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Dysregulated sphingolipid
metabolism and autophagy
in granulosa cells of women
with endometriosis

Bongkoch Turathum1,2†, Er-Meng Gao1,3†,
Khwanthana Grataitong2, Yu-Bing Liu1, Ling Wang1, Xue Dai1

and Ri-Cheng Chian1,3*

1Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University,
Shanghai, China, 2Department of Basic Medical Science, Faculty of Medicine Vajira Hospital,
Navamindradhiraj University, Bangkok, Thailand, 3Shanghai Clinical College, Anhui Medical
University, Hefei, China
Weevaluatedmetabolic profiles between cumulus cells (CCs) andmural granulosa

cells (MGCs) derived fromwomen with endometriosis to identify their correlations

with oocyte quality. CCs andMGCs were collected fromwomen with and without

endometriosis undergoing in vitro fertilization/intracytoplasmic sperm injection

treatment. The metabolomics of CCs and MGCs were measured by liquid

chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed

by a quantitative polymerase chain reaction to further confirm the genes involved

in the metabolic results. LC-MS/MS analysis revealed differences in 24 metabolites

of CCs and 71 metabolites of MGCs between groups. Among them, five

metabolites were upregulated and 19 metabolites were downregulated in CCs

with endometriosis, whereas three metabolites were upregulated and 68

metabolites were downregulated in MGCs with endometriosis. Metabolites

related to sphingolipid metabolism, which included palmitic acid (PA) and

docosahexaenoic acid, increased significantly only in CCs with endometriosis,

whereas sphingosine and PA were significantly downregulated in MGCs with

endometriosis compared with CCs and MGCs without endometriosis. Gene

expression involved in ceramide synthesis (CERS1, SPTL1, and SMPD1) and

autophagy (BECN1, LAMP, and PC3) were significantly higher in CCs with

endometriosis according to FASN, BECN1, and LAMP protein expressions.

However, gene expression involved in ceramide synthesis (SPHK1, ASAH1, and

SGPP1) and autophagy (BECN1, LAMP, and PC3) were significantly lower in MGCs

with endometriosis, whereas CERS1 and UGCG expression increased. There are

differences in sphingolipid metabolites in CCs and MGCs with endometriosis

compared with women without endometriosis. These differences seem to be

involved in the regulation of autophagic cell death in preovulatory follicles.
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1 Introduction

Endometriosis is an estrogen-dependent disorder

affecting women of reproductive age and is characterized by

the presence of endometrial tissue (glands and stroma)

outside the uterine cavity and involved with chronic pelvic

pain and infertility (1). Endometriosis affects fertility and

several processes in the female reproductive system including

folliculogenesis, ovulation, oocyte quality, and implantation

(2). However, the mechanism of infertility is still unclear and

insufficient to summarize the relation between endometriosis

and its poor quality of oocytes (3).

Interest ingly , recent studies demonstrated that

endometriosis affects granulosa cells (GCs) in many aspects

including an increased level of intracellular reactive oxygen

species (ROS) generation, apoptosis, and dysregulation of the

pathway involved in cell growth and development (4). During

folliculogenesis, GCs play a critical role in the maturation of the

oocyte. GCs differentiated into cumulus cells (CCs) and mural

granulosa cells (MGCs) during the development of follicles. CCs

are the cells in immediate contact with the oocyte, and MGCs

line the follicular wall around the antrum. These cells play a

critical role in follicular development and the maturation of

oocytes (5).

Metabolomics is the new powerful tool for approaching

disease progression via the new biomarker identification (6).

Many reports demonstrated that metabolomic analysis in

women with endometriosis in endometrial fluid (7), follicular

fluid (8), urine (9), serum (10), and plasma (11) have

represented the alteration of metabolite profiles. Palmitic acid

(PA; 16:0) is the most common saturated fatty acid found in

the human body (12) and can be provided the role of a

precursor in sphingolipid metabolism-regulated several

biological processes, including cell survival, migration, and

apoptosis (13). Previous studies demonstrated that alteration

of follicular free fatty acid (FFA) levels is involved with oocyte

quality in both animals (14) and humans (15).

Recent studies also showed the excess palmitic acid-

induced apoptosis of GCs in both animals (16) and humans

(17), leading to impairment of ovarian follicular development

and oocyte maturation. Moreover, it has been shown that

sphingolipid metabolism changed in serum, peritoneal fluid,

and endometrial tissue of women with endometriosis (13). In

contrast, a report demonstrated that there is no specific

metabolomic profile in the follicular fluid, which revealed no

impairment of the cumulus–oocyte complex (COC)

microenvironment of women with endometriosis (18).

In the present study, we aim to investigate the metabolic

profiles in CCs and MGCs of women with and without

endometriosis in order to find the correlation with the

quality of the oocyte. We integrated the results of palmitic

acid and sphingolipids’ balance to cell death at mRNA and
Frontiers in Endocrinology 02
protein levels via an autophagic pathway to evaluate the

impact of endometriosis in the follicle related to the quality

of the oocyte.
2 Materials and methods

2.1 Collection and isolation of cumulus
cells and mural granulosa cells

After ovum pick up (OPU) by transvaginal ultrasound-

guided needle aspiration, MGCs and CCs were collected from

the follicular fluid under a stereomicroscope. The density

gradient technique was used to purify MGCs and CCs by 40%

and 80% gradient (SAGE), respectively. Then they were

centrifuged for 15 min at 300 g, and the middle layer was

collected. The remaining red blood cells were lysed by blood

cell lysing buffer (Invitrogen by Thermo Fisher Scientific,

Waltham, MA, USA). Then samples were washed by

centrifugation 3 times with 1× phosphate-buffered saline

(PBS). After that, cells were cryopreserved in liquid

nitrogen until further metabolic analysis (19, 20).
2.2 Liquid chromatography coupled to
tandem mass spectrometry

2.2.1 Chromatography–mass spectrometry
analysis
2.2.1.1 Chromatographic conditions

CCs and MGCs were extracted by methanol/acetonitrile/

aqueous solution (2:2:1, v/v) (21) and separated using Agilent

1290 Infin i t y LC u l t r a -h i gh -pe r f o rmance l i qu id

chromatography (UHPLC) hydrophilic interaction liquid

chromatography (HILIC) column: column temperature was

25°C; flow rate was 0.3 ml/min. Mobile phase composition

A = water +25 mM ammonium acetate +25 mM ammonia

and B = acetonitrile. The gradient elution procedure was 0–

0.5 min, 95% B; 0.5–7 min, linear change of B from 95% to

65%; 7–8 min, linear change of B from 65% to 40%; 8–9 min,

B maintained at 40%; 9–9.1 min, linear change of B from 40%

to 95%; and 9.1–12 min, B maintained at 95%. Samples during

the entire analysis were placed in a 4°C autosampler (21, 22).

2.2.1.2 Quadrupole time-of-flight mass
spectrometry conditions

After the sample was tested, the first- and second-level

spectra were collected using the AB Triple TOF 6600 mass

spectrometer. The electrospray ionization (ESI) source

conditions were carried out according to the instructions

after HILIC separation. Ion Source Gas1 (Gas1) was set to

60, Gas2 was also 60, and Curtain gas (23) was 30. IonSapary
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Voltage Floating (ISVF) was ±5,500 V (positive and negative

modes); source temperature was 600°C; the m/z range of

time-of-flight (TOF) MS scan and product ion scan was 60–

1,000 and 25–1,000 Da, respectively; the accumulation time of

TOF MS scan and product ion scan were 0.20 s/spectra and

0.05 s/spectra, respectively; the secondary mass spectrum was

obtained by information-dependent acquisition (IDA) and

adopts high sensitivity mode; declustering potential (DP) was

set to ±60 V (positive and negative modes); collision energy

was 35 ± 15 eV. IDA setting excludes isotopes within 4 Da,

with candidate ions to monitor per cycle of 6 (24–26).
2.3 Quantitative PCR

Total RNA was extracted by TIANGEN RNA simple Total

RNA Kit (TIANGEN), and RNA concentration was measured

by NanoDrop ND 2000 spectrophotometer (Thermo

Scientific). qPCR was carried according to the manufacturer’s

instructions: cDNA (1 ml), forward and reverse primers (0.2 ml,
10 mM), RNase-free ddH2O (3.6 ml), and ChamQ Universal

SYBR qPCR Master Mix (5 ml). Three-step PCR amplification

protocol was followed: 95°C 30 s; 95°C 10 s! 60°C 30 s, a total

of 40 cycles; 95°C 15 s ! 60°C 60 s ! 95°C 15 s. The

housekeeping gene GAPDH was used as an internal

reference, and the specific primer sequences are shown in

Table 1 (27, 28).
2.4 Western blotting examination

Proteins were extracted by a nuclear protein and

cytoplasmic protein extraction kit (Servicebio, Ghent,

Belgium). Bicinchoninic acid (BCA) protein concentration

assay kit (Servicebio) was used to measure protein

concentration. Western blotting analyses were performed as

usual procedures. Rabbit anti-human FASN polyclonal

antibody (FASN) (abmart, Shanghai, China; 1:1,000), rabbit

anti-human Beclin1 polyclonal antibody (Beclin1) (abmart,

1:1,000), and rabbit anti-human LAMP polyclonal antibody

(Beclin1) (abmart, 1:1,000) were used as the primary antibodies

for CCs. Rabbit anti-human ASAH polyclonal antibody (29)

(abcam, Cambridge, UK; 1:1,000), rabbit anti-human Beclin1

polyclonal antibody (Beclin1) (abmart, 1:1,000), and rabbit

anti-human LAMP polyclonal antibody (Beclin1) (abmart,

1:1,000) were used as the primary antibodies for MGCs. Goat

anti-mouse IgG conjugated with horseradish peroxidase (HRP)

was used as a secondary antibody (abclonal, 1:3,000). The

density of the target bands was analyzed by the Alpha

software processing system (30).
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2.5 Data analysis

The original data of LC-MS/MS were converted into.mzXML

format by ProteoWizard, and then the XCMS programwas used for

peak alignment, retention time correction, and peak area extraction.

Data were preprocessed by Pareto scaling, and multi-dimensional

and one-dimensional statistical analyses were performed. Statistical

analysis includes Student’s t-test and multiple variation analysis,

and volcano maps were drawn by R software (23, 31). The data of

qPCRwere analyzed using GraphPad PRISM 9 software (GraphPad

Software Version 9, La Jolla, CA, USA) and free software for data

manipulation, calculation, and graphical display, and the mRNA

expression level of the target gene was expressed as the mean ±

standard deviation. The independent-samples t-test was used to

assess statistical significance, and p < 0.05 was considered

statistically significant.
3 Result

3.1 Demographic data

Demographic data from women with and without

endometriosis are summarized in Table 2. There were no

significant differences in age, body mass index (BMI), and the

other baseline clinical and endocrine profiles in women in the

endometriosis group compared with the control group except

that the level of estradiol was lower in the endometriosis

group (609.3 pmol/L) when compared with the control group

(172 pmol/L). The fertilization rate was lower in the

endometriosis group (98.28%) when compared with the

normal group (88.81%).
3.2 Metabolomic profiling of cumulus
cells and mural granulosa cells in
endometriosis and control women

Partial least squares discriminant analysis (PLS-DA) score

plots showed that supervised multivariate analysis revealed more

obvious differences between the metabolites between

endometriosis and control, indicating a significant difference

in metabolic components in positive ion mode and negative ion

mode both in CCs (Figure 1A) and in MGCs (Figure 1C). A

volcano plot showed the difference in metabolites between the

two kinds of cells, calculated from data for all tested substances.

Cluster analysis of all the samples further revealed that the repeat

results for endometriosis and controls clustered together,

indicating a significant difference in metabolism both in CCs

(Figure 1B) and in MGCs (Figure 1D).
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TABLE 2 Clinical characteristics of study participants.

Parameters Normal (N = 116) Endometriosis (N = 43) p-Value

Age (year) 32.16 ± 3.156 32.49 ± 3.269 0.559

weight (kg) 58.76 ± 9.949 58.94 ± 8.028 0.914

BMI (kg/m2) 22.52 ± 3.422 21.97 ± 2.864 0.357

FSH (mIU/ml) 8.007 ± 3.087 7.891 ± 2.972 0.832

LH (mIU/ml) 5.221 ± 2.608 5.854 ± 3.029 0.197

Total testosterone (nmol/L) 1.11 ± 2.475 0.8234 ± 0.4951 0.48

E2 pmol/L 609.3 ± 1683 172 ± 73.43 0.091

Number of oocytes retrieved 8.699 ± 5.918 9.095 ± 8.616 0.757

Number of mature oocytes 7.065 ± 5.054 7.857 ± 7.751 0.48

Number of fertilized oocytes 6.237 ± 4.904 6.571 ± 6.352 0.739

Fertilization rate 98.28 ± 109.3 88.81 ± 43.62 0.589

% Clinical pregnancy rate 33.72 32.35
Frontiers in Endocrinology
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Data are means ± standard deviation.
BMI, body mass index; E2, estradiol; FSH, follicle-stimulating hormone; LH, luteinizing hormone; T, testosterone.
TABLE 1 Gene-related information.

Protein Gene Size Primer sequences (5′–3′) Tm

Smase SMPD1 162 F:5′-GCTGGCTCTATGAAGCGATGGC-3′ 63.9

R:5′-AGAGCCAGAAGTTCTCACGGGA-3′ 63.1

SMSynthase SMS2 144 F:5′-GCATTTCCAGTGTGCTCCAAAGC-3′ 63.2

R:5′-GTAACCGTGTGACCGCTGAAGA-3′ 62.8

Serine palmitoyl transferase SPTLC1 118 F:5′-GCAGTGTTGAAGGAAAAGTGCGG-3′ 63.2

R:5′-CAGTGCTCTCTTCCAGTTGTAGG-3′ 60.6

Ceramide synthase CERS1 90 F:5′-ACGCTACGCTATACATGGACAC-3′ 60.3

R:5′-AGGAGGAGACGATGAGGATGAG-3′ 60.5

Dihydroceramide desaturase DEGS1 519 F:5′-TTCTTCTGTACCGCTTTCAG-3′ 55.4

R:5′-TTACTCCAGCACCATCTCT-3′ 55

Sphingosine kinase SPHK1 51 F:5′-AGCTTCCTTGAACCATTATGCTG-3′ 59.3

R:5′-AGGTCTTCATTGGTGACCTGCT-3′ 61.6

Ceramidase ASAH1 149 F:5′-CTTTGCTGGCTATGTGGGCATG-3′ 62.4

R:5′-TGAGGAACCCTATCCACATGGC-3′ 61.8

Ceramide synthase CERS1 90 F:5′-ACGCTACGCTATACATGGACAC-3 60.3

R:5′-AGGAGGAGACGATGAGGATGAG-3′ 60.5

Ceramide Glucosyltransferase UGCG 75 F:5′-TGCTCAGTACATTGCCGAAGA-3′ 59.7

R:5′-GTGGACATTGCAAACCTCCAA-3′ 59.3

Sphingosine-1-phosphate phosphatase 1 SGPP1 137 F:5′-CTGGTGTTCTCTAGTTTGCCTAAG-3′ 59.1

R:5′-GGTTGAAGTTGTCAATCAGGTCC-3′ 59.8

Beclin-1 BECN1 127 F: 5′-GGCTGAGAGACTGGATCAGG-3′ 59.3

R:5′-CTGCGTCTGGGCATAACG-3′ 58.6

Microtubule-associated proteins 1A/1B LC3 186 F:5′-AGCAGCATCCAACCAAAATC-3′ 57

Light chain 3A R:5′-TGTGTCCGTTCACCAACAG-3′ 57.9

Lysosome-associated membrane glycoprotein LAMP 195 F:5′-CTGCCTTTAAA GCTGCCAAC-3′ 57.9

R:5′-TGTTCTCGTCCAGCAGACAC-3′ 60

Sequestosome-1 P62 86 F:5′-CAGAGAAGCCCATGGACAG-3′ 57.5

R:5′-AGGTGCCTTGTACCCACATC-3′ 59.7

Fatty acid synthase FASN 131 F:5′-TTCTACGGCTCCACGCTCTTCC-3′ 64.3

R:5′-GAAGAGTCTTCGTCAGCCAGGA-3′ 61.7
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3.3 Metabolomic analysis of cumulus
cells in endometriosis and
control women

3.3.1 Heat map and metabolite–metabolite
correlation analysis

The results of the metabolomic analysis showed that there

were differences in the metabolic profile of CCs and MGCs in

endometriosis patients compared to controls. There were a

total of 20,556 metabolite ion peaks: 11,784 in the positive ion

mode and 8,772 in the negative ion mode. In CCs, 24

metabolites showed a difference in metabolite level between

endometriosis and control, 14 different metabolites in positive

ion mode, and 10 different metabolites in negative ion mode

(Figure 2A). In MGCs, 71 metabolites showed a difference in

metabolite level between endometriosis and control, 49

different metabolites in positive ion mode, and 22 different

metabolites in negative ion mode (Figure 3A). The metabolites

of variable importance in projection (VIP) >1 with multi-

dimensional statistical analysis and p-value <0.05 with

univariate statistical analysis as the significant differential

metabolites were selected.

For preciseness, the role of cumulus cells on induced

metabolites in endometriosis and multiple metabolites was

screened. These metabolites were randomly divided into four

different types including carbohydrate, amino acid, lipid, and

other metabolites. There were differences in the metabolic

profiles of CCs and MGCs between endometriosis and control.

There were 3 metabolites upregulated in MGCs of endometriosis

including, 1 lipid, 1 amino acid, and 1 other, whereas 68

metabolites were downregulated including 27 lipids, 8 amino

acids, 4 carbohydrates, 6 energy, 9 nucleotides, and 9 nucleic

acid pathways. All the detected metabolites were analyzed by heat

mapping. In CCs, there were 5 metabolites upregulated in

endometriosis, including 1 carbohydrate, 2 lipids, and 2 others,

whereas 19 metabolites were downregulated including 7 lipids, 4

amino acids, 3 carbohydrates, 1 nucleic acid, and 4 other

pathways. All the detected metabolites were analyzed by heat

mapping. As shown in Figure 2A, the heat map indicated

significantly increased levels of palmitic acid and

docosahexaenoic acid (DHA) at 1.7859 and 1.8403, respectively,

while a significantly decreased level of sphingomyelin at 0.445-fold

change in CCs of endometriosis patients; in MGCs, there was a

downregulation of sphingosine as 0.369-fold change (Figure 3A).

Metabolite–metabolite correlations between the tissue of CCs and

MGCs between endometriosis and control showed unique

profiles. Metabolite–metabolite correlations showed significant

correlation coefficients (p < 0.01) in CCs (Figure 2B) and in

MGCs (Figure 3B). Moreover, palmitic acid, DHA, and

sphingomyelin also played important roles in metabolite

correlations in cumulus cells of endometriosis patients, while

sphingosine showed played important roles in metabolite

correlation of MGCs.
Frontiers in Endocrinology 05
3.3.2 Kyoto encyclopedia of genes and
genomes enrichment

Our results showed that CCs and MGCs differentially

expressed metabolites in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis between

endometriosis patients and control. We used the qualitative

difference in metabolite expression quantity of each sample. In

hierarchical clustering, the same group of samples can appear in

the same cluster through clustering. Meanwhile, metabolites

clustered in the same cluster have similar expression patterns

and may be in relatively close reaction steps in the metabolic

process. Figures 2C, 3C shows the results of the metabolite

hierarchy clustering with significant differences in the sample

group. The results showed that the choline metabolism in cancer

and biosynthesis of unsaturated fatty acids were significantly

changed between cumulus cells of endometriosis patients and

control (Figure 2C), while the choline metabolism in cancer,

glycerophospholipid metabolism, purine metabolism, and ABC

transporters were significantly changed between MGCs of

endometriosis patients and control (Figure 3C).
3.4 Gene and protein expression in
cumulus cells and mural granulosa cells

Concerning the alteration of palmitic acid and

sphingomyelin in CCs of endometriosis patients compared to

controls, we evaluated the level of gene involvement in ceramide

synthesis and autophagic pathway. In detail, genes involved in

the ceramide synthesis including Cers1, sptl1, and SMPD1

increased significantly (with p < 0.05) in cumulus cells of

women with endometriosis when compared to normal (1.5-

fold, 2.4-fold, and 1.6-fold, respectively) (Figure 4). Moreover,

the autophagic gene expression including BECN1, LAMP, and

P62 increased significantly (with p < 0.05) in CCs of

endometriosis (2.8-fold, 2.4-fold, and 2.6-fold, respectively) but

not in MGCs of endometriosis (Figure 4A). Our Western

blotting results showed that the expression of FASN, Beclin1,

and LAMP in CCs of the endometriosis group was higher than

that of the control group (Figure 4C).

Concerning the alteration of sphingosine in MGCs of

endometriosis patients compared to controls, we evaluated the

level of gene involvement in sphingosine synthesis, S1P

synthesis, ceramide synthesis, and autophagic pathway. In

detail, genes involved in sphingosine synthesis including

ASAH1 and genes involved in S1P synthesis including SPH1K

decreased significantly (with p < 0.05) (0.1-fold and 0.48-fold,

respectively), while genes involved in the ceramide synthesis

including Cers1 increased significantly (with p < 0.05). In

addition, UGCG mRNA levels in MGCs were significantly

higher in endometriosis patients than in controls (1.88-fold).

However, the autophagic gene expression including BECN1,

LAMP, and PC3 decreased in MGCs of endometriosis
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A
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FIGURE 1

Metabolomic profiling of CCs and MGCs in endometriosis and control women by PLS-DA score plots and volcano plots. Score plots of principal
component analysis of metabolome in the positive ion modes and the negative ion modes from CCs (A) and MGCs (C). These plots display a
clear separation between normal and endometriosis metabolomes. The circle (blue and green) around each sample group represents the 95%
confidence intervals. Volcano plot of CCs (B) and MGCs (D) showing the statistical significance (y-axis) and fold change (x-axis) for the
difference between the metabolome of normal and endometriosis. p < 0.05, fold change ≥ 1.5 in positive ion mode and negative ion mode.
CCs, cumulus cells; MGCs, mural granulosa cells; PLS-DA, partial least squares discriminant analysis.
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B

C

FIGURE 2

Metabolomic analysis of CCs in endometriosis and control women. Heat map of the changes in metabolites related to cumulus cells in
endometriosis and control women. A heat map from cumulus cells in the positive ion modes and negative ion modes (A). These plots display a
clear separation between normal and endometriosis metabolomes. Data of heap map plots reveal unit-variance scaling. The blue color
represents the trend of reduction, and red color represents an increasing trend. Metabolite–metabolite correlation analysis of cumulus cells in
endometriosis and control women in the positive ion modes and negative ion modes (B). Positive correlations are shown in blue, and negative
correlations are shown in red. KEGG-enriched pathways changed between endometriosis patients and control (C). CCs, cumulus cells; KEGG,
Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 3

Metabolomic analysis of MGCs in endometriosis and control women. Heat map of the changes in metabolites related to MGCs in endometriosis
and control women. A heat map from MGCs in the positive ion modes and negative ion modes (A). These plots display a clear separation
between normal and endometriosis metabolomes. Data of heap map plots reveal unit-variance scaling. The blue color represents the trend of
reduction, and red color represents an increasing trend. Metabolite–metabolite correlation analysis of MGCs in endometriosis and control
women in the positive ion modes and negative ion modes (B). Positive correlations are shown in blue, and negative correlations are shown in
red. KEGG-enriched pathways changed between endometriosis patients and control (C). MGCs, mural granulosa cells; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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(Figure 4B). Our Western blotting results showed that the

expression of ASAH1, Beclin1, and LAMP in the CC of the

endometriosis group was higher than that of the control

group (Figure 4D).
4 Discussion

In endometriosis, changes in the follicular microenvironment

of the COC lead to poor oocyte quality. As our results showed, the

rate of fertilization and the level of estradiol in endometriosis had a

tendency to be lower than in healthy women. However, the role of

CCs and MGCs in endometriosis is still unclear. CCs around the

oocyte play a critical role in supporting the oocyte maturation (32)

and in steroidogenesis by promoting P450 aromatase activity for

estrogen synthesis, which is important for follicular development

and generating a competent oocyte to reach the maturemetaphase

II (MII) stage and fertilization (33). However, MGCs line the

follicular wall and perform endocrine functions as well as assist

follicular development (34). Therefore, it is possible that alteration

of fatty acids in the COC, especially in CCs, influences the oocyte

and fertilization. Adverse effects of endometriosis in the
Frontiers in Endocrinology 09
pathophysiology of the CCs have been extensively indicated

including alteration in the cell cycle (29) and disruption of

signaling pathways of CC growth and development (35, 36).

CCs are in transcripts related to metabolism and cell

proliferation in mice, whereas MGCs are rich in transcripts

related to cell signaling and differentiation. In mice, CCs are

enhanced in transcripts related to metabolism and cell

proliferation, whereas MGCs are enhanced in transcripts related

to cell signaling and differentiation (37). Moreover, CCs were

shown to be high in metabolites linked to cholesterol transport

and estradiol generation in human preovulatory follicles, while

MGCs were enriched in metabolites associated with anti-

apoptosis (38). Additionally, previous studies demonstrated that

many types of endometriosis also may negatively affect CCs

steroidogenesis by reducing the level of P450 aromatase,

increasing ROS, and inducing apoptosis (4, 39). A previous

report has shown that endometriosis impaired CC

steroidogenesis, leading to an imbalance in estrogen synthesis

(40). Interestingly, cell death of the follicular cells can be induced

through oxidative stress, hyper-androgenemia, and disturbance of

gonadotropin hormone. Endometriosis impairs the cell cycle in

granulosa cells (29). Recently, many reports indicated that
A B

DC

FIGURE 4

qRT-PCR expression analysis and protein expression of the ceramide synthesis and the autophagic pathway in CCs and MGCs compared
between normal and endometriosis patients. (A) The expression levels of a gene involved in ceramide synthesis (CERS1, SPTL1, SMPD1, SMPD2,
and SMPD3) and genes involved in autophagy (BECN1, LAMP, and P62) were analyzed in CCs compared between normal and endometriosis
patients. (B) The expression levels of a gene involved in ceramide synthesis (SPHK1, ASAH1, CERS1, UGCG, and SGPP1) and genes involved in
autophagy (BECN1, LAMP, and P62) were analyzed in MGCs compared between normal and endometriosis patients. Data (technical triplicates of
three biological experiments) are reported as means ± standard error. *, **, *** indicate a statistically significant difference (p< 0.05, 0.01 and
0.001 respectively). Protein expression in CCs (C) and MGCs (D) was determined by Western blotting using antibodies against FASN, ASAH1,
Beclin1, LAMP, and Actin. The actin band indicates equal loading of proteins. CCs, cumulus cells; MGCs, mural granulosa cells.
frontiersin.org

https://doi.org/10.3389/fendo.2022.906570
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Turathum et al. 10.3389/fendo.2022.906570
estrogen receptor (ER) stress induction results in alteration of

cumulus–oocyte complex (41), activation of ovarian fibrosis (42),

and apoptosis of follicular cells (43). Moreover, a previous report

found that CCs from endometriosis patients reveal senescence

through ER stress-associated endometriosis-associated infertility

and senescence phenotype (44).

Sphingolipid metabolism is important for maintaining normal

follicular and oocyte maturation through modulating energy

metabolism, cell proliferation, apoptosis, and steroid hormone

synthesis (13). Previous studies reported that sphingolipid

metabolism in endometriosis showed alteration in the serum,

plasma, peritoneal fluid, follicular fluid, and endometrial tissue

(13, 23, 45–47). However, no information is reported about CCs

and MGCs correlated between sphingolipid metabolism and

autophagic pathway in endometriosis. Our study focuses on the

role of these follicular cells in terms of metabolism and integrated

biochemical studies. Interestingly, our results demonstrated that

the metabolites related to palmitic acid, sphingolipid metabolism,

and autophagic cell death were enriched in only CCs, indicating

that sphingolipid metabolism plays a critical role in follicle and

oocyte growth. In the literature, previous evidence showed that

sphingolipid metabolism regulated cell death at the molecular

level. In this study, we used a metabolomic assay to evaluate the

sphingolipid metabolism of CCs and MGCs in endometriosis

systemically. Our results represented the alteration of the

biomolecules presented in CCs and MGCs in endometriosis

patients. The metabolic profiling of CCs has evidenced that the

level of palmitic acid was increased in CCs but not in MGCs

according to upregulated FASN gene expression in CCs.

Therefore, the metabolite results suggested that palmitic acid

may play an essential role in CCs and MGCs of endometriosis.

Several studies suggested that elevation of palmitic acid leads to

inflammation in several tissues during pathophysiologic

progression (48, 49). Additionally, recent studies demonstrated

that the accumulation of palmitic acid and its downstream

metabolism leads to inflammation and cell death (50, 51). Y. M.

Mu’s team showed that saturated FFAs, palmitic acid, and stearic

acid induce apoptosis in human granulosa cells in vitro (17). In the

COC, oocytes seem to be more sensitive to fatty acid stress.

Moreover, several reports suggested elevation of fatty acids in

the blood, and follicular fluid affected oocyte maturation (14, 15,

52–54). Previous reports on obesity elevated palmitic acid can

cause insulin resistance (IR) and impairment of glucose

metabolism in ovarian GCs (55). This evidence supports that

palmitic acid is one of the key molecules in lipid metabolism. In

addition, the alteration of sphingolipidomic data in serum,

peritoneal fluid, and endometrial tissue in endometriosis

patients reveals the critical role of lipid metabolism in

pathological progression (13). Interestingly, we suggested that

sphingolipid metabolism can be used by cumulus cells, which

mediate its effect on oocyte maturation.

The key molecules in sphingolipid metabolism are ceramide

and sphingosine-1-phosphate (S1P), which play a critical role
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in survival and cell death. Ceramide is a bio-effector molecule

that mediates cell death, whereas S1P induces cell proliferation

(56). Ceramide is a central molecule of sphingolipid metabolism

and serves as the precursor for several sphingolipids

including sphingomyelin (SM) and Cer-1-phosphate and

glucosylceramide (GlcCer).

Recent studies also demonstrated that elevation and

accumulation of GlcCer are associated with many human

diseases including Gaucher’s disease, polycystic kidney disease,

diabetes, and endometriosis, leading to overproliferation (57).

Both in vitro and in vivo studies indicated that GlcCers inhibited

GlcCer synthase (GCS) through several processes leading to cell

death (58–60). Moreover, endometriosis patients reveal an

association between GCS level and serum and PF GlcCer

accumulation, indicating abnormalities in endometrial

proliferation. Interestingly, an increasing level of Cer would

have induced apoptosis in endometrial cells (61, 62).

According to our results, the elevation of genes involved with

the ceramide synthesis (Cers1, sptl1, and SMPD1) in CCs

associated with elevated palmitic acid in metabolomic analysis

supports that sphingolipid metabolism may be associated with

the pathophysiology of endometriosis (13). However,

sphingolipid metabolites in MGCs found that low levels of

palmitic acids, sphingomyelin, and sphingosine are associated

with the low level of the ceramide synthesis gene. Our studies

indicated that sphingolipid metabolism is mediated pathway

through regulating cell survival and cell death.

Autophagy is one of the types of cell death that modulate

cellular homeostasis by supplying the cell with energy and

metabolites and preventing oxidative stress to maintain

normal cellular function under stress conditions (63, 64). A

previous report demonstrated that the key molecule of

sphingolipid metabolism, ceramide (Cer), induced autophagic

cell death (65). Our results also revealed that cluster genes and

proteins in autophagy (BECN1 and LAMP2) significantly

increased in association with an increased level of palmitic

acid and the ceramide synthesis gene in CCs under the

pathological condition of endometriosis. This evidence

indicated that CCs may undergo cell death, which may

directly affect the oocyte quality. This evidence indicates that

sphingolipid metabolism in surrounding cumulus cells plays an

important role in the maturation of oocytes and steroidogenesis.

However, in MGCs, this cluster of genes decreased in

endometriosis, which correlated with the role of MGCs in the

angiogenesis compartment of follicular cells.

A recent study demonstrates the association between

apoptosis and survival molecules in cumulus cells can be

used as a marker for estimating oocyte quality (66).

Interestingly, our study indicated that the poor oocyte quality

in patients with endometriosis is related to a higher level of

sphingolipid metabolism correlated with the increase of

autophagic gene and protein levels in the CCs but not in the

MGCs. A balance in sphingolipid metabolism in CCs is
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associated with oocyte maturation and further development of

an embryo.

The number of cumulus cells closely associated with

energy sufficiency cell proliferation directly affects oocyte

development. The cell depends on apoptosis and autophagic

signaling pathways; therefore, saturating FFA metabolites

may potentially promote cell death (17). We can suggest

that this procedure could be integrated through biochemical

studies in the follicular cells. It is better known that oocyte

quality depends on the follicular microenvironment, and

adequate bidirectional signaling between COC is important

for both oocyte and cumulus cell competence acquisition

(67). The most relevant and significant data of metabolites

we obtained on the CCs and MGCs in endometriosis patients

(autophagic genes and proteins decrease linked to the

increase of lipid levels) could then be used to help to

identify oocytes with higher capacity for development and

fertilization to enhance the possibility of success of in vitro

fertilization (IVF) and improving the probability of

pregnancy in endometriosis patients.

The metabolic characterization of CCs and MGCs to

integrate the multiple approaches from biochemical analysis

to gene analysis in association with pathogenesis and disease

progression has gained more value in understanding

endometriosis. Our work demonstrates how integrating the

different approaches of the ‘omic’ sciences from metabolomics

to gene expression can help in better understanding the

mechanisms of endometriosis progression and can lead to
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improvement of diagnosis. The advantage of systems biology

is the integration of proteomics, transcriptomics, and

metabolomic information to obtain a better understanding

mechanism of human pathophysiology. Moreover, insight

into the differences between the metabolic profile of CCs and

MGCs may lead to the discovery of a new biomarker for

estimating the quality of oocytes in endometriosis patients. It

is possible that CCs and MGCs associated with competent

oocytes have fulfilled their role of sustaining oocyte

development, and their response to metabolic alteration is

under consideration. Taken together, these findings may

optimize the development of novel methods to improve

oocyte selection strategies in assisted reproductive technology

(ART) protocols and shed light on the molecular mechanisms

governing oocyte–CC–MGC cross-talk. The functional roles of

those metabolites in follicles related to oocyte growth,

maturation, and subsequent embryonic developmental need

to be further explored and studied.
5 Conclusion

The results indicate that CCs and MGCs reveal differences

in terms of metabolites. CCs show the alteration of lipid

metabol ism correlated with autophagic cel l death,

while MGCs show no alteration, as shown in Figure 5.

Our finding provides new insight into follicular cells

in endometriosis.
FIGURE 5

Schematic representation of the metabolomics of sphingolipids and autophagic gene expression between the cumulus cells and the mural
granulosa cells. Direction of arrows represents the direction of possible activity of sphingolipid pathways. Red colors of arrows represent
increased level of metabolite or gene, and blue colors of arrows represent decreased level of metabolite or gene. SPT, serine
palmitoyltransferase; CerS, ceramide synthase; DES, dihydroceramide desaturase; SMS, sphingomyelin synthase; SMase, sphingomyelinase; SPP,
sphingosine-1-phosphate phosphatase; SPHIK, sphingosine kinase; UGCG, UDP-glucose ceramide glucosyltransferase; BECN1, Beclin1; LAMP,
lysosome-associated membrane protein.
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