for being used as an
adsorbent in adsorption technology.

Keywords: CO2 adsorption; layer-by-layer (LbL) technique; polyHIPE

1. Introduction

With the rapid growth of many industries around the world, an excessive amount of
greenhouse gas has been released into the air, especially as emission from industry [1]. For
instance, the concentration of carbon dioxide has increased dramatically from 280 part per
million (ppm) in pre-industrial time to 400 ppm in 2013, representing a 43% increase [2].
All greenhouse gases adversely affect human health and many technologies have been
modified to reduce the amount of toxic gas. Technologies have also been developed to
capture carbon dioxide followed by storage or utilization, and these technologies include
absorption technology [3], adsorption technology [4], and membrane separation [5,6]. The
solution absorption is one of the most cost-effective technologies for CO2 capture. Actual
commercial solution absorption consisted of organic solvents and green solvents (ionic
liquids, deep eutectic solvents, and liquid polymers) for CO2 capture [7]. However, aqueous
amine absorption has some problems, namely corrosion, oxidation degradation and using
a high amount of energy to regenerate [8]. Due to this, most of the applications for CO2
are adsorption-related high superabsorbent material that have been produced through the
generation of microporosity and/or mesoporosity material [9]. Scientists also developed
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adsorbent for a carbon dioxide capture process by using activated carbon from biomass
product (seaweed and lawn grass) as solid adsorbent [10,11]. In addition, cryogenic
distillation has also been widely used for CO2 absorption. Nevertheless, there were several
drawbacks for cryogenic distillation, which were stated as being costly, especially for
extracting all the water [12].

To overcome these problems, porous polymer prepared by high internal phase emul-
sion (HIPE) was studied for the CO2 adsorption application. Polymer from high internal
phase emulsion (polyHIPE) has been developed as it contains highly interconnected open-
cell structure with porosities, surface area, and high thermal degradation [13]. It could
be prepared from an external phase (oil phase) and internal phase (aqueous phase) under
mechanical stirring. Typically, the total volume of the aqueous phase exceeds 74 to 90% [14]
and the material has many good properties, such as low density (less than 0.03 g/cm2), a
high interconnected open cell structure, and a high surface area (up to 700 m2/g). Poly-
HIPE is based on the polymerization of monomers and crosslinking comonomer within
the organic (continuous) phase of water-in-oil (w/o). The organic phase is less than 26% of
the total volume generally consisting of monomer, surfactant, and solvent [15]. In addition,
the capacity of CO2 adsorption could be further improved by introducing amine groups
such as tetraethylenepentamine (TEPA)/diethanolamine (DEA) [16], polyethyleneimine
(PEI) [17,18], diisopropanalamine (DIPA) [19], and piperazine (PZ) [20] onto the sub-
strates. However, an impregnated technique inside porous can aggregate, leading to
pore plugging [18] and thus eliminating the pore plugging, which occurs when using the
layer-by-layer (LbL) technique.

Layer-by-layer polyelectrolyte multilayers (LbL) technique for the formation of thin
film is employed for its simplicity in methodology. The concept was popularized in the
1990s by Gero Decher’s group at the Universite Louis Pasteur and CNRS in France. Polyca-
tion (e.g., polyethylenimine (PEI), tetraethylenepentamine (TEPA)), and polyanion (e.g.,
polystyrene sulfonate (PSS) and polyacrylic acid (PAA)) on a polyHIPE were studied.
These amine-multilayered sorbents had much faster CO2 adsorption and desorption rates
compared to sorbents prepared using the current PEI-impregnation approach [18]. The
polyHIPEs were further improved by introducing LbL technique with the introduction
of the ionic groups from amination methods in order to enhance the capacity of the CO2
absorption [21]. In this study, polyHIPE was prepared from divinylbenzene (DVB) and
styrene (S) using water in oil system. Then, CO2 adsorbing solutions were introduced
onto the polyHIPE using LbL technique. This technique consisted of two main layers:
the primary layer, consisting of six layers of PDADMAC and PSS, which were polycation
and polyanionic layers and the secondary layer, which was the CO2 adsorbing layers of
polyethylenimine (PEI) and tetraethylenepentamine (TEPA) layers. Finally, polyHIPEs were
characterized by scanning electron microscope (SEM), Autosorb-1MP (Quanta chrome),
Universal testing machine (Lloyd), differential thermal analysis (TG-DTA), and gas chro-
matography with a thermal conductivity detector (GC-TCD). With a functional styrene
monomer that has been synthesized to be a mesoporous material, which ostensibly would
be more compatible for the adsorption and release of the CO2, it was obvious that the
product gave a very promising outcomes for the reusability in comparison with recent
popular research such as cryogenic distillation, hydrogel membrane, and monolith gel [22].

2. Materials and Methods
2.1. Material

Divinylbezene (DVB) and styrene (S) were purchased from Merck (Darmstadt, Ger-
many) and Sigma-Aldrich (St. Louis, MO, USA), respectively. Surfactant, sorbitant mono-
late (Span 80), dodecylben-zolsolfonic acid, sodium salt (DDBSS), were purchased from
Sigma-Aldrich chemical (Missouri, USA) and cetyltrimethylammoium bromide (CTAB)
was supplied from Fluka Chemie (Buchs, Switzerland). The initiator and stabilizer were
potassium persulphate (K2S2O8, purity ≥ 98% (RT), Fluka Chemie, Buchs, Switzerland)
and calcium chloride (CaCl2, purity ≥ 97% (KT), Fluka Chemie, Buchs, Switzerland).
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Toluene (T) was supplied by RCI Lab scan (Bangkok, Thailand). Polystyrenesulfonate
(PSS, sodium salt, MW 70,000), poly(diallyldimethylammonium chloride) (PDADMAC,
MW 350,000), polyethyleneimine (PEI, MW 2000), and tetraethylenepentamine (TEPA, MW
198) were purchased from Sigma-Aldrich (Missouri, USA). All the chemicals were used
as received.

2.2. Poly(Styrene/Divinylbenzene)HIPE Polymerization

PolyHIPEs were prepared from styrene and divinylbenzene monomers. The pro-
cess mechanism of poly(S/DVB)HIPE is presented in Scheme 1. The ratios of styrene to
divinylbenzene were 80:20, 20:80, and 0:100. The polyHIPEs were prepared with a mix
surfactant (Span 80, CTAB, DDBSS, 6.3 wt%, 0.3 wt%, 0.4 wt%) and 5 mL of solvent as
toluene, which were mixed together. The organic phase and the aqueous phase contained
90 mL of deionized water, 0.2 g of potassium persulphate as an initiator, and 1 g of stabilizer
salt (CaCl2). After preparing the two phases, the aqueous phase to the organic phase was
slowly dropped with mechanical stirring at 360 rpm. Next, the obtained emulsion was
poured into a glass mold and polymerization in a water bath at 60 ◦C for 48 h. Then,
it was removed from the glass mold and dried in a conventional oven at 60 ◦C for 24 h.
After polymerization, the unreacted chemical was extracted from polyHIPE sample with
2-propanol using a soxhlet apparatus for 6 h. Finally, the material was returned to dry in
an oven at 60 ◦C until a constant weight.
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Scheme 1. The process mechanism of poly(S/DVB)HIPE polymerization.

2.3. Surface Modification of Poly(S/DVB)HIPEs

The layer-by-layer polyelectrolyte multilayers (LbL) technique was used to modify
the polyHIPE surface. Poly(S/DVB)HIPE was cut into 2 cm thick sample. Then, a vacuum
pump was applied to run the coating solutions through poly(S/DVB)HIPE. The LbL
technique is composed of two coatings: the primary coating and the secondary coating.
For the primary coating, a positively charged solution of PDADMAC was run through
poly(S/DVB)HIPEs for 2 min, then the poly(S/DVB)HIPE was rinsed with DI water 2 times.
Next, a negatively charged solution of PSS was run through poly(S/DVB)HIPE for 2 min,
then the poly(S/DVB)HIPE was rinsed with DI water. The deposition of the primary
layer contained six layers. For the secondary coating, tetraethylenepentamine (TEPA) or
polyethylenimine (PEI) polymer solution were used as the termination coating, as shown
in Figure 1. Finally, the sample was dried at room temperature for 24 h.
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The use of polyHIPE modified with primary (TEPA) and secondary (PEI) amines is
the economic option. The adsorption of CO2 on amine-functionalized modified polyHIPE
proceeds predominantly by the carbamate mechanism, as shown in Scheme 2.
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Scheme 2. The CO2 adsorption mechanism of primary and secondary amine groups via the carba-
mate mechanism.

The amount of CO2 gas adsorbed by poly(S/DVB)HIPEs was determined using a
gas chromatography instrument. The samples were loaded into a sample tube 2 × 25 cm.
Before carrying out the adsorption studies, the poly(S/DVB)HIPEs sample in the reactor
was pretreated with N2 (80 mL/min). Then, the gas was switched to 15 vol% of CO2
(15 mL/min) at room temperature and desorption was applied with N2 (80 mL/min).
Finally, adsorption capacity of poly(S/DVB)HIPEs was calculated by Equation (1) below.

Qads =
FCintst

M
, (1)

where Qads dynamic adsorption capacity, mmol CO2/g, F = total flow rate, mol/min,
Cin = the concentration of CO2 entering the reactor, vol%, M = the weight of the adsor-
bent, g, and tst = the stoichiometric time corresponding to CO2 stoichiometric adsorption
capacity, min.

2.4. Poly(S/DVB)HIPEs Characterization

Average pore size and surface morphological of each sample were observed by scan-
ning electron microscope (SEM). The specimens were cut into small pieces and coated
with platinum under vacuum before analysis. The surface area was calculated by BET
equation by a Quantachrome Autosorb-1MP obtained from the N2 adsorption-desorption
isotherms at –196 ◦C. The samples were degassed at 100 ◦C for 12 h in a vacuum furnace.
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For mechanical properties, they were investigated by Lloyd Universal testing machine
in a cylinder shape sample at the diameter of 2.54 cm and times 2.54 cm of its height.
A speed of 0.127 cm/min and 500 Newton load cells were used for all measurements.
Thermogravimetric analysis (TGA) was performed to measure the thermal stability of
the poly(S/DVB)HIPEs under N2 flow of 100 mL/min. The samples were fragmented
into small pieces weighing about 2 to 5 mg. Then the samples were heated from 30 ◦C
to 800 ◦C with a constant heating rate of 10 ◦C/min. The degradation temperature was
determined from the weight loss (%) vs. temperature curve. UV-Vis Spectroscopy was
used to monitor the amine coating of layer-by-layer process. Amine functionalization in all
modified polyHIPEs with the amino group were investigated by CHN elemental analysis.

3. Results
3.1. Characterization of Poly(S/DVB)HIPEs

Typically, the structure of polyHIPEs are mesoporous polymers with interconnect-
ing pores or windows [23]. Figure 2 provides information about the morphology of
poly(S/DVB)HIPE using SEM micrographs with a magnification of ×500, prepared by
a three component surfactant (SPAN80, DDBSS, and CTAB) and difference amounts
of styrene and divinylbenzene in the emulsion systems. The pore size diameters of
poly(S/DVB)HIPE were found to decrease cell size when increasing the amount of di-
vinylbenzene. For 20 vol%, 80 vol%, and 100 vol% DVB, the average pore diameters of
poly(S/DVB)HIPE structure were 79.4 µm, 58.8 µm, and 41.2 µm, respectively. As a results,
the decrease of the average pore diameters of poly(S/DVB)HIPE were affected by the
crosslinking comonomer (DVB). The poly(S/DVB)HIPE system was incorporated more
easily when the system increased the divinylbenzene content, which the crosslink network
formed earlier [24].
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Surface areas of poly(S/DVB)HIPEs prepared by using three difference ratios of
S/DVB i.e., 80:20, 20:80, and 0:100 were measured by an Autosorb-1MP machine. The
result showed that poly(S/DVB)HIPEs had a surface area between 22 and 363 m2/g. The
surface area of poly(S/DVB)HIPEs tended to increase with the increased amount of DVB
in the system, as shown in Table 1, due to the ability of a high degree of crosslinking (DVB),
making the structure more stable [25].
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Table 1. Physical, mechanical, and thermal properties of poly(S/DVB)HIPEs prepared using a
different S/DVB ratio.

Poly(S/DVB)
HIPE

Surface Area
(m2/g)

Compressive
Strength

(MPa)

Young’s
Modulus

(MPa)

Td
(◦C)

Residue Yield
(%)

80:20 22.39 ± 10.30 0.13 ± 0.02 1.79 ± 0.44 373.79 8.18
20:80 189.40 ± 16.14 0.29 ± 0.09 3.59 ± 1.12 432.80 24.81
0:100 363.06 ± 149.77 0.30 ± 0.03 5.41 ± 1.29 440.98 32.51

The mechanical properties of poly(S/DVB)HIPE were studied using the LLOYD
universal testing machine. In Table 1, information on compressive strength and Young’s
modulus of poly(S/DVB)HIPE were given. When increasing the divinylbenzene content,
the compressive strength of the polyHIPE was found to increase from 0.13 to 0.30 MPa.
Young’s modulus of sample was increased from 1.79 to 5.41 MPa. The highest compressive
strength and Young’s modulus of poly(S/DVB)HIPE was a S/DVB ratio of 0:100, mainly
because a large amount of crosslinking gave a stronger structure, so when increasing the
amount of DVB in the system, poly(S/DVB)HIPE became more stable than others [25].

Thermal properties of poly(S/DVB)HIPE were investigated by TG analysis. The
decomposition temperature (Td) and residue yield of poly(S/DVB)HIPEs were also listed
in Table 1. The result showed that Td and the residue yield of the samples increased with
the increased concentration of divinylbenzene. Due to the high concentration of DVB, it
led to a high degree of crosslinking, so the structure of poly(S/DVB)HIPE became more
stable [25]. Generally, material used for CO2 capture are exposed to temperatures in excess
of 300 ◦C, so the poly(S/DVB)HIPEs prepared in this study would be suitable for this
application [26].

3.2. Surface Modification of Poly(S/DVB)HIPE

In order to confirm the primary coating layer (consisting of three bilayers of alter-
nating layers of two polyions, PDADMAC(+)/PSS(−)), UV–Vis spectrophotometer was
employed. The number of increased layer of the polyelectrolytes for each layer within
poly(S/DVB)HIPE was monitored by a UV–Vis spectrophotometer with the absorption
of light at 670 nm. The intensity of absorbance of the top surface and cross section of
poly(S/DVB)HIPE increased with the increase in the number of layers from two to six lay-
ers, as shown in Figure 3a,b. Six layers of PDADMAC/PSS were sufficient to successfully
modified the surface of the poly(S/DVB)HIPE. Figure 4 showed that congo red can react
with cation (PDADMAC or amine coating) on the surface (1, 3, 5, and 7 layers). Methylene
blue can react with anion (PSS) on the surface (2, 4, and 6 layers). The homogenous coating
inside and outside poly(S/DVB)HIPE was confirmed (Figure 4). The results of the pho-
tographs of poly(S/DVB)HIPE with dye are illustrated. It was observed that the depth of
color increases with the number of layers (see Figure 4).
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The study was followed by morphology of unmodified and modified poly(S/DVB)HIPEs.
As shown in Figure 5, the micrographs showed similar images before and after the
modification with amine solutions. It can be concluded that amine solution coated on
poly(S/DVB)HIPEs had little influence on the pore structure, as they neither ruptured or
blocked the porosities of the polyHIPEs.
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3.3. CO2 Adsorption Capacities

The CO2 adsorption of neat poly(S/DVB)HIPE and LbL amine-modified poly-
(S/DVB)HIPE were analyzed. Poly(S/DVB)HIPE was modified by amine solution of
polyethylenimine (PEI) or tetraethylenepentamine (TEPA). CO2 adsorption system was
carried out using a mixture gas 15 vol% of CO2 in N2 with a pressure of 30 psi at room
temperature. Figure 6a–c shows the CO2 breakthrough curve of unmodified and amine-
modified poly(S/DVB)HIPEs. Unmodified poly(S/DVB)HIPE at 100 vol% DVB has slightly
higher capacity compared to (S/DVB 20:80) and (S/DVB 80:20) due to the resulting high
surface area, so poly(S/DVB)HIPEs had higher physical adsorption. Compared to unmod-
ified poly(S/DVB) HIPE, amine modified poly(S/DVB)HIPE illustrated the higher CO2
adsorption rate due to the ability of chemical adsorption and physical adsorption, as both
adsorptions lead to higher CO2 adsorption capacity.

Table 2 provides data on the CO2 adsorption capacity of poly(S/DVB)HIPE between
unmodified and amine-modified poly(S/DVB)HIPE. Significantly, CO2 adsorption of
S/DVB 0:100 modified by PEI had the highest adsorption capacity of 1.01 mmol/g. In
addition, elemental analysis results in Table 2 illustrate the difference in the percent of
amine by CHN analysis due to the effect of adhesive amine on different surface areas of
polyHIPE. After the secondary coating (consisting of a layer of polycations, which are
TEPA or PEI) were applied, the element of CHN analysis were used to confirm the amount
of carbon, hydrogen, and nitrogen of the modified poly(S/DVB)HIPEs. From Table 2,
results indicate mass fraction percentage of amine by CHN elemental analysis with the
different ratios of DVB and styrene. It is shown that moderate amounts, 0.52% and 0.59%,
of nitrogen were observed in the 20:80 and 80:20 ratios of styrene and divinylbenzene,
respectively. The highest mass fraction of nitrogen was observed in polyHIPE with the
0:100 ratio, and this is because the highest abundancy of pores was coated with amine
modification [27].
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Figure 6. Comparison of the CO2 breakthrough curve of (a) poly(S/DVB)HIPEs filled with different
ratio of S/DVB, (b) modified poly(S/DVB)HIPEs with PEI and (c) modified poly(S/DVB) HIPEs
with TEPA.

Several kinds of technologies have been employed to reduce the amount of CO2
in the atmosphere by CO2 adsorption. The CO2 adsorption performance of different
materials were compared and outlined in Table 3. From the table, it was found that the
modified polyHIPE with PEI by LbL technique gave a high CO2 adsorption capability at
1.01 ± 0.27 mmol/g.
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Table 2. CO2 adsorption of poly(S/DVB)HIPE between the unmodified and amine-modified surface.

(S/DVB)
Ratio

Mass Fraction of Nitrogen (%) Adsorption Capacity (mmol/g)

Modified
polyHIPE
with PEI

Modified
polyHIPE
with TEPA

Unmodified
Surface

Modified
polyHIPE
with PEI

Modified
polyHIPE
with TEPA

0:100 0.81 1.54 0.71 ± 0.19 1.01 ± 0.27 0.72 ± 0.11

20:80 0.59 0.52 0.64 ± 0.12 0.82 ± 0.62 0.72 ± 0.13

80:20 0.52 0.56 0.63 ± 0.15 0.68 ± 0.16 0.64 ± 0.04

Table 3. CO2 adsorption with different materials.

Materials CO2 Adsorption Capacity
(mmol/g) Ref.

polyHIPE 0.71 ± 0.19 This paper

Modified polyHIPE with PEI 1.01 ± 0.27 This paper

Modified polyHIPE with TEPA 0.72 ± 0.11 This paper

Natural bentonite clay 0.15 mmol/g [28]

Acid- natural bentonite clay 0.38 mmol/g [28]

Activated carbon prepared from lawn grass 0.12 mmol/g [11]

Ionic liquids 4.72 mol of CO2/mol of solvent [7]

Deep eutectic solvents 4.29 g CO2 per g of solvent [7]

Liquid polymers 1.36 mol of CO2/mol of solvent [7]

4. Conclusions

Poly(S/DVB)HIPEs were successfully prepared from high internal phase emulsions
technique and improved the property using difference ratio of DVB in organic phase. The
obtained poly(S/DVB)HIPEs have an open cell structure with an average diameter of
79.4, 58.8, and 41.2 µm and a surface area of 22, 189, and 363 m2/g for S/DVB at 80:20,
20:80, and 0:100, respectively. Moreover, increasing the concentration of divinylbenzene,
the thermal degradation temperature of the poly(S/DVB)HIPE increased from 372 to
440 ◦C and the compressive strength increased from 0.13 to 0.30 MPa. Subsequently,
poly(S/DVB)HIPE became more stable. In addition, poly(S/DVB)HIPEs were completely
modified on the surface with the layer-by-layer polyelectrolyte multilayer (LbL) technique.
Poly(S/DVB)HIPE modified by primary coating at three bilayers and PEI terminated as
the secondary coating with high amounts of DVB (S/DVB: 0:100) in monomer ratio is the
best surface modification to increase the CO2 adsorption capacity up to 42% (from 0.71 to
1.01 mmol/g), when compared with the unmodified poly(S/DVB)HIPE. Compared to
unmodified poly(S/DVB)HIPE, PEI modified poly(S/DVB)HIPE illustrated the highest
CO2 adsorption capacity due to the ability of chemical and physical adsorption. Results
from modified poly(S/DVB)HIPE suggested that it has high adsorption capacity, can easily
desorb, and has low energy of desorption and low cost of adsorption-desorption materials.
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