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Abstract: Spinal muscular atrophy is one of the most common inherited neuromuscular 

conditions; our understanding of the genetic pathology and translational research coming from 

this insight has made significant progress over the past decade. This short review provides the 

background of the disease along with the bench to bedside progress of some promising treatment 

options to develop better understanding of the present state of the disease.
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Introduction
Spinal muscle atrophy (SMA) is an autosomal recessive neurodegenerative disease and 

a leading global genetic cause of infant death.1 It is characterized by the loss of α motor 

neurons from the anterior horn of the spinal cord resulting in muscle weakness, trunk 

paralysis, and muscle atrophy.2 With an estimated prevalence of 1 in 6,000–11,000 live 

births and a carrier frequency of 1 in 40 to 1 in 60 among different ethnic groups and 

geographical location,3–7 SMA is the most common monogenic disease fatal to infants 

and one of the most common forms of neuromuscular disorder in childhood.

SMA is classified into three major groups based on the age of onset and severity 

of the disease;8–11 Type I SMA (Werdnig–Hoffmann disease) is the most prevalent and 

severe form of the disease with postnatal onset within the first six months. These patients 

are never able to sit and usually succumb within 2–5 years of age due to respiratory 

failure.11–13 Patients with the intermediary form or type II SMA develop muscle weak-

ness within 6–18 months of age. Although these patients can sit, due to progressive 

muscle weakness, they can never stand or walk. Type III SMA (Kugelberg–Welander 

disease) has an onset between 18 months and 30 years of age with patients able to 

walk on their own (with some assistance).11,12,14,15 The diagnosis of SMA is typically 

established through physical examination, patient history, electromyography followed 

by confirmatory genetic testing.3 Muscle biopsy may also be done in some cases16 

although less frequently since the advent of genetic testing.

The lack of functional survival motor neuron (SMN) protein due to deletion or 

mutation in the SMN1 gene is the cause of SMA.17 SMN is an evolutionary conserved 

RNA-associated protein required for cellular viability; complete loss of functional full-

length SMN protein is therefore embryonically lethal.18–20 Humans due to an evolutionary 

recent duplication event at chromosome 5q17,21 possess a nearly identical SMN paralog, 

SMN2 (Figure 1) and thus uniquely among all species can survive loss of SMN1.

Although, SMN2 has only few translationally insignificant nucleotide differences 

compared with SMN1, the C to T transition at position 6 of exon 7 results in the 
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production of an alternative splice variant. Consequently, 

SMN2 produces only ∼10% of the full-length functional 

SMN protein produced by SMN1; the remaining mRNA 

lacks exon 7 and is translated into a truncated, unstable non-

functional protein called SMN∆7 which, failing to oligomer-

ize, is quickly degraded (Figure 2).22,23

Greater than 95% of all SMA patients have homozygous 

deletions of SMN1 gene.17 All SMA patients have at least 

one copy of SMN2, which produces low levels of functional 

SMN protein and acts as a disease modifier. There is an 

inverse correlation between SMN2 gene copy number and 

disease severity, ie, an increase in the SMN2 gene copy 

number decreases the SMA severity.24,25 Typically, SMA 

type I patients have one or two copies of SMN2 gene com-

pared with two to three copies in type II, and three to four 

copies in types III and IV. Individuals with more than four 

copies of the SMN2 gene are completely asymptomatic not-

withstanding the deletion of SMN1.

A central function of 294 amino acid long SMN protein is 

the assembly of small nuclear ribonucleic proteins (snRNPs) 

which are essential for splicing.26–35 With mutations in the 

ubiquitously expressed SMN shown to cause SMA, we are 

left with a question posed in this disease gene cloning era; 

how do mutations in a gene which is expressed everywhere 

(ie, SMN) mainly impact neurons (despite several recent 

studies suggesting a role for SMN in other tissue types 

as well36–44). Although the precise pathogenic molecular 

mechanism of SMA is not known, it is believed that the lack 

of motor neuron SMN protein may lead to a synaptopathy 

resulting in apoptotic death of motor neurons.20,45

Presently, only multidisciplinary supportive care includ-

ing, critically, respiratory support is available for most 

children with SMA.10 Although these interventions have 

improved both life expectancy and quality of the life, an 

effective therapy for SMA is eagerly awaited by patients, 

their families, researchers, clinicians, and support care staff 

alike. Several approaches are currently being pursued as the 

following section outlines.

Therapeutic strategies for SMA
Gene therapy
Gene therapy is one of the most promising therapeutic 

advances for SMA. In the past 6 years, several groups 

have used self-complementary adeno-associated virus 

serotypes 8 and 9 carrying human SMN1 cDNA to treat 

mouse models of SMA. The most encouraging results (ame-

lioration of disease phenotype and dramatic extension in the 

life span) were observed with pre-symptomatic treatment of 

SMA mice.46–49

These promising results helped scientists at  Nationwide 

Children’s Hospital to receive a fast track designation from the 

US Food and Drug Administration (FDA) for  ChariSMA™ 

(gene therapy product) to be tested as a SMA therapeutic. 

At the time of writing, a phase I clinical trial at  Nationwide 

Children’s Hospital in collaboration with AveXis Inc. and 

The Sophia’s Cure Foundation is underway to evaluate safety 

SMN1 SMN2NAIP NAIP

Centromeric copy Telomeric copy

Chromosome 5

Figure 1 Human SMN locus on chromosome 5q showing inverted duplication of 
SMN1 and NAIP genes.
Abbreviations: NAiP, neuronal apoptosis inhibitory protein; SMN, survival motor 
neuron.
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Figure 2 Schematic diagram showing SMN1 (A) and SMN2 (B) genes along with their corresponding mRNA and protein products.
Abbreviation: SMN, survival motor neuron.
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and efficacy of gene transfer (systemic AAV9-delivered 

SMN1 gene) in SMA type I patients. The major challenges 

to bring this treatment into clinics are clinical safety, the cost 

of virus and the possibility of an immune response neutral-

izing AAV.50

SMN2-dependent therapies
Given the role of SMN2 as a modifier gene for SMA, the 

inverse correlation between the SMN2 gene copy number 

and disease severity, the gene itself has become a drug 

target. Strategies includes a) inducing the expression of 

SMN2, b) modulating splicing of SMN2-derived transcript, 

and c) stabilizing the full-length SMN2-derived mRNA and/

or protein (Figure 3).51,52

Activation of SMN2 promoter
Histone deacetylases (HDACs) through chromatin conden-

sation are known to repress transcription of genes such as 

SMN2. Several HDAC inhibitors including sodium butyrate, 

valproic acid (VPA), and phenyl butyrate have been assessed 

for SMN2 induction in cellular and animal models of the 

disease as well as in clinical trials as potential therapeutic for 

SMA.53–57 Although they showed promise in cell culture and 

SMA mouse models, no significant clinical improvement has 

been observed in SMA patients with HDAC inhibitors.2,58,59

The STAT5 pathway has been implicated in the activa-

tion of SMN2 promoter.60–62 The human lactation hormone 

prolactin (PRL) and human growth hormone (HGH) have 

been shown to activate the STAT5 pathway which results in 

an increase in both SMN2 gene transcription and full-length 

SMN protein both in vitro and in vivo, resulting in attenuation 

of the SMA mouse model severity. PRL treatment resulted in 

significant survival and attenuation of disease phenotype in 

the SMA mouse model, a possible reflection of the signifi-

cant SMN induction observed with PRL treatment in vivo.61 

Although, PRL has been proven safe and was successfully 

tested in humans for the treatment of lactation-deficient 

mothers,63 the absence of clinical grade PRL is delaying its 

further assessment as a potential SMA therapeutic in the 

patient population. A Phase II trial in SMA type II/III patients 

showed no improvement in muscle function or strength after 

3 months of treatment with HGH.64 However, it should be 

noted that only a single low dose of HGH was used and 

peripheral white blood cell SMN levels were not assessed 

in the patient population. Before crossing HGH off the list 

of SMA therapeutics, it may be beneficial to do a HGH dose 

escalation study especially in younger SMA patient popula-

tion assessing muscle strength and monitoring changes in 

lymphocyte SMN levels.

The deCODE project initiated by Families of SMA (now 

cureSMA) identified C5-substituted quinazoline activity in 

increasing SMN2 promoter activity and thus SMN protein 

in cell-based assays. The DcpS inhibitor RG3039, a deriva-

tive of quinazolines, has since been tested and reported to 

mildly improve both survival and motor function in two 

mouse models of SMA through an increase in full-length 

SMN2 gene
dependent
therapies

Targeting
SMN2 gene derived

full length SMN
protein

Targeting
SMN2 gene

derived mRNA

Targeting
SMN2 gene
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of exon 7
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Full length
SMN protein
stabilization

Figure 3 Current SMN2 gene-derived therapeutic approaches to SMA.
Abbreviations: SMN, survival motor neuron; SMA, spinal muscle atrophy.
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SMN levels.65,66 The compound was initially out-licensed to 

Repligen Corporation (Waltham, MA, USA) which in 2012 

out-licensed to Pfizer Pharmaceuticals (New York, NY, USA); 

however, the program has now been halted.

Correction of splicing
The significant majority of transcripts arising from SMN2 

gene lack exon 7; agents that suppress exon 7 skipping have 

thus become the goal of a number of laboratories. Several 

small compounds including HDAC inhibitors such as VPA, 

TSA, and sodium butyrate have been assessed for their 

capacity to increase full-length SMN transcript by altering 

the splicing process in vitro.53–57,67 However, regardless of 

any putative effect observed in vitro, no beneficial effect has 

carried over to clinical trials.

Recently, RO6885247 from PTC Therapeutics (South 

Plainfield, NJ, USA) and Hoffmann-LaRoche (Nutley, NJ, 

USA) has been shown to profoundly affect the splicing of 

SMN2 gene to include more exon 7 showing a dramatic posi-

tive impact on SMA model mice.68 A Phase I clinical trial 

is currently underway to assess the safety profile along with 

tolerability of this compound.

Antisense oligos (ASOs) are increasingly being used 

for therapeutic/experimental purposes to treat a number of 

diseases including SMA, duchenne muscular dystrophy, 

and myotonic dystrophy.41,69–72 A bifunctional ASO comple-

mentary to SMN2 exon 7 pre-mRNA sequences has been 

designed and tested to promote the inclusion of exon 7 and 

at the same time inhibit binding of negative splicing factors 

which ultimately results into increased production of full-

length SMN mRNA.41,71

ASOs are not blood brain barrier (BBB) penetrant, 

which initially posed a hurdle in their use as a SMA 

therapeutics.73 Several reports have shown that intrathecal 

injections of ASOs results into improvement in survival 

and disease phenotype in SMA mice.71 However, in 2011, 

Hua et al reported an increase in SMN levels along with 

attenuation of SMA phenotype in SMA mice with systemic 

delivery of ASO.41 ISIS pharmaceutical has successfully 

completed early phase trials to show safety, tolerability, 

and pharmacokinetics of intrathecal ISIS-SMN Rx (ASOs) 

in SMA patients. A Phase III has been initiated to test the 

safety and efficacy of intrathecal administration of ISIS-

SMN Rx in patients with infantile-onset and later onset of 

SMA. This represents a significant breakthrough in the field 

of SMA as this is the first compound which has reached 

Phase III clinical trial. The results from these trials are 

eagerly awaited by the SMA community.

Full-length SMN transcript  
and protein stabilization
In addition to the upregulation of SMN2 transcription and the 

modulation of splicing, the stabilization of either mRNA or 

protein is an often overlooked but nonetheless viable potential 

therapeutic approach. In this regard, SMN mRNA has a specific 

AU-rich element region in its 3′-untranslated region which 

marks the mRNA for degradation.74,75 In silico mining of gene 

expression data sets was used to identify the p38 pathway as 

a means of enhancing SMN2 levels. In the initial study, it was 

shown that treatment of neuronal cells with the p38 activator 

anisomycin results in the translocation of protein HuR to the 

cytoplasm where it binds the 3′-untranslated region of SMN 

mRNA and stabilizes the transcript inhibiting its degradation 

which in turn increases the SMN protein level.74 Since then 

several p38-activating compounds have been identified and 

reported to increase the SMN protein level in vitro as well as 

in vivo.76,77

Celecoxib, a safe, well-tolerated prescription medication 

used widely for arthritis and in some pediatric rheumatologic 

diseases, was identified as a BBB penetrant, p38-activating 

compound.78,79 Treatment with low dose of celecoxib 

increased SMN protein levels in both human and mouse 

nerve cell cultures, as well as in patient fibroblasts. In a severe 

SMA mouse model, mice treated with celecoxib showed an 

increase in the SMN protein in central nervous system (CNS) 

tissues. In addition, SMA mice also showed an improved 

motor function and a statistically significant 40% extension of 

survival as compared to mice treated with placebo.76 A Phase 

I/II clinical trial is planned for this FDA approved agent in 

2015; it may be with the hope that celecoxib may serve as 

an adjunctive therapy for SMA, particularly given the low 

safe doses are required for SMN induction.

Aminoglycoside antibiotics, such as tobramycin and ami-

kacin which have been shown to mask premature stop codon 

mutations in some genes, have been used to increase SMN 

protein levels in patient fibroblasts. However, there efficacy 

and safety has yet to be tested successfully in animal models of 

the disease.80–82 An alternative potential therapeutic approach 

involves targeting the ubiquitin–proteasome pathway which 

targets many proteins including SMN for degradation. The 

FDA-approved proteasome inhibitor bortezomib has been 

shown to increase SMN levels both in vitro and in vivo.83 

However, the major obstacle to the use of bortezomib as a 

therapeutic is its inability to cross the BBB.

Finally, through the experience gained from treatments 

in animal models of the disease, it is the general consensus 

that, as with most disorders, early timing of the treatment is 
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critical for maximum benefit; optimally, this would involve 

pre-symptomatic identif ication of infants with SMA. 

Newborn screening is therefore an important step in the most 

effective use of novel therapies of SMA allowing intervention 

before the clinical course is set.51,84,85 Hopefully through early 

intervention along with the promising therapeutic candidates 

described in Table 1, there will be an effective therapy and 

possibly a cure for SMA in the near future.
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The authors report no conflicts of interest in this work.
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