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Abstract
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target

species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus
thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Caro-

lina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to

Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing

Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20.

Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles.

Seven individuals out of the 212 isofemale lines carried major non-recessive alleles confer-

ring resistance to Cry1F. A pooled colony was created from the seven individuals. This col-

ony was 151.21 times more resistant to Cry1F than a known-susceptible population and

was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results

demonstrate that field populations of S. frugiperda collected from North Carolina are gener-

ally susceptible to Cry1F, but that some individuals carry resistant alleles. The data gener-

ated in this study can be used as baseline data for resistance monitoring.

Introduction
Corn, Zea mays (L.), expressing the Cry1F protein (Event TC1507, Herculex1 I insect protec-
tion technology by Dow AgroSciences and DuPont Pioneer) was first registered in the United
States during 2001. Many primary and secondary lepidopteran pest species, including fall
armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) are targets of this
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event [1,2]. Field resistance of S. frugiperda to Cry1F corn was observed in Puerto Rico during
2006 and relatively high levels of Cry1F resistance were subsequently reported on this island
following these initial observations [3,4]. Cry1F resistant S. frugiperda populations were docu-
mented on the U.S. mainland during 2011–2013 [5].

S. frugiperda is a widely distributed and well-known migrant pest of many crops throughout
North and South America [6,7], and is a key pest of corn in the lower southeastern US [8]. It is
also a sporadic pest of cotton, soybean and other crops, including many vegetables [9]. In
North America, this insect has two distinct overwintering populations in Texas/Mexico and
southern Florida that migrate north during spring [10,11]. These populations are separated by
the Appalachian mountain range and overlap in Alabama/Georgia and in the mid-Atlantic
[12,13]. Cry1F resistant S. frugiperda likely developed in 2006 in Puerto Rico [3]; although
Cry1F resistant populations of S. frugiperda were not present on the U.S. mainland during
2012 [4], a 2013 study documented the first known Cry1F resistance in this geography. The
highest Cry1F resistance ratios were located in Florida and North Carolina, but not in Georgia,
Louisiana or Texas (excluding Louisiana and Florida lines isolated from populations using an
F2 screen) [5]. In the U.S. mainland north of Florida, S. frugiperda has been effectively managed
using corn hybrids expressing Cry1F [14,15]. The number of resistant and susceptible S. frugi-
perda individuals (frequency of resistant alleles) in the U.S. is unknown. With a migratory
insect such as S. frugiperda, frequency of resistance in any location is likely influenced by fitness
costs incurred by resistance [16], local selection, and influx of genes from immigrants.

To maintain the effectiveness of Bt corn, the frequency of resistance genes to Bt toxins
should be monitored with a method that is appropriate for the pest and specific Bt crop
[17,18]. Resistance evolution in field pest populations is complex and is influenced by a num-
ber of factors, including the extent of selection pressure exerted by Bt crops, the initial fre-
quency of resistance alleles in the field population, and the migratory behavior of the adults
[4,19]. Several methods have been developed to estimate recessive resistance frequencies to Bt
corn in target insect pests [5,20–24]. Most methods focus on detecting the frequency of homo-
zygous recessive Bt resistant individuals using specialized bioassays [25,26] and do not estimate
the frequency of major non-recessive resistance alleles. Burd et al. [27] developed a bioassay to
estimate the frequency of these major non-recessive resistance alleles using isofemale lines of
F1/F2 generation. This method is appropriate when resistant alleles are not rare in the
population.

One tactic that is important for maintaining insecticide resistance management is pyramid-
ing Bt toxins, especially with pyramids that express proteins with dissimilar modes action, but
that are effective against the same target pests [28]. Pyramided Bt corn hybrids (second genera-
tion) are being planted more frequently and are more effective for S. frugiperdamanagement
than single Bt protein hybrids (first generation) [14,15,28,29]. One reason pyramided Bt maize
products are becoming more prevalent in North and South America is to manage Cry1F- resis-
tant populations of S. frugiperda. Since resistance in North Carolina was detected during 2013
[5], we carried out experiments using the F1/F2 screening method that was proposed by Burd
et al. [27] to monitor the frequency of non-recessive resistance alleles and larval susceptibility
of S. frugiperda to Bt corn containing single or pyramided genes from eastern North Carolina,
USA.

Materials and Methods

Bioassay of F1 generation on Bt and non-Bt corn tissue
During August through October 2014, a total of 400 S. frugiperda adult females were collected
from a light trap at the Vernon G. James Research and Extension Center (N35.8750,
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W76.6606) in Plymouth, North Carolina, USA. Moths were individually placed into 350-ml
clear plastic cups, covered with gauze, as oviposition substrate. Cups were kept at 27 ± 1°C, 70–
80% RH, and L:D 14:10, and eggs were collected on a daily basis. If the moth produced more
than 70 eggs daily, then the line was used in bioassays. We obtained sufficient eggs from 212
moths to use in bioassays.

The susceptibility of S. frugiperda was first evaluated on leaf tissue from two non-Bt and
four Bt corn hybrids expressing single and pyramided traits (Table 1). Fully expanded leaf tis-
sue of Bt and non-Bt corn hybrids was excised from greenhouse-grown V4–V10 stage plants.
Pilot experiments indicated that larval response (growth and mortality) to Bt in leaf tissue of
this age range was equivalent. Presence of Bt in the plants was confirmed using QuickStix kits
(EnviroLogix, Portland, ME, data not presented), although each single transgenic leaf used in
the study was not individually tested. In the bioassay, 2–3 pieces of leaf tissue from a single
hybrid were placed in each well of a 32 well rearing tray (Frontier Agricultural Sciences, New-
ark, NJ). A single neonate (0–24 h old) was then placed into the well, with every S. frugiperda
line tested on leaves from all corn hybrids. The total number of replicates for each S. frugiperda
and hybrid combination was 32. Trays containing leaf tissues and neonates were placed in
growth chambers maintained at 27°C, 70–80% RH, and L:D 14:10. After seven days, larval
mortality was recorded, with larvae considered dead if they did not respond after being touched
with a camel hair brush. The developmental stage of each surving larva was assessed using
head capsule and body size as indicators; all growth stage values were converted to an ordinal
ranking system where 0 = dead, 1 = first instar, 2 = early second, 3 = mid second, 4 = late sec-
ond, 5 = early third, 6 = mid third, 7 = late third, 8 = early fourth, 9 = mid fourth. The weight
of surviving larvae was also measured.

Bioassay of F2 generation on Bt and non-Bt corn tissue
In order to determine the relationship between the F1 and F2 generation when feeding on Bt
corn, F1 lines with a survivorship�50% were saved for testing during the F2 generation. F1
lines that developed�80% as well on Bt as they did on non-Bt corn were also saved for testing
during the F2 generation. We hypothesized that F1 lines that developed relatively well on Bt
corn carried at least one major non-recessive resistance allele in heterozygous form [30]. From
each line, larvae that developed on non-Bt corn were reared to adult emergence and sib-mated.
Resulting F2 neonates were subject to identical leaf tissue bioassays as described above. In this
study, F2 larvae of 26 lines were tested using corn tissue expressing Cry1F, Cry1A.105
+ Cry2Ab2 + Cry1F, and Cry1Ab + Cry1F + Vip3Aa20.

Confirmation of resistance to Cry1F protein and other Bt protein
resistance
The number of individuals with major resistance genes in a given population is expected to be
low, and heterozygotes are the most probable carriers of resistance alleles in field populations
[25]. Even if a female carries a major dominant resistance gene, the mean growth rate of her F1
offspring on corn expressing Bt should still be reduced compared to what it would be on non-
Bt corn. Therefore, we assumed that if the relative average development ratings of any F1 line
and the resulting F2 lines producted from those populations were�0.8 (rather than 1.0), and
the corrected survival rate was�50% on Bt corn, then the line carried a major resistance gene
[30].

Seven lines were sourced from the F2 screening that had a relative average developmental
rating of�0.8 on leaves expressing Cry1F; these lines were then pooled in the F3 generation.
The protein Cry1F was provided by Dow AgroSciences (Indianapolis, IN) as a gift and stored
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in a dessicator at -20°C. The proteins Cry2Ab2 and Cry1A.105 were provided by Monsanto
Company as a gift and stored at -80°C. Finally, the protein Vip3Aa20 was provided by Syn-
genta Crop Protection (Greensboro, NC) and stored in a freezer at -20°C. Larval susceptiblitity
of the pooled F3 line was assayed using a meridic diet overlay procedure in 128-cell plastic trays
with a 2 cm2 surface area (Frontier Agricultural Sciences). The meridic diet (WARD’S Stonefly
Heliothis diet, Rochester, NY) rearing procedure followed Niu et al. [29]. One ml of Heliothis
diet was dispensed into each 2 cm2 well and allowed to solidify. In the bioassay, ten concentra-
tions, plus a control, were serially diluted using CAPS buffer. Forty μl of the formulated solu-
tion or control was overlaid on the diet using a pipette; control treatments were composed of
both distilled water and buffer. When all of the wells within a tray were treated, each tray was
tilted from left to right and front to back to ensure that the liquid sample completely coated the
surface of the diet. After no liquid was visible on the diet surface, one S. frugiperda neonate lar-
vae (0–24 h old) was added to each well using a fine brush. The trays were sealed with self-
adhesive plastic sheets (BIO-CV-16, CD International Inc.) and placed in a climatic chamber
(27±1°C, 60±10% relative humidity, and L:D 14:10h). The bioassays were repeated three times
for each population, with each concentration repeated three times per bioassay (total of three
replications of 16 neonates/concentration). Mortality (with larvae that remained as first instars
throughout the experiment also considered dead) and the weight of surviving larvae were mea-
sured at seven days after treatment as described before. A Bt-susceptible colony, of S. frugi-
perda, originally obtained from non-Bt maize in Hidalgo Co., TX (SS-TX) [5], was used as a
control.

Data analysis
To control for larval vigor effects, the growth rates of each line were compared on a Bt and a
non-Bt hybrid from the same genetic background. Growth stage values were converted to an
ordinal ranking system as described before. There were two hybrid groups: 1) P1319HR (Her-
culex1I), P1319VYHR (Optimum1 Leptra1), P1319R (related non-Bt, non-Bt1), and 2)
DKC64-89 (Genuity1VT Double Pro™), DKC64-87 (Genuity1 Smart-Stax™), and DKC64-82
(related non-Bt, non-Bt2). The average developmental rating was defined as the the average
ordinal ranking for a single female on each of the hybrids. The relative average developmental
rating for a given line was calculated as the average developmental rating of a specific iso-
female S. frugiperda line on given hybrid divided by the average developmental rating of the
same iso-female S. frugiperda line on a given hybrid [31]. The corrected percentage survival
was obtained using the Abbott’s formula [32]. Pearson’s correlation analysis was used to com-
pare the average developmental rating, the mass weight and the survival rate of a given iso-

Table 1. Hybrids used to screen S. frugiperda in this experiment and the associated lepidopteran-specific Bt proteins.

Trade name Hybrid Lepidopteran-specific insertion event Lepidopteran-specific Bt proteins

Non-Bt1 P1319Ra - -

Herculex1I P1319HRa TC1507 Cry1F

Optimum1 Leptra1 P1319VYHRa TC1507 + MON810 + MIR162 Cry1F + Cry1Ab + Vip3Aa20

Non-Bt2 DKC6482Rb - -

Genuity1VT Double Pro™ DKC6489VT2Pb MON89034 Cry1A.105 + Cry2Ab

Genuity1 Smart-Stax™ DKC6487SSb TC1507 + MON89304 Cry1F + Cry1A.105 + Cry2Ab2

aDuPont Pioneer, Johnston, IA
bMonsanto Company, St. Louis, MO

doi:10.1371/journal.pone.0154492.t001

Frequency of Bt Resistance in Spodoptera frugiperda

PLOSONE | DOI:10.1371/journal.pone.0154492 April 27, 2016 4 / 14



female line to Bt and non-Bt corn hybrids, or to compare the relative average developmental
rating and corrected survival rate of larvae of a given F1 generation with the F2 generation [33].
LC50 (GIC50) or LC90 values were obtained and compared using POLO-Plus [34], with signifi-
cance defined as non-overlapping confidence limits.

Results

Bioassays on F1 generation test
A total of 212 female lines (isofemales) were screened on leaves expressing Cry1F. The relative
average developmental ratings for most lines on Cry1F ranged from 0.00 (dead) to 1.00 with a
mean relative average developmental rating of 0.15 (Fig 1a, Table 2). Twenty-six out of 212
lines had a corrected survival rate�50% and were saved for testing the F2 generation (Table 2).
Among the 26 lines, there were eight lines with a relative average developmental rating�0.80
(Table 2).

A total of 212 female lines (isofemales) were screened on leaves expressing Cry1A.105
+ Cry2Ab2. The relative average developmental ratings for most lines on Cry1A.105
+ Cry2Ab2 ranged from 0.00 (dead) to 0.50 with a mean relative average developmental rating
of 0.01 (Fig 1b, Table 2). None of the 212 female lines had a relative average developmental rat-
ing�0.80 or a corrected surviorship�50% (Table 2). No larvae survived on leaves expresing
Cry1F + Cry1A.105 + Cry2Ab2 or Cry1F + Cry1Ab + Vip3A; hence, relative average develop-
ment ratings were 0.00 for these Bt pyramids.

Average development ratings were not correlated between leaves expressing Cry1F and
leaves from a related non-Bt hybrid, or between leaves expressing Cry1A.105 + Cry2Ab2 and
leaves from a related non-Bt hybrid (Table 3). Similarly, relative average development ratings
were not correlated between leaves expressing Cry1F and leaves expressing Cry1A.105
+ Cry2Ab2. Furthermore, there was no correlation for survival between leaves expressing
Cry1F, or Cry1A.105 + Cry2Ab2, and leaves from their respective related non-Bt hybrids;
finally, there was no correlation between corrected survival between leaves expressing Cry1F
and leaves expressing Cry1A.105 + Cry2Ab2 (Table 3).

There was a correlation between average developmental rating and survival on leaves
expressing Cry1F, larval weight and survival on leaves expressing Cry1F, and average develop-
ment rating and larval weight on leaves expressing Cry1F (Table 3). In contrast, there was no
correlation between average development rating and survival on non-Bt leaves from the same
hybrid family as the Cry 1F leaves (non-Bt1). Larval weight was correlated with survival, as was
larval weight and average developmental rating, on non-Bt leaves from the same hybrid family
as the Cry1F leaves (non-Bt1).

Average developmental rating was correlated with survival, as well as larval weight on leaves
expressing Cry1A.105 + Cry2Ab2 (Table 3). Similarly, these factors were correlated for larvae
that developed on non-Bt corn leaves from the same hybrid family as the Cry1A.105
+ Cry2Ab2 leaves (non-Bt2).

Bioassay on F2 generation test
A total of 26 isofemale lines that survived to the F2 generation were screened on corn leaves
expressing Cry1F, Cry1F + Cry1A.105 + Cry2Ab2, and Cry1F + Cry1Ab + Vip3A20. The dis-
tribution of the relative average developmental ratings on Cry1F leaves of seven-day old larvae
from all these lines on Cry1F is presented in Fig 2. These relative average development ratings
for most lines on Cry1F ranged from 0.40 to 1.0 with a mean relative average development rat-
ing of 0.67 (Table 2). No larvae survived on Cry1F + Cry1A.105 + Cry2Ab2 and Cry1F
+ Cry1Ab + Vip3A; consequently relative average development ratings were 0.00.

Frequency of Bt Resistance in Spodoptera frugiperda
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There was a positive correlation between relative average development ratings of these 26
lines between the F1 and F2 generation on Cry1F leaves (r = 0.4323, P = 0.0274, Fig 3a). There
was also a positive correlation between corrected seventh day survival of these 26 lines between
the F1 and F2 generation on Cry1F leaves (r = 0.5022, P = 0.0089, Fig 3b). Since these results
indicate a genetically-based variation in response to Cry1F, the frequency of major resistance
alleles to this protein was calculated as 0.009346 (Table 2).

Confirmation of resistance to Cry1F protein and other Bt protein
resistance
There were seven F2 generation lines with relative average developmental ratings�0.8 on
Cry1F leaf tissue; this relative average developmental rating was used as a threshold, above
which the development of these larvae on Cry1F leaf tissue was considered to be substantially
higher compared to other lines in the F2 generation (Table 2). The seven lines with a relative
average developmental rating�0.8 on Cry1F leaves in the F2 generation were pooled, mated,
and tested for their resistance level to Cry1F, Cry2Ab2, Cry1A.105, and Vip3Aa20 protein dur-
ing the F3 generation (pooled population). The corrected percent surviorship after seven days
of a Cry1F-susceptible control line (SS-TX) was zero at 1667 ng/cm2, while the corrected

Fig 1. Distribution of the relative average development rating for seven-day old F1 larvae of S.
frugiperda female lines on corn leaf tissue expressing Cry1F (A) or Cry1A.105 + Cry2Ab (B).

doi:10.1371/journal.pone.0154492.g001
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surviorship after seven days of the pooled-population was 78.72% at the same concentration of
protein (Fig 4). The LC50 of the SS-TX population to Cry1F was 131.601 ng/cm2. No significant
larval mortality (�21.28%, corrected mortality) of the pooled population was observed across
any of the Cry1F concentrations assayed; thus, the LC50 value of this population was estimated
to be greater than the highest Cry1F concentrations tested (>19900 ng/cm2), which corre-
sponded to a resistance ratio of>151.21.

The LC50 of the SS-TX population to Cry1A.105 was 0.241 ng/cm2, 4.4 times lower than
that of the pooled population (1.070 ng/cm2). Since the 95% confidence limits overlapped, this
difference was not significant. In contrast, the confidence limits of the LC90 values did not over-
lap. The LC90 of the SS-TX population was 30.5 times lower (1.292 ng/cm2) than that of the
pooled population (39.382 ng/cm2, Table 4). The growth inhibition curve after seven days
(GIC50), was 0.027 ng/cm

2 with 95% CL of 0.004–0.072 for the SS-TX population and 0.880
ng/cm2 with 95% CL of 0.306–3.426 for the pooled population. This indicates that the pooled
population was 32.59 times more resistant to Cry1A.105 compared to the known Cry1F sus-
ceptible control population.

The LC50 and LC90 response to Cry2Ab was not different between the SS-TX and pooled
populations. A significant difference in mortality response was observed to Vip3Aa20 between
the two populations in both the LC50 and the LC90 (Table 4); the pooled population was more
sensitive to Vip3A20 than SS-TX population (sensitivity ratio = 4.61).

Discussion
In this study, we used the F1/F2 larvae of isofemale lines to test the frequency of non-recessive
resistance alleles of S. frugiperda collected in North Carolina. The bioassays of F1/F2-generation

Table 2. Estimated resistance allele frequency for major non-recessive resistance alleles with Bayesian 95% credibility intervals for field-collected
S. frugiperda individual female lines (n = 212) to Bt corn hybrids.

Protein
expressed in
leaf tissue

F1 generation bioassay F2 generation bioassay Estimated r
allele

frequency
(95% CI)b

Number
tested

Relative
average

development
rating per line
Mean (±SE)

%
Corrected
survival
�50%

Number with
relative average
developmental
rating �0.8

Number
tested

Relative
average

development
rating per line
Mean (±SE)

Number with
relative average
developmental
rating �0.8a

Cry1F 212 0.15 ± 0.02 26 8 26 0.67 ± 0.03 7 0.009346
(0.004048–
0.016795)

Cry1A.105
+ Cry2Ab

212 0.01 ± 0.00 0 0 - - - <0.001168
(0.00003–
0.004305)

Cry1F
+ Cry1A.105
+ Cry2Ab2

212 0.00 ± 0.00 0 0 26 0.00 ± 0.00 0 <0.001168
(0.00003–
0.004305)

Cry1F
+ Cry1Ab
+ Vip3Aa20

212 0.00 ± 0.00 0 0 26 0.00 ± 0.00 0 <0.001168
(0.00003–
0.004305)

aMoth was regarded as an individual with a resistance allele if, during the F1 and F2 generation, the relative average development ratings were �0.8.
bEach mated female carries two of her own alleles and two from her male counterpart (if she mated only once); by screening females on Bt corn to

characterize (4 × total number) the genome, the estimated frequency for the resistance allele to each Bt hybrid would be: (the number of individual with

resistance allele + 1) / 4 × (total number + 2)[26].

doi:10.1371/journal.pone.0154492.t002
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individuals used in this study were specifically designed to test the fitness of individuals with
resistance genes, to detect the presence of dominant resistance genes in the heterozygous form,
or to detect the presence of recessive resistance genes in the homozyous form. A total of 212
isofemale lines were successfully screened on leaves expressing Cry1F; of these, seven

Table 3. Pearson correlation values of average developmental ratings, relative average developmen-
tal ratings, percent survival (corrected using Abbot’s formula [32]), and larval weight (after seven
days) of F1 S. frugiperda lines selected on leaves expressing Bt and non-Bt leaves of closely related
hybrids. * = P <0.05, ** = P <0.001.

Correlation r P

Average developmental rating on non-Bt1 and Cry1F 0.0142 0.8374

Average developmental rating on non-Bt2 and Cry1A.105 + Cry2Ab2 -0.0526 0.4465

Relative average developmental rating on Cry1F and Cry1A.105 + Cry2Ab2 0.0962 0.1629

Percent survival on non-Bt1 and Cry1F 0.0614 0.3735

Percent survival on non-Bt2 and Cry1A.105 + Cry2Ab2 0.0641 0.3529

Percent corrected survival on Cry1F and Cry1A.105 + Cry2Ab2 -0.0201 0.7715

Percent survival and average developmental rating on non-Bt1 0.0781 0.2577

Percent survival and average developmental rating on Cry1F 0.7522** <0.0001

Percent survival and average developmental rating on non-Bt2 0.1533* 0.0256

Percent survival and average developmental rating on Cry1A.105 + Cry2Ab2 0.7518** <0.0001

Larval weight on Cry1F and Cry1A.105 + Cry2Ab2 -0.0379 0.5828

Percent survival and larval weight on non-Bt1 0.2516** 0.0002

Percent survival and larval weight on Cry1F 0.5402** <0.0001

Percent survival and larval weight on non-Bt2 0.5310** <0.0001

Percent survival and larval weight on Cry1A.105 + Cry2Ab2 0.8047** <0.0001

Average developmental rating and larval weight on non-Bt1 0.4552** <0.0001

Average developmental rating and larval weight on Cry1F 0.4986** <0.0001

Average developmental rating and larval weight on non-Bt2 0.3224** <0.0001

Average developmental rating and larval weight on Cry1A.105+ Cry2Ab2 0.8808** <0.0001

doi:10.1371/journal.pone.0154492.t003

Fig 2. Distribution of the relative average development rating for seven-day old F2 larvae of S.
frugiperda female lines on corn leaf tissue expressing Cry1F.

doi:10.1371/journal.pone.0154492.g002
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individuals were identified as carrying major alleles conferring resistance to Cry1F. The major
resistance allele frequency to Cry1F was 0.009346. According to the categories and patterns of
field-evolved resistance to Bt crops described by Tabashink et al. [35], the resistance level of S.
frugiperda to Cry1F in this location could be characterized as an early warning of resistance, as
3% of the individuals were resistant, with good development on Cry1F corn leaves compared
to non-Bt. The relatively low frequency of resistance alleles in this single location also con-
firmed the observations of previous investigators, who characterized corn hybrids expressing
Cry1F as effective to manage S. frugiperda in the mainland US north of Florida [14, 15]. It
should be noted that this estimation is conservative because it did not estimate the frequency of
recessive alleles in the heterozygous form.

In addition, we did not detect resistance to Bt corn pyramids expressing Cry1A.105
+ Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Pyramided Bt
crops can delay the evolution of resistance by producing two or more distinct toxins that kill

Fig 3. Correlations between the relative average developmental ratings (A) and corrected percent
survival (B) for S. frugiperda lines during the F1 generation and their offspring during the F2

generation. Larvae were reared on corn tissue expressing Cry1F. Pearson correlation results reported as r
and P values.

doi:10.1371/journal.pone.0154492.g003
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the same pest, although the effect of the pyramid is reduced when there is cross resistance [36]
and there is resistance to one or more of the toxins in the pyramid [37]. Our findings of
increased lethal concentration values to Cry1A.105 protein in the population selected on
Cry1F leaves (F3 pooled population) compared to a known Cry1F susceptible population
(SS-TX) indicate that, based on the current available pyramided Bt corn hybrids, pyramiding
without consideration for cross-resistance may not be the best tactic to delay the development
of resistance. However, we did not clearly show cross resistance, as there were no correlations
between Cry1F and Cry1A.105 + Cry2Ab2 for relative average developmental ratings, percent
survival, and larval weight (after seven days) of F1 S. frugiperda lines. Furthermore, diverse
mechanisms of resistance to Bt toxins and diverse mutations of resistance alleles associated
with Bt toxins have been reported for many insect species [38–43]. Hence, the genetic basis for
resistance to pyramided Bt crops may involve multiple loci. As a result, the method proposed
by Andow and Alstad [26] to estimate the frequency of resistance may overestimate this

Fig 4. Concentration-mortality response (ng/cm2) of S. frugiperda neonates of a known susceptible
population (SS-TX) and a population selected on Cry1F corn leaf tissue (pooled F3) to a diet overlay
assay using Cry1F protein.

doi:10.1371/journal.pone.0154492.g004

Table 4. Concentration-mortality response (ng/cm2) of S. frugiperda neonates of a known susceptible population (SS-TX) and a population
selected on Cry1F corn leaf tissue (pooled F3) to diet overlay assays using Cry1F, Cry2Ab2, Cry1A.105 and Vip3Aa20 proteins. SE = standard error;
CL = confidence limits; LC50 = concentration of protein (ng/cm2) required to kill 50% of larvae in the observation period of seven days; LC90 = concentration of
protein (ng/cm2) required to kill 90% of larvae in the observation period of seven days.

Protein Population n Slope ± SE LC50 (95% CL)a LC90 (95% CL)a

Cry1F SS-TX 336 1.986 ± 0.370 131.601 (66.591–193.520) 581.459 (417.808–950.041)

Pooled F3 512 0.146 ± 0.088 >19900 -

Cry2Ab2 SS-TX 336 1.851 ± 0.441 160.351 (35.346–263.473)a 790.135 (491.267–3178.453) a

Pooled F3 336 1.135 ± 0.401 408.462 (93.176–836.623)a 5487.257 (1924.345–906567.387)a

Cry1A.105 SS-TX 336 1.759 ± 0.410 0.241 (0.079–0.420)a 1.292 (0.781–2.951)a

Pooled F3 336 0.818 ± 0.181 1.070 (0.205–3.144)a 39.382 (9.896–2456.091)b

Vip3Aa20 SS-TX 336 2.328 ± 0.469 156.496 (87.152–217.960)a 555.817 (404.762–945.182)a

Pooled F3 336 1.376 ± 0.235 33.913 (6.172–71.768)b 289.402 (145.516–1015.551)b

aValues designated by different letters within a column are significantly different from each other. Values were significant when 95% fiducial limits did not

overlap.

doi:10.1371/journal.pone.0154492.t004
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frequency, since it is based on the assumption of a single resistant allele. A appropriate method
should be developed to estimate the frequency of resistant alleles to Bt crop pyramids in the
future.

The most probable carrier for a resistance gene in field populations is a heterozygote, since
homozygous resistant individuals are rarer. Also the most probable mating is between hetero-
zygote and homozygote susceptible individuals [44]. Thus, the most likely offspring from this
cross would be one-half heterozygote and one-half homozygote susceptible. Hence, the Cry1F
resistance gene we observed is dominant or incompletely dominant, since 26 out of the 212 iso-
female lines had a corrected survival� 50% and relative average developmental rating� 0.8
on Cry1F leaves in the F1 generation. Results in this paper are not consistent with those
reported previously [3,18,23], which indicated that the Cry1F resistance gene of S. frugiperda
in Puerto Rico was recessive or incompletely recessive. Likely the inheritance of resistance to
Cry1F in populations of S. frugiperda is complex.

In our study, resistance was characterized by F1/F2 screening using corn leaves expressing
Cry1F. After the F2 generation, seven resistant individuals were pooled and their offpsring
were assayed in the F3 generation. These displayed a>151.21-fold resistance to Cry1F com-
pared to a known susceptible population. Based on the growth inhibition bioassay, the selected
pooled population also displayed a 32.59-fold resistance to Cry1A.105. These results are consis-
tent with a previous study which demonstrated resistance to both Cry1F and Cry1A.105 in a
Florida S. friguperda population [5]. Since both Cry1F and Cry1A.105 have a high affinity and
compete for the same binding sites, cross-resistance is likely between these two proteins [45].
Furthermore, Cry1F-resistant S. frugiperda was susceptible to Cry2Ab and Vip3Aa20, consis-
tent with populations tested from Florida [5] and Puerto Rico [23]. Since these proteins do not
share midgut binding sites, cross-resistance among these toxins would be unexpected
[23,45,46]. However, the population selected on Cry1F leaves (pooled population in this study)
was more susceptible to Vip3Aa20 than a known Cry1F susceptible population (SS-TX). The
explanation for this finding is unclear. It is possible that there is antagonism or negative cross-
resistance between Cry1F and Vip3Aa20. Another possibility is that there is inherent variation
in susceptibility to Vip3Aa20 between these two strains that are from two geographically dis-
tinct and genetically distinct populations [13].

Nonetheless, our results also suggest that deploying Cry2Ab and Vip3Aa20 alone or in a
pyramid is an effective tactic to manage S. frugiperda in the southern US. Moreover, the high
frequency of Cry1F resistant S. frugiperda populations in Puerto Rico, the tropical climate, the
year-round cultivation of maize, extensive prior use of Bt as an insecticidal foliar spray, abun-
dant pest populations, drought conditions, and minimal use of non-Bt refuge are likely the
main factors that led to resistance evolution in S. frugiperda [3,4, 24]. Most of these conditions
are not present in the North Carolina environment, with the exception of short-term drought
and minimal use of non-Bt refuge. Huang et al. [5] speculated that because S. frugiperda is a
polyphagous insect with a wide host range, selection pressure in North Carolina does not
appear to be a major factor driving the development of field resistance. In our North Carolina
study, we documented resistance allele frequency to Cry1F as 0.009346. It is unclear whether
this resistance is a result of immigrants from other areas or from local selection in North Caro-
lina. More work should be done to document the host range of this insect and the interplay of
local movement and long-range dispersal to improve resistance management in Bt crops.
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