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Abstract 
Background.   Meningiomas are the most common primary brain tumors. While most are benign (WHO grade 
1) and have a favorable prognosis, up to one-fourth are classified as higher-grade, falling into WHO grade 2 or 3 
categories. Recently, an integrated risk score (IRS) pertaining to tumor biology was developed and its prognostic 
relevance was validated in a large, multicenter study. We hypothesized imaging data to be reflective of the IRS. 
Thus, we assessed the potential of a machine learning classifier for its noninvasive prediction using preoperative 
magnetic resonance imaging (MRI).
Methods.   In total, 160 WHO grade 2 and 3 meningioma patients from 2 university centers were included in this 
study. All patients underwent surgery with histopathological workup including methylation analysis. Preoperative 
MRI scans were automatically segmented, and radiomic parameters were extracted. Using a random forest classi-
fier, 3 machine learning classifiers (1 multiclass classifier for IRS and 2 binary classifiers for low-risk and high-risk 
prediction, respectively) were developed in a training set (120 patients) and independently tested in a hold-out test 
set (40 patients).
Results.   Multiclass IRS classification had a test set area under the curve (AUC) of 0.7, mostly driven by the diffi-
culties in clearly separating medium-risk from high-risk patients. Consequently, a classifier predicting low-risk IRS 
versus medium-/high-risk showed a very high test accuracy of 90% (AUC 0.88). In particular, “sphericity” was as-
sociated with low-risk IRS classification.
Conclusion.   The IRS, in particular molecular low-risk, can be predicted from imaging data with high accuracy, 
making this important prognostic classification accessible by imaging.

Key Points

1.	 Machine learning classifiers are able to assess molecular risk profile in higher-grade 
meningiomas.

2.	The integrated risk score and, in particular, the molecular low-risk group can be predicted 
noninvasively by radiomics.

Imaging meningioma biology: Machine learning 
predicts integrated risk score in WHO grade 2/3 
meningioma  

© The Author(s) 2024. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of 
Neuro-Oncology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and 
translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on 
the article page on our site—for further information please contact journals.permissions@oup.com.

https://orcid.org/0000-0001-5441-1962
https://orcid.org/0000-0001-6177-1755
https://orcid.org/0000-0003-1945-497X
https://orcid.org/0000-0002-1459-5741
https://orcid.org/0000-0001-5779-9675
https://orcid.org/0000-0002-2963-7772
mailto:b.wiestler@tum.de?subject=
https://creativecommons.org/licenses/by-nc/4.0/


 2 Kertels et al.: Imaging meningioma biology

Meningiomas are the most common primary central 
nervous system (CNS) tumors.1 Whereas most lesions 
are benign (WHO grade 1) and generally have a favorable 
prognosis, higher-grade WHO grade 2 and 3 meningiomas 
are associated with higher recurrence rates and shorter 
overall survival.2–4 However some WHO grade 2 and 3 
meningiomas have a benign follow-up which is not readily 
explained by histology alone.5,6

In contrast enhanced magnetic resonance imaging 
(MRI), meningiomas show characteristic imaging features, 
usually leading to an accurate diagnosis. Different MRI fea-
tures, for example, enhancement degree, apparent diffu-
sion coefficient (ADC) values or peritumoral edema have 
been shown to distinguish between low-grade and high-
grade meningioma.7 Unlike traditional structural MRI im-
aging, radiomics provide quantitative imaging information 
and its use has been demonstrated in different brain tu-
mors and settings with the potential of uncovering impor-
tant information “hidden” in medical imaging.8–13

Recently, molecular markers have increasingly supple-
mented and synergistically enhanced the traditionally 
histology-based classification as well as tumor grading 
in many CNS tumors, including meningiomas.14 An inte-
grated molecular and morphologic risk score (IRS), com-
bining WHO grading, DNA methylation family (MF) and 
specific copy number variants (CNV) was already sug-
gested by Maas et al. to increase diagnostic accuracy 
especially in patients who are at high risk for disease pro-
gression.14 Importantly, this IRS has been shown to be of 
high prognostic relevance.

However, assessing IRS requires large-scale epigenetic 
profiling, which might impede its widespread routine im-
plementation. Our present multicentric study aimed to 
investigate the use of radiomics and machine learning to 
predict noninvasively IRS from preoperative MR imaging 
in WHO grade 2 and 3 meningiomas. To our knowledge, 
this is the first study to evaluate noninvasive IRS status 
based on radiomics and machine learning.

Patients and Methods

Ethics Statement

The present study was conducted according to the guide-
lines of the Declaration of Helsinki, and the retrospective 
analysis of data was approved by the Ethics Committees of 

the participating university hospitals (Berlin: EA2/059/21; 
Munich: 257/21 S-KK).

Patients

This retrospective analysis included a total of 160 patients 
with meningioma WHO grades 2 and 3 from 2 different uni-
versity hospitals. Patients were retrospectively identified 
for (i) pathohistological diagnosis of a WHO grade 2 or 3 
meningioma, (ii) available preoperative imaging (including 
T1w images −/+ contrast, T2w images, fluid attenuated in-
version recovery [FLAIR] images), and (iii) tissue material 
available for IRS profiling. Clinical data were obtained from 
the local electronic patient records.

Neuropathological Assessment and (Epi)genetic 
Profiling

Tumor tissue samples were obtained from patients who un-
derwent surgical resection. DNA was extracted from these 
samples using a standardized protocol, ensuring high-
quality DNA suitable for subsequent analysis, as previously 
described.15 DNA methylation analysis was performed using 
850k EPIC Illumina Infinium Methylation Array (Illumina). 
DNA methylation data preprocessing and analysis involved 
several steps. Raw data obtained from the analysis platform 
were subjected to quality control measures, including fil-
tering and normalization procedures to ensure data integ-
rity and comparability across samples. Tumor methylation 
classification based on their DNA methylation profiles was 
done with MolecularNeuropathology.org, using the brain 
tumor classifier v12.5 and the meningioma classifier v2.4. 
The best match in the reports was subsequently used for 
further classification. CNV profiles were inferred from the 
EPIC methylation essay. Assessment of homozygous dele-
tion of cyclin-dependent kinase inhibitors 2A/B (CDKN2A/B) 
was based on CNV profiles and additional visual judgement. 
Chromosomal arm deletions and gains were assessed using 
the CNV profile as previously reported.16 The integrated 
molecular-morphological risk score was calculated as pre-
viously reported.14

MRI Processing and Feature Extraction

All patients underwent a cranial MRI prior to surgery. MR 
images were acquired on different MR machines, and 
image acquisitions ranged from 2D to 3D acquisitions.

Importance of the Study

Recently, an integrated molecular and morphologic risk 
score (IRS) that combines WHO grading, DNA methyla-
tion family (MF), and specific copy number variants (CNV) 
has been demonstrated to enhance diagnostic accuracy 
in meningiomas. However, this IRS has not yet been im-
plemented in routine practice. Radiomics approaches can 
identify quantitative imaging information that are “hidden” 
within medical imaging. We explored the noninvasive pre-
diction of IRS using magnetic resonance imaging data for 

WHO grade 2 and 3 meningiomas and developed a ma-
chine learning classifier to noninvasively predict the mo-
lecular risk profile. Notably, sphericity, which measures 
the tumor’s roundness relative to a sphere, was identified 
as significant for IRS and for identifying low-risk patients. 
The noninvasive prediction of IRS, utilizing radiomics and 
machine learning, holds promise for revealing crucial in-
sights and treatment decision-making, especially in pa-
tients with low-risk profiles.
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We extracted the preoperative baseline MRI, including 
T2-weighted images (T2w), fluid attenuated inversion re-
covery (FLAIR), T1-weighted images without (T1w) as well as 
with contrast enhancement (T1w-ce) for all patients. In some 
cases, sequences were missing (either T2w or T1w). In these 
cases, we used a pretrained Deep Learning-based Generative 
Adversarial Network to synthesize these missing sequences 
to allow for automatic segmentation as described earlier.17 
Diffusion-weighted imaging was also missing in a relevant 
subset of patients. T1w-ce images were available for all cases 
and were never synthesized, thus feature extraction was fo-
cused on T1w-ce to minimize possible interfering factors.

Automated meningioma segmentation was performed 
by co-registering the respective MRI scans into SRI24 
atlas space using NiftyReg.18,19 After brain extraction with 
HD-BET, automated tumor segmentation was performed 
using the open-source BraTS Toolkit developed by our 
group.20,21 The BraTS Toolkit segments each tumor into ne-
crotic areas, contrast-enhancing tumor, and edema. These 
automated segmentations were checked (and corrected 
where necessary) by a board-certified neuroradiologist 
(O.K.) with over 10 years of brain tumor imaging experi-
ence using ITK-SNAP (version 3.8).22

To quantify image features, the T1w-ce images were 
Z-score normalized according to recommendation, dis-
cretized to a bin width of 0.1 and radiomics feature ex-
traction was performed using the open-source package 
PyRadiomics (version 3.1.0) in Python.23,24 This way, 3 basic 
groups of radiomics features were extracted from T1w-ce 
images according to the image biomarker standardization 
biomarker definition, including 16 shape, 19 first order, and 
24 texture features from a gray level co-occurrence ma-
trix (GLCM) from the “tumor core” mask, that is, necrotic/
cystic or contrast-enhancing tumors.25

Machine Learning Classifier

To predict the IRS class (low-risk, medium-risk, high-risk), or 
a simplified version, where medium- and high-risk classes 
were combined as high-risk (binary classification) by the 
aforementioned selected radiomics features, we employed 
the random forest classifier implemented in the pycaret 
package (version 3.0.4).26 Random forest is an ensemble 
classifier that aggregates voting from a large number 
of (ideally uncorrelated) decision trees through repeat-
edly training single weak classifiers from the original data 
through resampling with replacement. To avoid overfitting 
the machine learning (ML) model to the available data, de-
fault settings were used for the random forest parameters. 
The entire data set was split (stratified by IRS class) into a 
training set (n = 120 patients) and a hold-out test set (n = 40 
patients) only used for the final evaluation. Besides the clas-
sification result, random forest also estimated feature im-
portance, that is, the individual contribution of each feature 
to the final classification. This allows to investigate classifier 
decisions and understand the most meaningful features.

Statistical Analysis

Descriptive statistics for patient characteristics were re-
ported as mean ± standard deviation (SD), median, and 

range. Mann–Whitney U test (for 2 groups) and Kruskal–
Wallis H test (for 3 groups) or Chi-square test (categorical 
data) were used to compare parameters, respectively. All 
statistical tests were performed 2-sided and a p value < .05 
was considered statistically significant.

Results

Patients’ Characteristics

Our study comprised a total of 160 preoperative me-
ningioma patients from 2 university centers, further re-
ferred to as cohort 1 (n = 67 patients) and cohort 2 (n = 93 
patients). Table 1 lists important patient characteristics. 
Regarding age and sex, both cohorts were equally distrib-
uted. Cohort 1 included several WHO grade 3 meningioma 
patients (n = 6). Since WHO grade is one of 3 attributes rel-
evant for the integrated risk score (IRS) (see Methods for 
details), cohort 1 tended to have higher IRSs, although this 
difference was not statistically significant. Note, however, 
that for separating patients into train or test cohorts, we 
stratified sampling explicitly for the IRS category.

IRS Classification

Multiclass IRS classification based on preoperative T1w-ce 
features reached a test set accuracy of 65% (26/40 patients 
correctly classified) at an area under the curve (AUC) of 0.7. 
As evident from the confusion matrix shown in Table 2a, 
this is mostly driven by the inability to learn reliable de-
cision boundaries around medium-risk patients, partic-
ularly between medium-risk and high-risk, suggesting a 
rather continuous (but directed) change of imaging phe-
notype with increasing IRS. In line with this observation, 
there were only few misclassifications between low- and 
high-risk. One of the strengths of random forests is use of 
sample and feature bagging. However, this inherent ran-
domness can lead to variations in the classifier results. 
To better understand the stability of our model, we reran 
the random forest classifier 1000 times (using the same 
train/test split). Across these 10 runs, the median AUC was 
0.73 (interquartile range: 0.7–0.74), indicating good model 
stability.

Table 1.  Patient Characteristics

Attribute Cohort 1  
(n = 67 patients)

Cohort 2  
(n = 93 patients)

Age (median ± IQR) 66 years (51–76) 61 years (48–72)

Sex (n) 33 male/34 female 38 male/55 female

WHO grade (n) 61 grade 2/6 grade 3 93 grade 2

Integrated risk score 
(median ± IQR)

5 (3–6) 5 (1–5)

Integrated risk score 
category (n)

14 low-risk/34 
medium-risk/19 
high-risk

28 low-risk/51 
medium-risk/14 
high-risk

IQR = interquartile range.
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We therefore explored 2 further classification tasks to cir-
cumvent this: For the first task, we grouped low-risk and 
medium-risk patients as “not-high-risk” and trained a clas-
sifier to differentiate these from high-risk patients. This 
classifier had a test set accuracy of 80% (32/40 patients cor-
rectly classified; Table 2b), but a low AUC of 0.6. The low 
classification performance here was mostly driven by the 
inability to correctly identify a predictive imaging signature 
for high-risk patients.

We then grouped medium-risk and high-risk patients 
as “non-low-risk” and contrasted them with low-risk pa-
tients. This classifier had a high test set accuracy of 90% 
(36/40 patients correctly classified; Table 2c) with 0.88 AUC. 
Importantly, only one case was wrongly classified as “low-
risk” (in fact medium-risk), resulting in a positive predictive 
vale (PPV, Precision) of 88.8% and a negative predictive 
value (NPV) of 90%.

Imaging Features Differentiating IRS Groups

To better characterize the morphologic differences under-
lying the classification results, we investigated the fea-
ture importances for all 3 models (Figure 1). Of particular 
relevance, shape features describing the roundness of 
tumors (most prominently, sphericity) were strongly in-
fluential for the IRS prediction and low-risk classification. 
To further investigate this, we compared sphericity be-
tween tumors of different IRS grades. Sphericity directly 
measures the roundness of the shape of the tumor rela-
tive to a sphere. It ranges between 0 and 1, where higher 
values indicate higher roundness (1 would mean a perfect 
sphere). Strikingly, we found a clear decrease in sphe-
ricity with increasing IRS grade, and this finding was con-
cordantly seen in both data sets (Figure 2; p value < .001, 
Kruskal–Wallis H test). In more detail, the sphericity of low-
risk tumors was significantly larger than both medium-
risk (p < .001, Mann–Whitney U test) and high-risk tumors 
(p < .001, Mann–Whitney U test). In line with our observa-
tion that medium- and high-risk are not easily separable, 

the difference between them; however, did not formerly 
met statistical significance (p = .052, Mann–Whitney U 
test). This difference in shape can also be identified visually 
(Figure 3).

Discussion

A molecularly integrated grading scheme for meningiomas 
demonstrated an improved prediction accuracy of 
progression-free survival when compared to the current 
WHO grading system (c-index, p = .004; prediction error 
at 5 and 10 years, p = .0021 and p = .0001, respectively).5,14 
IRS has been demonstrated to enhance diagnostic accu-
racy, which is especially of interest to WHO grade 2 and 3 
meningiomas with a benign follow-up.

Despite its clear clinical superiority, widespread imple-
mentation of this classifier requires routine epigenetic 
profiling, which is associated with costs and required infra-
structure as well as expertise. Alternatively, the imaging-
based classification of meningiomas, as described here, 
offers a compelling option, especially for retrospectively 
analyzing data sets. We found that, in particular, molec-
ularly low-risk WHO grade 2 and 3 meningiomas can be 
classified with a very high accuracy in a heterogeneous, 
multicentric cohort. This is of clinical relevance, as a re-
cent analysis of the clinical course of WHO grade 2 menin-
gioma suggested that these low-risk groups indeed have 
an excellent clinical outcome (as opposed to high-risk, and 
to a lesser extent also medium-risk).27 This makes the re-
liable distinction between these molecular risk profiles 
very important for a personalized clinical decision-making. 
However, further studies, including clinical follow-up are 
needed to investigate clinical significance.

A recent systematic review on meningioma radiomics 
found a robust correlation with meningioma grading ac-
cording to WHO grading criteria and biological features, 
yielding a mean AUC of 0.851 ± 0.078 and 0.89 ± 0.07, re-
spectively.28 In this study, the majority of models also sorted 
meningiomas into low (WHO grade 1) versus high (WHO 
grade 2–3) grade. However, biological features only focused 
on meningioma firmness, fibrous quality, and Ki-67.28 Our 
data further support these findings, as we could in particular 
predict patients with a low-risk profile with very high test 
set accuracy of >90%. Interestingly, we observed that when 
performing a multiclass classification, the resulting model 
mostly struggled with clearly separating medium-risk from 
high-risk tumors (Table 2a). On the other hand, there were 
only comparatively few cases of misclassifications between 
high- and low-risk patients. Combined with our observation 
of reduced sphericity correlating with increasing IRS grade, 
seen consistently in both cohorts, this indicates the pres-
ence of a discernible imaging phenotype continuum across 
IRS grades. A classifier can learn this continuum, particu-
larly for identifying low-risk tumors. Our results align well 
with the clinical observations from Deng et al., who noted 
a significantly better outcome for low-risk WHO grade 2 
meningiomas, while medium- and high-risk tumors shared 
a similar clinical course.27

For the extraction of radiomic features, reliable and repro-
ducible segmentation of tumors is of paramount importance. 

Table 2.  Results of the Different Machine Learning Classifiers

True class Predicted class

(a) Low-risk Medium-risk High-risk

Low-risk 8 3 0

Medium-risk 2 18 1

High-risk 1 7 0

(b) Not high-risk High-risk

Not high-risk 31 1

High-risk   7 1

(c) Not low-risk Low-risk

Not low-risk 28 1

Low-risk   3 8

Results of the different machine learning classifiers developed by a 
random forest classifier tested in 40 patients. Multiclass classifier for 
IRS (a) and binary classifiers for low-risk (b), and high-risk prediction (c).
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Figure 1.  Importances of the top ten different radiomic features in the different models. Importances of different radiomic features in the dif-
ferent models. Shape features were strongly influential for the IRS prediction (a) and low-risk classification (c) compared to high-risk prediction 
(b).
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In recent years, advances in deep learning-based automated 
tumor segmentation algorithms have led to the develop-
ment of models, which now segment complex tumors (like 
gliomas) at the level of expert human raters.29,30 To avoid 
manual segmentation, we employed an ensemble model of 
glioma segmentation algorithms using our self-developed 
BraTS (Brain Tumor Segmentation) Toolkit, which is also freely 
available.21Though developed for gliomas, this ensemble 
segmentation model worked very well in our experience also 

for meningiomas, with only very little manual correction nec-
essary. In this year’s version of the BraTS challenge, there is 
a dedicated subchallenge for meningioma segmentation. We 
anticipate that this will lead to the availability of segmenta-
tion algorithms specifically targeted at meningiomas, which 
will prospectively further improve the fully automated seg-
mentation (and subsequently, feature extraction and classi-
fication) and might thus further advance the applicability of 
imaging-based IRS prediction in clinical routine.31
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Figure 2.  Box plots of shape features for IRS prediction in both university centers cohorts. Decrease in sphericity with increasing IRS grade was 
found in both data sets of the university center cohorts (a and b, respectively; p value < .001, Kruskal–Wallis H test).
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In addition to basic MRI sequences, advanced MRI tech-
niques, such as diffusion imaging and MR-perfusion, may 
provide additional information and should be evaluated 
in the future. In higher-graded meningiomas, ADC may be 
relatively low and high relative cerebral blood flow (rCBF) 
in arterial spin labeling (ASL) perfusion can be found in 
certain meningioma subtypes.32 Another study by Zhang 
et al. suggests that relative cerebral blood volume (rCBV) 
values in peritumoral edemas are significant enough to dif-
ferentiate benign from malignant meningioma.33,34

One distinct advantage of machine learning classifiers, 
like the random forest we used, over deep learning clas-
sifiers is their enhanced explainability. This is due to the 
manual crafting of features and the ability to evaluate fea-
ture importances, allowing for the identification of which 
aspects of the imaging phenotype contribute most to the 
classification. Our finding of decreasing sphericity with 
higher IRS grades has immediate clinical applicability 
(Figure 3). In particular, for cases with an “en plaque” or 
irregular growth pattern, a high-risk (or medium-risk) mo-
lecular profile is very likely.

Our retrospective study has several limitations. Despite 
being carried out across 2 centers with imaging data from 
different scanners (often times, external MR images were 
used preoperatively), a validation in larger, heterogeneous 
data sets is missing. The role of sphericity in more benign 

cases could have been further supported by including 
WHO grade 1 meningiomas. However, we excluded them 
in advance, in order to focus our results on higher-grade 
meningiomas, as further treatment decisions are more 
likely to be considered in this subgroup. Along this line, 
only 6 WHO grade 3 meningiomas were included. Further, 
in order to perform automatic segmentation, skullstripping 
needed to be performed (this will also be the case for the 
BraTS meningioma challenge). While this approach may 
result in missing intraosseous parts of meningiomas for 
analysis, we believe the benefits of reliable automated 
tumor segmentation outweigh this limitation. Besides, 
our data lacks clinical follow-up information including 
progression-free surivival and overall survival as these 
would be of interest to be compared with radiomic fea-
tures directly. Furthermore, as discussed above, advanced 
imaging sequences might further improve classification. In 
particular, diffusion and perfusion imaging hold promise, 
but also somatostatin-receptor PET. These sequences could 
be particularly useful in distinguishing between medium- 
and high-risk tumors. While for this study, we focused on 
using a random forest classifier to avoid potential issues 
of “over-optimization” that may arise from testing mul-
tiple classifier methods, another potential line of research 
is the in-depth comparison of different ML classifiers (re-
gression, support vector machine, etc.) and compare their 

A1 A2 A3

B1 B2 B3

Figure 3.  (A) Example of a patient with a meningioma WHO grade 2 and high-risk IRS profile. Axial and coronal T1WI + CE show low sphericity of 
the contrast-enhancing tumor. Segmentation shows contrast-enhancing tumor (yellow), necrotic area (red), and peritumoral edema (green). (B) 
Example of a patient with a meningioma WHO grade 2 and low-risk IRS profile. Axial and coronal T1WI + CE show high sphericity of the contrast-
enhancing tumor. Segmentation shows contrast-enhancing tumor (yellow).
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effectiveness in capturing the underlying meningioma bi-
ology from imaging data.

Conclusion

Our study provides first evidence for a machine learning 
classifier to noninvasively predict the molecular risk profile 
of WHO grade 2 and 3 meningiomas. Validation in larger 
data sets as well as future studies are warranted to gain 
further insights into its possible role in the interplay of mo-
lecular grading, therapy decisions, and clinical course.

Keywords 

Integrated risk score | Meningioma | Neuro-oncology | 
Radiomics

Lay Summary 

Meningiomas are common tumors that grow from the brain’s 
protective covering. Most are slow-growing, but some can be 
more aggressive. At present, the only method to reliably tell if 
a meningioma is aggressive is through pathology and genetic 
testing of the tumor removed with surgery. The authors in this 
study aimed to determine whether aggressiveness in menin-
gioma could be predicted without surgery. To do this, they 
analyzed the MRI scans of 160 patients with higher-grade ag-
gressive meningiomas before surgery. They developed com-
puter models to predict meningioma aggressiveness using MRI 
data alone. Their results show that computer models that used 
MRI data alone could distinguish between low and high aggres-
sive meningiomas with about 90% accuracy. It was more diffi-
cult for these models to distinguish between medium and highly 
aggressive meningiomas.
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