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Portal hypertension (PHT) is a key event in the evolution of different chronic liver diseases and leads to the morbidity and mortality
of patients. The traditional reliable PHT evaluation method is a hepatic venous pressure gradient (HVPG) measurement, which is
invasive and not always available or acceptable to patients. The HVPG measurement is relatively expensive and depends on the
experience of the physician. There are many potential noninvasive methods to predict PHT, of which liver transient
elastography is determined to be the most accurate; however, even transient elastography lacks the accuracy to be a perfect
noninvasive diagnostic method of PHT. In this research, we are focusing on noninvasive PHT assessment methods that rely on
selected best-supervised learning algorithms which use a wide set of noninvasively obtained data, including demographical,
clinical, laboratory, instrumental, and transient elastography measurements. In order to build the best performing classification
meta-algorithm, a set of 21 classification algorithms have been tested. The problem was expanded by selecting the best
performing clinical attributes using algorithm-specific filtering methods that give the lowest error rate to predict clinically
significant PHT. The suggested meta-algorithm objectively outperforms other methods found in literature and can be a good
substitute for invasive PHT evaluation methods.

1. Introduction

The standard way of evaluating PHT in patients with chronic
liver disease is measuring HVPG [1]. Measurement of HVPG
is an invasive and inconvenient procedure where the differ-
ence between wedged venous pressure and free haptic venous
pressure is taken [2]. An HVPG value between 1mmHg and
5mmHg is considered normal. Higher pressure is defined as
PHT [3, 4]. Different values of HVPG indicate different risks
for complications in patients with chronic liver diseases [5].
The standard threshold value for development of complica-
tions is HVPG> 10mmHg and is considered as clinically
significant PHT. It is associated with the risk of esophageal
varices formation, clinical decompensation, development of
hepatocellular carcinoma (HCC), or death after liver
resection due to it [6–9]. HVPG> 12mmHg is considered
to be severe PHT and is linked with a higher risk of acute

variceal bleeding [10, 11]. The main problem lies in the fact
that there are no reliable and noninvasively obtained
biomarkers or methods that could be substituted for the
invasive HVPG measurement with sufficient accuracy.

Available noninvasive methods of indirect evaluation of
PHT involves several techniques, including clinical examina-
tion, abdominal ultrasound with or without Doppler investi-
gation, CT and MRI scans, evaluation for oesophageal
varices, and measuring liver and spleen stiffness using
different techniques [12–15]. The most promising results
are revealed in liver elastography in the form of transient
elastography. Liver transient elastography demonstrated
quite high sensitivity, specificity, and accuracy (0.88, 0.87,
and 0.88, resp.) to predict clinically significant PHT [14],
but not enough to replace the invasive HVPG measurement.

The ideal method for diagnosing PHT should be safe,
quantitative, accurate, objective, reproducible, inexpensive,
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and validated. None of today’s available methods fully meets
these criteria; however, the combination of different methods
using supervised learning algorithms and a wide set of nonin-
vasively available data could overcome these limitations.

Several studies were devoted to finding a potential nonin-
vasive method to classify patients, with and without PHT,
using different learning algorithms, with contradictory
results [16–19]. Disagreement between various studies could
be explained by different models of analysis and different
data inputs used to generate results.

In this paper, the focus is on the classification problem
that involves noninvasively obtained clinical data. Develop-
ment of an objective classification meta-algorithm would
appear to be a reliable noninvasive method to classify
patients with and without PHT and would open possibilities
for an easily accessible, less exhausting examination that
would be less expensive, safer, quantitative, and reproducible.

The goal of the research is to select and prepare a meta-
algorithm for classifying patients into groups with different
HVPG values using noninvasively obtained clinical data.
The tasks include the following:

(i) Selecting the best classifying meta-algorithm by
testing the most common classifiers with noninva-
sively obtained data

(ii) Ranking/selecting an optimal number of attributes
(data subsets) that perform best for the selected
algorithm

2. Materials and Methods

2.1. Dataset. Data from the original study published in the
paper by Zykus et al. [14] was used in this study. The primary
goal of the original paper was to analyze the relationship
between liver/spleen transient elastography and HVPG. All
data used for this paper was collected prospectively as leading
data to elastography results during the original study.

In this research, the dataset consists of records from 107
patients with chronical liver disease that were referred for
HVPG measurement. Patients had clinical examinations
and laboratory investigations leading to 24 attributes
(Table 1) containing demographical, clinical, serum labora-
tory, spleen geometrical, transient elastography (TE), blood
stream, and vein data acquired by abdominal ultrasound.

Invasively measured HVPG was taken as a reference in our
investigation. Bioethical Committee approval and patient
consents were obtained before collecting clinical data.

The routine clinical (weight, height, and cause of chronic
liver disease), hematological (complete blood count), and
biochemical (bilirubin, albumin, prothrombin time, ALT,
and AST) investigations were performed at the same day
prior to HVPG measurement. Abdominal ultrasonography
was performed to exclude multiple focal liver lesions, and
various ultrasound-based parameters were recorded (pres-
ence of umbilical or pararenal shunt, portal vein width, portal
blood flowmean peak velocity, portal blood flowmean veloc-
ity, portal blood flow type (hepatopetal versus hepatofugal),
hepatic vein blood flow type (triphasic, biphasic, or mono-
phasic), hepatic vein damping index, and splenic vein size
(width, length, and thickness)).

Liver stiffness using FIBROSCAN® (Echosens, Paris,
France) device was measured on the same day before HVPG
measurement. Patients were in fasting state. Procedure was
performed in accordance with manufacturer’s recommenda-
tions. Interquartile range/median< 30% and success
rate> 60% were considered as good-quality criteria for TE.
We performed 10 successful measurements for each patient.

Assessment of spleen stiffness was performed by the
same methodology used for liver elastography. The quality
criterion (interquartile range/median, success rate, and
number of successful measurements) for spleen stiffness
was the same as for liver stiffness. If typical elastography
picture could not be found using FIBROSCAN device,
exact point for spleen stiffness measurement was found
using Toshiba Xario 200 ultrasound device (Toshiba Med-
ical Systems Corporation, Japan).

HVPGwasmeasured in fasting state. None of the patients
have received medications affecting portal pressure before
HVPG measurement. HPVG was measured using catheter
wedge technique by experienced radiologists using Judkins
right 6 fr catheter (Boston Scientific, USA, Marlborough).
Right hepatic vein was selectively cannulated and catheter
position confirmed by vein angiogram. The occluded position
of the catheter was checked by the absence of reflux after the
injection of 2mL of a contrast medium and appearance of
sinusoidogram (Infinity R50, Drager, Germany). The mean
of at least 3 readings was taken for further analysis. If the
difference between the readings was greater than 1mmHg,
all the previous recordings were cancelled, and new readings

Table 1: Contents of data collected during clinical examination.

Demographical
data

Age, gender

Clinical data Height, weight, cause of chronic liver disease

Laboratory data PLT, bilirubin, albumin, prothrombin time, ALT, AST

Instrumental data Spleen width, spleen thickness, spleen length, HVPG

TE data Liver stiffness, spleen stiffness

Blood stream data
Presence of umbilical or pararenal shunt, portal vein width, portal blood flow mean peak velocity, portal blood flow

mean velocity, portal blood flow type (hepatopetal versus hepatofugal), hepatic vein blood flow type
(triphasic, biphasic, or monophasic), hepatic vein damping index, splenic vein width
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were taken. Radiologist was blinded to clinical data and
liver/spleen stiffness results.

39.25% of records in the collected clinical dataset have
missing values. Missing data appears to be grouped in
clusters for each patient record, for instance, in 6.54% of
records, all demographic data is missing; in 12.15% of
records, blood test results are missing; in 12% of records,
Doppler test results are missing; in 25.30% of records, hepatic
vein data is missing; and in 7.48% of records, there is a lack of
spleen stiffness data.

2.2. Classification Aims, Criteria, and Classes. The dataset has
been divided into two groups based on the measured HVPG
value [1]. This decision is based on a gold-standard method
which assesses clinically significant PHT (CSPH) exceeding
an HVPG value of 10mmHg [12]. CSPH is selected as the
threshold for dividing patients in to two classes:

(1) HVPG<10mmHg—patients have no gastroesopha-
geal varices and have low risk of developing them in
next five years.

(2) HVPG≥10mmHg—patients have high risk of severe
complications starting with variceal bleeding, ascites,
or clinical decompensation liver cirrhosis, ending
with HCC.

The dataset contains 107 records and has some asymme-
try between classes. Into class 1 falls 27% of records, and into
class 2 falls 73% of records. The dataset is not considered
highly imbalanced, but classification accuracy (Acc) should
not be used as the main performance evaluation criteria.
Instead, a more objective classification performance mea-
surement parameter, area under the ROC curve (AUC), has
been selected [20]. When searching similar work in literature,
there are more metrics, such as sensitivity (Sn) and specificity
(Sp), used to indicate performance of different methods.
Those metrics are also included in this research for
better comparison.

2.3. Coping with Missing Data.Most classifiers are capable of
running on a dataset with missing data. In order to test a sce-
nario with complete data, there is a need to filter out records
with missing values. The most radical way of coping with
missing data is to reject records that have missing data. The
problem is that by doing so, we may lose some portion
of records that might have some influence in classifier
training accuracy.

In many cases, missing values are filled using statistical
imputation methods like mean or distribution-based imputa-
tion. Distribution method appears to be more accurate and
unbiased as compared to mean-based imputation method
[21]. The more advanced missing value imputation methods
use prediction models maximum-likelihood of possible miss-
ing values. However, there is a risk that predicting missing
attributes by using similar information can be useless
and even harmful taking into account specific and sensi-
tive clinical data of the medical case. When the number
of missing values in the dataset is raised, there is a risk
to oversimplify the problem. If missing values in the

dataset are not randomly distributed, there is a risk to
create invalid knowledge [22, 23].

In order to test the impact of imputation ofmissing values,
the K-Nearest Neighbor (KNN) method with Euclidian
distance function was implemented. The algorithm selects
the most common value among all neighbors.

Since dataset is small, and most of missing values are
clustered, in order to get the maximum number of data
records without missing values, an algorithm was proposed,
which works in two stages (Figure 1). First, missing data is
removed from the full dataset, then optimal attributes are
selected using a wrapper method. Next, an optimal attribute
set is mapped into the full dataset and missing values are
removed from only selected attributes. This way, we should
end up with a suboptimal attribute set and a maximum num-
ber of records without missing values.

2.4. Optimal Feature Set Selection. The second problem that
we were focusing on was finding the best performing
attributes used in classification algorithms. This way, we
could reduce the dimensionality of data that can cause
redundancy and noise [24]. A reduced number of attributes
can improve performance, increase accuracy, reduce overfit-
ting, and, at the same time, reduce the cost of diagnosis. By
reducing the attribute number, there is also a risk of lowering

Full data

Suboptimal
data

Remove
missing values

Remove
missing values

Find optimal
attributes

Map attributes

Figure 1: Selecting important attributes without missing data.

Table 2: Algorithms used in research.

BayesNet, Naive Bayes

Logistic, Multilayer Perceptron, SGD, Simple Logistic, SMO, Voted
Perceptron

LazyIBk, lazy.Kstar

DecisionTable, JRip, OneR, Part

Decision Stump, Hoeffding Tree, J48, LMT, Random Forest,
Random Tree, RepTree
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the accuracy of such algorithms as decision trees. Two attri-
bute selection methods that are different in their nature have
been used.

The first attribute selection method is relief filtering,
which is a classifier-independent attribute ranker indicat-
ing the relevance of attributes to a target concept/thresh-
old [25, 26]. The problem with relief filtering is that it may
rank out valuable parameters that may have a significant
influence in some particular classification algorithm. The
relief filtering method could be useful when deciding which
missing attributes (holes) in the dataset aremore “influential.”

The highest ranked missing attributes should be omitted
from classification, while lower ranked attributes will most
likely have lower influence and thus could be left for the
classification task.

The second attribute selection method is known as wrap-
per and is classifier-dependent. This is an iterative attribute
selection routine using a cross-validation method to estimate
the accuracy of a classifier for a given set of attributes and,
one by one, selects the best performing classifiers. It is possi-
ble to select the best attribute subset for each algorithm [27].
The attribute search is terminated with a user selectable

Attribute subset
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Attribute subset
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Evaluation Evaluation Evaluation

Select classifier 1 with
max AUC

Select classifier 2 with
max AUC

Select classifier n with
max AUC

Combine rule

Predicted class

Estimated AUCs Estimated AUCs Estimated AUCs

AUC
estimation

AUC
estimation

AUC
estimation

Classification
algorithm

Classification
algorithm

Classification
algorithmTraining set

Training
set

Training
set

Training
set

Test set

A
lg

or
ith

m
 g

ro
up

 1

A
lg

or
ith

m
 g

ro
up

 2

A
lg

or
ith

m
 g

ro
up

 n
Figure 2: The meta-algorithm selects the best performing classifiers and optimal sets of attributes from predefined groups. Each best classifier
is then trained and results are combined into a final prediction.

Table 3: Best performing classification algorithms and attributes from five different groups.

Algorithm Records Increase AUC Best performing attributes

Naïve Bayes 91 40% 0.95 ALT, albumin, pararenal shunt, liver stiffness, spleen stiffness

Logistic
regression

98 50.77% 0.96 Albumin, pararenal shunt, liver stiffness

lazy.Kstar 82 26.15% 0.97
Umbilical shunt, pararenal shunt, hepatic venous blood flow type, splenic vein width, liver

stiffness

Decision Table 103 58.46% 0.89 Albumin, liver stiffness

Random Forest 107 64.62% 0.96 Age, albumin, pararenal shunt, liver stiffness, spleen stiffness
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threshold value which is a standard deviation of the mean
across multiple cross-validation runs. The default threshold
value in all tests is selected to be 1%. The wrapper-based attri-
bute selection method usually leads to a differing set of opti-
mal attributes for different classifiers. This may be an obstacle
when implementing a meta-algorithm having multiple classi-
fiers. To overcome this, a joined subset of attributes was used
in the meta-algorithm.

2.5. Algorithms Used. Data mining software Weka, hosted by
University of Waikato, has an extensive set of machine learn-
ing tools and methods that fit our needs and has been the tool
of our choice [28]. After preliminary analysis, five groups of
the most effective algorithms, including Naïve Bayes (NB),
regression, nearest neighbor, rule based, and decision trees,
have been selected (Table 2).

Each algorithm, on its own, has pros and cons [29–31].
An ensemble meta-algorithm seemed necessary, especially
for small datasets. Using a single basic classifier, there is a risk
of overfitting data or getting algorithm-specific errors. In the
first stage of the meta-algorithm, the best performing classi-
fier in each algorithm group, along with the best performing
attributes, are selected by the highest AUC value. As seen in
Figure 2, each selected algorithm of its group is trained
consecutively using selected attributes and results that are
then are combined in order to predict the final class. Each
algorithm performs a 10-fold cross-validation in order to
get a more generalized and independent dataset leading
to less overfitting.

Five different combining rules, including averaging,
product, majority voting, minimum probability, and maxi-
mum probability, have been included for finding the best
output. Testing this algorithm should reveal if it could reduce
classification error and give good classification results. The
meta-algorithm can be expanded to have any number of
algorithm groups, with any number of algorithms in each
group. It is also not data or attribute number dependent. This
detailed meta-algorithm could be taken as a pseudocode,
which shows inherent flexibility and easy evolvement of the
meta-algorithm with the emergence of new classifiers, as well
as with new data, when available.

3. Results

In order to test algorithm performance, four scenarios have
been implemented: I—data without missing values; II—un-
processed (full set) data; III—missing values removed from
most significant attributes; and IV—missing data imputed
using KNN method.

Each algorithm group is tested internally in meta-
algorithm using WEKA built in paired t-test statistical
significance test tool. The selected confidence level is 95%.
Actual significance numbers in results are not represented
and not necessary in this intermediate comparison process.
Only the indication if algorithm output result is significant
(p ≤ 0 05) or not comparing to when base algorithm in group
is used. If a particular algorithm appears to be significant
among others, it is selected as the best performing algorithm;
otherwise, the algorithm with the highest AUC is used.
Similarly, if more algorithms appear to be significant, then
one with the highest AUC value is used.

3.1. Removing Missing Values and Selecting Best Performing
Classifiers for Scenario I. In order to get data without missing
values, the suggested method has been applied as seen in
Figure 1. This approach gave a significant increase of data
records compared to the simple removal of instances with
missing data. The increase varies from 26% to 64%, depend-
ing on the algorithm and optimal attribute set selected using
the wrapper method (Table 3).

Each algorithm performance output is represented as
mean AUC, with standard error bars, of an averaged 10-
fold cross-validation (Figure 3). Selected algorithms of each
group are visible in Table 3.

When selected algorithms are combined into a final
result, the joined list consists of following 9 attributes: ALT,
AST, albumin, pararenal shunt, liver stiffness, spleen stiffness,
umbilical shunt, hepatic venous blood flow type, and splenic
vein width.

3.2. Classifying Original Dataset—Scenario II. In scenario II,
classification algorithms have been tested with an unpro-
cessed dataset having no missing values. Test results are

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ba
ye

sN
et

N
ai

ve
 b

ay
es

Lo
gi

sti
c

M
ul

til
ay

er
 P

er
ce

pt
ro

n
SG

D
Si

m
pl

e L
og

ist
ic

SM
O

Vo
te

d 
Pe

rc
ep

tro
n

La
zy

IB
k

la
zy

.K
st

ar
D

ec
isi

on
 T

ab
le

JR
ip

O
ne

R
Pa

rt
D

ec
isi

on
 S

tu
m

p
H

oe
ffd

in
g 

Tr
ee J4
8

LM
T

Ra
nd

om
 F

or
es

t
Ra

nd
om

 T
re

e
Re

p 
Tr

ee

AU
C

Figure 3: Averaged performance of classification algorithms on
data without missing values with standard error bars.
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Figure 4: Performance of classification algorithms on data with
unprocessed missing values.
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visible in Figure 4, where mean AUC and standard error bars
are plotted.

The five best performing algorithms have been selected in
this case: Naïve Bayes, Simple Logistic, lazy.KStar, Decision
Table, and Random Forest. Since the original data has some
missing values scattered, there are more attributes for each
algorithm generated. When selected algorithms are com-
bined into a final result, the joined list consists of 16 attri-
butes: weight, pararenal shunt, hepatic venous blood flow
type, haptic vein damping index, liver stiffness, spleen stiffness,
portal vein width, prothrombin time, spleen length, spleen
width, ALT, umbilical shunt, gender, PLT, albumin, and age.

3.3. Removing Missing Data from Most Significant
Attributes—Scenario III. In the third scenario, there were
two highest rank attributes selected using a relief filter. A
threshold of 0.1 has been selected to distinguish significant
attributes from which to remove missing values. This way,
any important attributes are fully filled with data while lower
rank attributes are left untouched.

We can see in Figure 5 that two attributes stand out
among others: spleen stiffness, having a rank of 0.18, and
liver stiffness, ranked 0.16. Other attributes stay below the
0.1 threshold. After removing missing values from the high-
est ranked attributes, 99 records are left in the dataset.

Similarly, all five groups of algorithms were tested with
the dataset, and the following best performing classifiers have
been selected (Figure 6): Naïve Bayes, Logistic, lazy.Kstar,
Part, and LMT. When the five best performing classification
algorithms results are combined, the joined list consists of 16
optimal attributes: gender, height, age, ALT, bilirubin, albu-
min, AST, prothrombin time, spleen width, pararenal shunt,
portal vein median velocity, splenic vein width, hepatic venous
blood flow type, haptic vein damping index, liver stiffness, and
spleen stiffness.

3.4. Imputing Missing Values Using KNN Method—Scenario
IV. In this case, missing values were imputed using KNN
method with Euclidian distance function. All 107 data
records were preserved and all missing values were filled with
nearest neighbor values.

The best five algorithms were as follows (Figure 7): Naïve
Bayes, Simple Logistic, lazy.IBk, Decision Table, and LMT
tree. The joined list consists of 15 optimal attributes: age,
height, prothrombin time, spleen thickness, pararenal shunt,
portal vein median velocity, haptic vein damping index, liver
stiffness, liver disease, AST, albumin, spleen length, umbilical
shunt, splenic vein width, gender, and spleen stiffness.

In Table 4, we can see the numerical results of all four test
scenarios. In each scenario, five algorithm groups are tested
separately where statistical significance t-tests with selected
significance level of p < 0 05 are performed. In each algo-
rithm group, one algorithm is selected as “base”which is used
for comparing other algorithms’ significance. “0” means no
significance; “1” means algorithm is significantly better
against base; and “−1”means algorithm is significantly worse
against base.

3.5. Meta-Algorithm Classification Results. After the best per-
forming algorithms and optimal attributes were selected, the
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Figure 7: Performance of classification algorithms on data with
missing values imputed using KNN method.
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Figure 6: Performance of classification algorithms on data with
missing values removed from top-ranked attributes.
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Figure 5: Ranked attributes using relief filter.
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last stage of the meta-algorithm combined the results for
each best classifier into a single prediction. Figure 8 rep-
resents a 10-fold cross-validation, where the mean AUC
and standard error of all four scenarios are represented
side by side.

We can see that classifying the dataset with KNN-
imputed missing values gives the best results: AUC=0.96
with a least standard error of 0.02. The maximum probability
combining rule seems to be working best in this case. The t-
paired significance test did not show the significance at
confidence level of 95% when comparing results. In this case,
the highest AUC result as winning was selected. For an
unprocessed dataset, the results were slightly lower:

AUC=0.96 and standard error 0.04. The other two scenarios
gave slightly lower results with AUC=0.94 (Table 5).

We need to point out that in each scenario, a different
number of records was used due to coping with missing
values. Other factors may have also influenced each scenar-
io’s performance, such as different best classifiers selected
inside the meta-algorithm, the data profile on each scenario,
and varying sets of attributes.

4. Discussion

In this study, there has been an attempt to find an objective
classification model that would replace the invasive PHT
evaluation. The study shows that different classification algo-
rithms produce differing classification results. Each algo-
rithm brings its own benefits and flaws. Using a single
classification algorithm may increase chances to overfit the
dataset, which is quite limited having only 107 patient
records. Therefore, an integration of the best algorithms into
a meta-algorithm appears reasonable. Since real-world data
always has missing values, four classification scenarios of
data preprocessing have been tested with the meta-algorithm.

The first scenario included classification of data with
nonmissing values. The number of data records has been
maximized by using a proposed attribute selection and map-
ping method, which gave the maximum number of data
records with the selected suboptimal attribute set. Instead
of simply removing records with missing values, up to 28%
of records were saved; however, the meta-algorithm did not
yield the best classification result.

Table 4: The results of all four algorithms test scenarios.

Scenario I Scenario II Scenario III Scenario IV
Algorithm AUC STDERR t-test AUC STDERR t-test AUC STDERR t-test AUC STDERR t-test

Bayes Net 0.88 0.04 Base 0.90 0.03 Base 0.90 0.04 Base 0.89 0.03 Base

Naive Bayes 0.95 0.02 0 0.95 0.03 0 0.94 0.04 0 0.92 0.02 0

Logistic 0.96 0.02 Base 0.94 0.02 Base 0.96 0.02 Base 0.93 0.02 Base

Multilayer Perceptron 0.90 0.03 0 0.95 0.02 0 0.95 0.02 0 0.91 0.02 0

SGD 0.82 0.05 0 0.89 0.03 −1 0.87 0.04 −1 0.82 0.03 −1
Simple Logistic 0.95 0.02 0 0.95 0.02 0 0.95 0.03 0 0.93 0.02 0

SMO 0.87 0.05 0 0.86 0.04 −1 0.83 0.04 −1 0.75 0.04 −1
Voted Perceptron 0.95 0.04 0 0.91 0.03 0 0.93 0.03 0 0.79 0.03 0

LazyIBk 0.91 0.03 Base 0.88 0.04 Base 0.93 0.04 Base 0.88 0.03 Base

lazy.Kstar 0.97 0.02 1 0.97 0.02 1 0.94 0.03 0 0.84 0.02 0

Decision Table 0.89 0.03 Base 0.88 0.03 Base 0.88 0.04 Base 0.85 0.04 Base

JRip 0.82 0.04 0 0.81 0.04 0 0.80 0.05 0 0.80 0.04 0

OneR 0.79 0.04 0 0.74 0.04 0 0.79 0.05 −1 0.80 0.04 0

Part 0.84 0.04 0 0.86 0.03 0 0.91 0.04 0 0.84 0.05 0

Decision Stump 0.82 0.03 Base 0.82 0.04 Base 0.81 0.04 Base 0.82 0.03 Base

Hoeffding Tree 0.93 0.05 1 0.90 0.02 0 0.91 0.02 0 0.88 0.04 0

J48 0.86 0.05 0 0.83 0.04 0 0.93 0.04 0 0.78 0.04 0

LMT 0.95 0.02 1 0.91 0.02 1 0.95 0.03 1 0.93 0.02 1

Random Forest 0.96 0.02 1 0.94 0.02 1 0.91 0.02 1 0.89 0.02 1

Random Tree 0.77 0.05 0 0.80 0.04 0 0.81 0.05 0 0.80 0.04 0

Rep Tree 0.87 0.04 0 0.88 0.04 0 0.84 0.05 0 0.84 0.04 0
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Figure 8: Mean AUC and standard error bars of all four scenarios
and combining rules of meta-algorithm.
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In the second scenario, better results were achieved with
the original dataset. In this case, the algorithm produced
higher accuracy and AUC. Since there are missing values in
the dataset, classifiers are using more attributes to uncover
deeper links within the data. The meta-algorithm required
16 attributes out of a total of 24. In addition, the number
of records and optimal classifiers differs from that of the
first scenario.

In the third scenario, all attributes were ranked by their
importance using the attribute relief filter. Missing values
were then removed from the most important attributes; how-
ever, the meta-algorithm gave slightly worse results than the
second scenario where original dataset was used.

In fourth scenario, missing values were imputed using
KNN method. Missing values were filled with the nearest
neighbor value measured by Euclidian distance. This way,
all 107 records were used in the dataset.

The meta-algorithm running on a dataset with missing
values imputed using KNNmethod performs best. The high-
est mean AUC value of 0.96 and lowest standard error of 0.02
was achieved when using the maximum probability combin-
ing rule. Out of 24 attributes, 15 were selected as best
performing using the threshold value of 1% for search. The
set (age, height, prothrombin time, spleen thickness, pararenal
shunt, portal vein median velocity, haptic vein damping index,
liver stiffness, liver disease, AST, albumin, spleen length,
umbilical shunt, splenic vein width, gender, and spleen stiff-
ness) is required to run the meta-algorithm containing five
classification algorithms: Naïve Bayes, Simple Logistic,
lazy.IBk, Decision Table, and LMT tree. Selected attributes
are not listed in order of importance. The algorithm-
dependent wrapper algorithm is not capable of ranking them
by importance. In order to find most related attributes to
PHT, additional possible methods may be required.

We found several research projects that tried to classify
patients according to HVPG using noninvasive methods.
The comparison of the best meta-algorithm results with

other research projects done in a similar field is visible
in Table 6.

Not all research projects calculated AUC value, so we
have included other metrics available, such as sensitivity
and specificity combined into an F1 score, AUC, and accu-
racy. When comparing AUC values, our meta-algorithm
gives the best results with a value of 0.96, which is close to
the statistical liver TE-based method [14] with an AUC of
0.95, which was calculated from the same data we used.
Despite a slight increase of performance, the meta-algorithm,
with a number of different classifiers included, tends to be
most robust and objective than any of the above.

From a clinical perspective, comparing the meta-
algorithm to the second best research project where the liver
TE attribute is used, it has some drawbacks. The number of
required data fields is quite large to be used in an everyday
clinical setting and some attributes are not usually used in a
routine practice (e.g., the hepatic venous damping index),
or if they are used, there is big chance that not all are per-
formed on every patient with suspected PHT. In this context,
the best performing “lazy.Kstar” algorithm with an AUC
value of 0.97 (compared to 0.95 for liver TE alone) and the
reduction in the number of attributes to five could be more
acceptable (with regard to affordability and clinical practice).
In order to get better objective results, more data is required
for validation and fine-tuning parameters, so it is suggested
that a flexible meta-algorithm could be a candidate for get-
ting even better results with possibly less attributes required.
In addition, the meta-algorithm could be used with the exclu-
sion of data not used in everyday clinical practice.

5. Limitations and Further Research

There may be several influences in the objectivity of results
and comparisons. First of all, datasets in each case varied in
size because of removing records with missing values. The
clinical dataset having 107 records could be too small for

Table 5: Comparison of best meta-algorithm results from each scenario.

Scenario Combining rule Acc, % Sn Sp Attributes AUC Standard error

I Avg of probabilities 88.46 0.75 0.92 9 0.94 0.05

II Min probability 89.72 0.83 0.92 16 0.96 0.04

III Max probability 86.87 0.79 0.89 16 0.94 0.04

IV Max probability 88.92 0.80 0.81 15 0.96 0.02

Table 6: Comparison of classification results.

Attributes Acc, % Sn Sp F1 AUC Classifier

Demographic, laboratory data, liver/spleen TE. Our method 89.72 0.83 0.92 0.87 0.96 Meta voting

Measuring hyaluronan and laminin in serum [17] — 0.83 0.82 0.83 — Logistic regression

Albumin, INR, ALT [32] 77.00 0.93 0.37 0.53 — Predictive model

Demographic, laboratory data [19] — 0.82 0.76 0.79 0.82 Regression

Serum, liver TE [18] 80.00 0.82 0.83 0.82 0.84 Neural network

Liver TE [14] 88.70 0.88 0.88 0.88 0.95 Statistical
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some classifiers to avoid specific errors. The meta-algorithm
needs further testing and validating with a larger database.
A larger variety of classification algorithms and their modifi-
cations can be included into a meta-algorithm in order to
cover more possibilities. We have initially tried to change
parameters of each algorithm to see if they give a significant
change. The initial study showed that default parameter set-
tings in WEKA work well, so no particular attention to
parameters and settings were paid; however, this could be
worth trying to optimize parameters in order to fine tune
classification algorithms for even better results. In addition,
the influence of missing values and their distribution need
more investigating. Different methods of imputation of
missing values need to be tested in order to find the best per-
forming on a given data type. Along with the wrapper
method of selecting an optimal set of attributes, there could
be cost-based classification algorithms implemented in order
to find consensus between objectivity and approved every
day clinical practice. WEKA built in basic statistical test tool
is sufficient for comparison of intermediate results inside
meta-algorithm. For more in depth statistical tests, the other
tools and methods such as analysis of variance (ANOVA)
may be used.
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