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Background: Glycolysis proved to have a prognostic value in lung cancer; however, to identify glycolysis-
related genomic markers is expensive and challenging. This study aimed at identifying glycolysis-related 
computed tomography (CT) radiomics features to develop a deep-learning prognostic model for non-small 
cell lung cancer (NSCLC).
Methods: The study included 274 NSCLC patients from cohorts of The Second Affiliated Hospital 
of Soochow University (SZ; n=64), the Cancer Genome Atlas (TCGA)-NSCLC dataset (n=74), and the 
Gene Expression Omnibus dataset (n=136). Initially, the glycolysis enrichment scores were evaluated 
using a single-sample gene set enrichment analysis, and the cut-off values were optimized to investigate 
the prognostic potential of glycolysis genes. Radiomic features were then extracted using LIFEx software. 
The least absolute reduction and selection operator (LASSO) algorithm was employed to determine the 
glycolytic CT radiomics features. A deep-learning prognostic model was constructed by integrating CT 
radiomics and clinical features. The biological functions of the model were analyzed by incorporating RNA 
sequencing data.
Results: Kaplan-Meier curves indicated that elevated glycolysis levels were associated with poorer survival 
outcomes. The LASSO algorithm identified 11 radiomic features that were then selected for inclusion in the 
deep-learning model. They have shown significant discrimination capability in assessing glycolysis status, 
achieving an area under the curve value of 0.8442. The glycolysis-based radiomics deep-learning model was 
named the DeepGR model. This model was able to effectively predict the clinical outcomes of NSCLC 
patients with AUCs of 0.8760 and 0.8259 in the SZ and TCGA cohorts, respectively. High-risk DeepGR 
scores were strongly associated with poor overall survival, resting memory CD4+ T cells, and a high response 
to programmed cell death protein 1 immunotherapy.
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Introduction

Lung cancer ranks among the most frequently diagnosed 
cancers and remains the primary cause of cancer-related 
mortality (1). Non-small cell lung cancer (NSCLC), the 
predominant histological subtype, constitutes 85% of 
all lung cancer cases (2). Lung cancer is also the most 
common cancer in China (3). The precise stratification 
of patients with NSCLC based on survival is crucial for 
effective treatment. Due to significant heterogeneity in 
survival rates among individuals (4), improving the overall 

clinical outcomes of patients is essential (5). Thus, there is 
an urgent need to develop effective prognostic models to 
predict overall survival and to guide clinical practice.

Targeting enhanced glycolysis in cancer cells increases 
susceptibility to various conventional treatment modalities, 
such as chemotherapy, radiotherapy, hormonal therapy, 
immunotherapy, and photodynamic therapy (6). Similarly, 
immune cells in the tumor microenvironment transition 
to a glycolytic metabolic profile, fostering competition 
between cancer cells and infiltrating cells for nutrients (7). 
Termed the “Warburg effect”, this phenomenon warrants 
a survival advantage to cancer cells, and fosters a tumor 
microenvironment towards cancer progression (8). After 
undergoing metabolic reprogramming, cancer cells switch 
to a “glycolysis-dominant” profile that promotes survival 
and meets energy and macromolecular needs. Moreover, 
the metabolic switch from oxidative phosphorylation to 
glycolysis regulates the invasion-metastasis cascade by 
promoting epithelial-mesenchymal transition, tumor 
angiogenesis and the metastatic colonization of distant 
organs. Metastases, which are often difficult to treat, are 
the leading cause of cancer-related mortality. Advanced 
NSCLC is particularly prone to metastasis, resulting 
in severe symptoms and reduced overall survival. The 
presence of distant metastases is a key indicator of a poor 
prognosis (9). Although studies have investigated the role of 
glycolysis in NSCLC development and clinical outcomes, 
comprehensive investigations in this area are still missing.

Deep-learning networks aim at discerning intricate 
relationships between prognostic clinical features and an 
individual’s risk of mortality, and thus could be used to make 
tailored recommendations based on risk assessments (10). 
A recent study employed computerized methods, including 
random forests, least absolute shrinkage and selection operator 
(LASSO) regression, and neural networks. An over 90% 
accuracy in predicting lung cancer stages was achieved (11). 
Another study developed a deep-learning network model 
that surpassed the traditional proportional hazard regression 
model in analyzing progression-free survival (12).

In the field of cancer diagnosis, the features obtained 
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from imaging data can serve as crucial biomarkers, offering 
diagnostic, predictive, and prognostic insights through their 
correlations with pathological or molecular references, 
treatment responses, and survival outcomes (13). This 
approach, known as radiomics, involves extracting a range 
of features from target lesions. These features encompass: 
(I) first-order metrics such as energy, minimum, maximum, 
mean, median, interquartile range and standard deviation; 
(II) shape characteristics including volume, surface area, and 
sphericity; and (III) higher-order statistical texture measures, 
which involve analyses like Gray-Level Co-occurrence 
Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM) 
and Neighboring-Gray Tone Difference Matrix (NGTDM). 
In this domain, extracted image features, such as lesion 
volume, shape, and texture descriptors, are harnessed as 
predictive tools (14). Conversely, “radiogenomics” explores 
the integration of imaging-derived parameters and genomic 
data to uncover clinically relevant associations (15). This 
methodology not only captures comprehensive information 
from entire tumor lesions and facilitates ongoing treatment 
monitoring at various intervals also. Moreover, it is 
particularly advantageous when biopsy is unfeasible or not 
available (16). Nonetheless, the application of deep learning 
to radiomic features for prognostic prediction is still in its 
early stages.

This aim of this study is to develop a deep-learning 
prognostic model based on glycolysis-related radiomic 
features. Additionally, the relationship between the model 
and the immune response was analyzed. The results 

showed that the glycolysis-related radiomic deep-learning 
model could predict the prognosis of NSCLC patients and 
thus could potentially guide immunotherapy strategies. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-24-716/rc).

Methods

Study design

The study flowchart is shown in Figure 1. Radiomics 
analyses were conducted retrospectively on the following 
two cohorts: the Second Affiliated Hospital of Soochow 
University cohort (SZ cohort, n=64); and The Cancer 
Imaging Archive (TCIA) dataset comprising The Cancer 
Genome Atlas (TCGA)-NSCLC cohort (n=74) (https://
www.cancerimagingarchive.net/access-data/) (17,18). The 
prognostic ability of the glycolysis genes was validated 
using cohorts from the Gene Expression Omnibus (GEO) 
datasets (GSE19188 and GSE87340, n=136). To be eligible 
for inclusion in the SZ cohort, the patients had to meet 
the following inclusion criteria: (I) have a diagnosis of lung 
squamous cell carcinoma or lung adenocarcinoma; (II) 
have undergone surgery or biopsy within four weeks of the 
computed tomography (CT) scan; and (III) have a lesion 
with a maximum diameter greater than 1 cm to minimize 
the partial volume effect. Patients were excluded from 
the SZ cohort if they met any of the following exclusion 
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Figure 1 Patients’ enrollment in the study. TCGA, The Cancer Genome Atlas; NSCLC, non-small cell lung cancer; CT, computed 
tomography; GEO, Gene Expression Omnibus; SZ, The Second Affiliated Hospital of Soochow University; DICOM, Digital Imaging and 
Communications in Medicine.
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criteria: (I) had a history of other malignancies; (II) had 
incomplete case records; (III) had poor-quality images; (IV) 
had target lesions that were difficult to delineate on the 
CT scan, such as those overlapping with adjacent lesions or 
surrounding tissues, or diffuse lesions; and (V) were aged 
under 18 years. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by The Medical Ethics Committee of 
The Second Affiliated Hospital of Soochow University (No. 
JD-HG-2023-63) and informed consent was taken from all 
the patients.

CT scan protocol

Patients in the SZ cohort underwent CT scanning using 
one of two multidetector CT scanners: the GE Revolution 
CT machine, or the Philips Brilliance iCT machine. All 
the scans were performed in the supine position during 
full inspiration. The scanning parameters were as follows:  
150 kVp, 80–450 mA, detector collimation of either 
64×0.625 mm or 128×0.625 mm, and a field of view of 
350×350 mm. The obtained images represent a real clinical 
practice scenario.

CT segmentation and structuring

The CT data in the Digital Imaging and Communications 
in Medicine (DICOM) format of all the cohorts were 
imported into LIFEx software (19) (see Figure S1). 
Three radiologists, blinded to the patient data, outlined 
the primary tumor lesions on the lung window to create 
volumes of interest (VOIs). The VOIs were first re-
sampled to 1×1×1 mm3 voxels, and then re-scaled from 
−1,000 to 3,000 Hounsfield units (HU) with a bin size of 
10 HU. After these processes, 201 radiomic features were 
extracted, including the shape features, first-order statistics, 
and second-order statistics from four gray-level matrices. 
Manual image labeling reproducibility was assessed using 
the intraclass correlation coefficient (ICC) for intra-
observer agreement. Radiomic features with an ICC value 
<0.75 were deemed poorly reproducible and excluded from 
the study. Ultimately, 155 radiomic features were included 
in the study.

Identification of glycolysis-related radiomic features in 
NSCLC

A single-sample gene set enrichment analysis (ssGSEA) 

was conducted to evaluate the glycolysis enrichment scores. 
The NSCLC patients were divided into low- and high-
glycolysis groups using the optimal threshold determined 
by the Survminer package (https://rdocumentation.org/
packages/survminer/versions/0.4.9). The glycolysis genes 
were obtained from the Molecular Signatures Database 
(MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/; 
see Box S1). Kaplan-Meier curves and log-rank tests were 
used to compare OS between the glycolysis groups of 
NSCLC patients. The LASSO algorithm, which is known 
for its efficacy in handling high-dimensional collinear 
data, was used to extract predictive features after data 
splitting. A Python package was developed to implement 
the LASSO regression model for fitting and prediction 
(alpha =1.0, max_iter =1,000, seed =12,345). The diagnostic 
performance of the model was evaluated using receiver 
operating characteristic (ROC) curves that were generated 
with the ROCR 1.1.0 package in R.

Construction and validation of a deep-learning model 
based on glycolysis-related radiomics (DeepGR)

A deep neural network model with 155 glycolysis-related 
radiomics and clinical features was created. Notably, 
considering that the smoking status was not available in 
the TCGA dataset, this clinical feature was not included in 
the deep-learning model. The model had an architecture 
consisting of one input layer, three hidden layers, and one 
output layer. The model was trained using the TensorFlow 
framework (https://github.com/tensorflow/tensorflow) 
with a Tanh activation function and stochastic gradient 
descent optimizer. To prevent overfitting, a hybrid L1 
and L2 regularization method, combined with dropout, 
was employed. Bayesian optimization was used to fine-
tune the hyperparameters, resulting in a learning rate of 
0.92, a decay rate of 0.999, and a dropout rate of 0.08. The 
model architecture is depicted in Figure 2. The prognostic 
performance of different models was validated using 
area under the curve (AUC) values. Risk estimates and 
confidence intervals (CIs) were corrected for regression 
dilution bias using a non-parametric method. P values for 
linear trends and interactions between the DeepGR scores 
and survival outcomes were tested. Interaction P values 
were derived using the Wald test.

Biological function analysis of the DeepGR model

The patients in TCGA cohort were divided into high- and 

https://cdn.amegroups.cn/static/public/TLCR-24-716-Supplementary.pdf
https://rdocumentation.org/packages/survminer/versions/0.4.9
https://rdocumentation.org/packages/survminer/versions/0.4.9
https://www.gsea-msigdb.org/gsea/msigdb/
https://cdn.amegroups.cn/static/public/TLCR-24-716-Supplementary.pdf
https://github.com/tensorflow/tensorflow
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low-risk subgroups based on the DeepGR coefficients. The 
restricted cubic spline function from Hmisc (https://cran.
r-project.org/web/packages/Hmisc, version 5.1.0) was used 
to explore the nonlinear relationship between our predictor 
and clinical outcomes. The differentially expressed genes 
(DEGs) in these subgroups were identified using Deseq2 
based on the following criteria: log fold change >2, and 
P<0.05. A biological analysis was performed using the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) databases, and the results were 
visualized using the clusterProfiler (20) (version 4.0) 
and graph (version 2.1.0) packages. The protein-protein 
interaction network from the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) was analyzed and 
visualized using the network (version 1.18.2) and igraph 
(version 1.5.1) packages. The prognostic capabilities of the 
models were examined using Kaplan-Meier curves and log-
rank tests.

Assessment of immune cells infiltration of DeepGR 

The CIBERSORT algorithm was used to quantify the 
infiltration levels of the immune cells (22 classes) in 
both the high- and low-risk DeepGR groups. In this 
phase, normalized gene expression data were analyzed in 
conjunction with the LM22 signature and 1,000 permutations. 
A lollipop graph depicted the correlation between the 
immune cells and the DeepGR model. Box plots were 
created using immune scores from both DeepGR groups.

Prediction of the immunotherapy response

TCIA database has comprehensive immunogenomic 
analysis capabilities. Cancer immunogenicity was quantified 
on a scale of 0 to 10, known as the immunophenoscore (IPS). 
The response to immune checkpoint inhibitors (ICIs) in 
both the high- and low-risk DeepGR groups was assessed 
using the IPS.

Statistical analyses

GraphPad Prism (version 9.0), Python (version 3.7), 
Figdraw (www.figdraw.com) and R software (version 3.5.1) 
were used for the statistical analyses and visualizations. The 
survival (version 3.5) and survminer (version 0.4.9) packages 
of R software were used for the survival analysis and to plot 
the results. A significance level of P<0.05 was adopted.

Results

Figure 3 illustrates the study design, which involved  
138 patients with CT data from two NSCLC cohorts 
(TCGA and SZ). After annotating regions of interest (ROIs), 
processing the data, and selecting features, glycolysis-
related radiomic features were extracted and combined 
with clinical variables. This integration was used to develop 
a deep learning model, DeepGR, which aims to predict 
survival outcomes for NSCLC patients. Furthermore, the 
biological underpinnings of the model were elucidated 

Figure 2 The architecture of the DeepGR model.
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Figure 3 Study design. TCGA, The Cancer Genome Atlas; NSCLC, non-small cell lung cancer; SZ, The Second Affiliated Hospital of 
Soochow University; ICC, intraclass correlation coefficient; NA, not available; TME, tumor microenvironment; CI, confidence interval; 
DL, deep learning; LASSO, least absolute shrinkage and selection operator; NK, natural killer cell.
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through the integration of RNA-seq data. 

Baseline information

The characteristics of the enrolled patients are shown in 
Figure 4A,4B. Specifically, the SZ cohort had a slightly 
higher percentage of women (39/64), lung adenocarcinoma 
cases (41/64), and ever-smokers (44/64). While TCGA 
cohort had a significant number of elderly patients (age 
≥70 years, 42/74), females (41/74), and lung squamous cell 

carcinoma cases (40/74).

Survival analysis and cut-off calculation of glycolysis scores

A ssGSEA was conducted to calculate the glycolysis 
enrichment scores for samples from TCGA cohort and 
the two GEO cohorts based on the glycolysis gene sets. 
The optimal cut-off values for the glycolysis scores 
were determined to enhance the discriminative ability 
of predicting survivals, allowing the NSCLC patients 
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from TCGA (cutoff =2), GSE19188 (cutoff =0.43), and 
GSE87340 (cutoff =2.46) datasets to be classified into low- 
and high-glycolysis groups (Figure 5A-5C). High-glycolysis 
levels were associated with poorer survival outcomes in all 
three cohorts (Figure 5D-5F), with P=0.04, P<0.001 and 
P<0.001, respectively.

Glycolysis-related radiomic features 

The LASSO regression model was used to select 
glycolysis-related radiomic features (see Figure 6A,6B). 
The following 11 radiomic features were selected to 
construct the radiomic signature: CentreOfMassShift, 
Uniformity, JointMaximum, AngularSecondMoment, 
LongRunsEmphasis, LongRunLowGreyLevelEmphasis, 
LongRunHighGreyLevelEmphasis, LargeZoneEmphasis, 
SmallZoneHighGreyLevelEmphasis, LargeZoneLowGrey 
LevelEmphasis, and LargeZoneHighGreyLevelEmphasis. 
The coefficient of each feature is shown in Figure 6C. The 
ROC curve showed good discriminative ability (see Figure 6D) 
with an AUC of 0.8442.

Evaluation of the DeepGR model

The performance of the DeepGR model was evaluated 
by plotting survival curves and AUCs (see Figure 7A,7B). 
The patients in the high-risk group exhibited poorer 
survival outcomes than those in the low-risk group (with 
both P<0.001). Additionally, the AUCs of the DeepGR 

model outperformed those of clinical features or radiomic 
features alone with values of 0.8760 (sensitivity: 0.7787, 
specificity: 0.7617, precision: 0.7570 and recall: 0.7787) and 
0.8259 (sensitivity: 0.7131, specificity: 0.7446, precision: 
0.7324 and recall: 0.7131) in the SZ and TCGA cohorts, 
respectively (see Figure 7C,7D). The risk scores, shown 
in Figure 7E using restricted cubic splines, exhibited a 
U-shaped association with survival risk, indicating that low 
and high-risk groups have different clinical outcomes. The 
calibration plot was drawn to provide a visual representation 
of how well the predicted probabilities align with the 
observed outcomes (see Figure S2).

Relationship between DeepGR grouping and clinical features

Heatmaps were plotted to explore any differences in the 
clinical features between the high- and low-risk DeepGR 
groups (see Figure 8). There were significant differences 
observed between the two cohorts in terms of the deceased 
status (23 dead in 37 patients in the high-risk group, 
P=0.002 and 18 dead in 32 patients in the high-risk group, 
P<0.001), providing further evidence of the prognostic 
capabilities of the DeepGR model.

Biological function of the DeepGR

To enhance the interpretability of the DeepGR, we calculated 
the risk scores for TCGA samples and stratified the patients 
into high- and low-risk groups. We identified 829 DEGs (of 

Figure 4 Clinical characteristics of TCGA cohort (A) and SZ cohort (B). TCGA, The Cancer Genome Atlas; SZ, The Second Affiliated 
Hospital of Soochow University; NA, not applicable.
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Figure 5 Survival analysis and cut-off calculation of the glycolysis scores. The cut-off values of the glycolysis scores of TCGA (A), 
GSE19188 (B), and GSE87340 (C) cohorts, respectively; blue line: patients with glycolysis score lower than cutoff, red line: patients with 
glycolysis score higher than cutoff. The survival curves of the samples from TCGA (D), GSE19188 (E), and GSE87340 (F) cohorts based on 
the best cut-off values, respectively. TCGA, The Cancer Genome Atlas.

which 374 were upregulated and 455 were downregulated) 
(see Figure 9A). The network analysis revealed 11 modules (see 
Figure 9B). The GO analysis primarily indicated enrichment 
of the glycolysis process, metabolic pathways, intermediate 
filament, and channel activity (see Figure 9C). The KEGG 
analysis demonstrated that the DEGs were primarily enriched 
in metabolism-related pathways, such as carbohydrate 
metabolism and lipid metabolism (see Figure 9D).

Immune heterogeneity of the DeepGR

The ESTIMATE score, immune score, and stromal score 
were positively correlated with an increasing DeepGR risk 
score (see Figure 10A). The analysis with the CIBERSORT 

algorithm revealed a positive association between resting 
memory CD4+ T cells, monocytes, and resting dendritic 
cells, and DeepGR. Conversely, M0 (resting) macrophages 
and T follicular helper cells revealed a negative association 
with DeepGR (see Figure 10B). Additionally, using the 
TCIA, we assessed patients’ susceptibility to immunotherapy. 
We observed that high-risk DeepGR patients had a higher 
IPS in programmed cell death protein 1 (PD-1) positive 
cases, implying their potential increased sensitivity to PD-1 
targeted ICIs (see Figure 10C-10F).

Discussion

Targeting glycolysis and cancer cell-specific biosynthetic 
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Figure 6 Glycolysis-related radiomic features derived from the LASSO model. (A,B) LASSO method for the screening of the radiomics 
features; the red dotted line: the number of enrolled variables that yields the minimum bias; the blue dotted line: enrolled fewer variables 
with relative fewer bias. (C) Coefficients of the selected features; (D) performance of the model. LASSO, least absolute shrinkage and 
selection operator; AUC, area under the curve.
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pathways is a promising area of focus in lung cancer 
research (21). While the improved glycolytic dependency 
of neoplastic cells hints at the potential therapeutic efficacy 
of glycolytic inhibitors in lung cancer treatment, clinical 
glycolytic inhibition remains ineffective due to the absence 
of efficient glycolysis biomarkers to date (22). Therefore, 
the prompt detection of glycolysis status is pivotal for 
selecting appropriate glycolytic inhibitors in NSCLC 
patients. Traditional methods are invasive, and thus are 
biased by limitations such as sampling challenges, tissue 
availability constraints, and spatial tumor heterogeneity. 
Non-invasive radiomic features have been shown to be 
able to predict molecular characteristics potentially with 
an effective performance (23). This study introduced the 
DeepGR model, a deep-learning model designed to non-
invasively predict the glycolytic status of NSCLC patients, 
which showed a superior efficiency with an AUC of 0.876.

Metabolic modulation has been shown to influence cancer 

survival by sensitizing cancer cells to chemotherapy and 
radiotherapy (24). Increased glycolysis, driven by heightened 
glucose uptake, serves as the primary energy source 
for cancer cells and provides essential macromolecules 
for cell proliferation and survival. Targeted glycolytic 
therapy may enhance the clinical treatment of tumor 
patients through its combination with other therapeutic 
approaches (25). A recent study explored the potential of 
targeting glycolysis, noting that enhanced glycolysis in 
cancer cells could improve their sensitivity to conventional 
treatments such as chemotherapy, radiotherapy, hormonal 
therapy, immunotherapy, and photodynamic therapy (6). 
Additionally, metabolic reprogramming in cancer cells is 
a key factor contributing to the diminished effectiveness 
of immunotherapy (26). Moreover, it has been suggested 
that metabolic interventions significantly enhance the 
effectiveness of immunotherapy. Thus, identifying glycolysis 
status could help predicting and enhancing the clinical 
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Figure 7 Evaluation of the DeepGR model. Survival analysis of the SZ cohort (A) and TCGA cohort (B) based on risk scores. AUC curves 
of the SZ cohort (C) and TCGA cohort (D) based on the DeepGR model, clinical features and radiomics features. (E) Survival analysis 
conducted using restricted cubic splines. TCGA, The Cancer Genome Atlas; SZ, The Second Affiliated Hospital of Soochow University; 
AUC, area under the curve; CI, confidence interval; DL, deep learning; Ra, radiomics; Cli, clinical features.

Figure 8 Heatmaps showing the relationship between risk grouping and clinical features. TCGA, The Cancer Genome Atlas; SZ, The 
Second Affiliated Hospital of Soochow University.
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Figure 9 Biological function of the DeepGR model. (A) DEGs of the model; (B) network analysis of the DEGs; #: CYP2B6; (C) GO 
analysis of the DEGs; (D) KEGG analysis of the DEGs. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

outcomes of lung cancer patients.
Several studies have been tested successfully in predicting 

survival outcomes in different cancers, including pancreatic 
cancer (27), colon adenocarcinoma (28), bladder cancer (29),  
and laryngeal cancer (30), based on glycolysis genes. However, 
detecting genomic markers related to glycolysis is quite 
expensive and challenging. Thus, this study searched for 
characterized glycolysis markers to predict the survival 

outcomes of NSCLC patients using radiomic features. 
Previous studies have investigated predictive radiomic 
features for lung cancer. For example, Fave et al. used delta-
radiomic features to predict outcomes in stage-III NSCLC 
patients undergoing radiation therapy (31). Another study 
positively identified clusters of radiomic features associated 
with lung cancer prognosis (32). Song et al. also described a 
correlation between CT radiomic features and OS in NSCLC 
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Figure 10 Immune heterogeneity between the DeepGR-high and DeepGR-low groups. (A) The ESTIMATE score, immune score, and 
stromal score of the DeepGR-high and DeepGR-low groups; (B) the correlation between the infiltration levels of 22 immune cells and the 
DeepGR analyzed by the CIBERSORT algorithm; (C-F) the relative probabilities of responding to anti-CTLA-4 antibody and anti-PD-1 
antibody in the DeepGR-high and DeepGR-low groups. TME, tumor microenvironment; CTLA-4, cytotoxic T-lymphocyte-associated 
protein 4; PD-1, programmed cell death protein 1; NK, natural killer cell.

patients (33). Researchers also demonstrated that radiomic 
features extracted from PET/CT images can effectively 
predict the risk of metastasis in NSCLC patients (34).  
One novel commentary discussed that navigating the 
prediction of disease remains a challenge at the intersection 
of radiomics and deep learning (35). A recent meta-analysis 
demonstrated that AI algorithms, particularly deep learning, 
using radiomics features can significantly enhance the 
prediction of EGFR mutation status in NSCLC (36). 

Despite the promising therapeutic efficacy of glycolytic 
inhibitors in lung cancer treatment, no radiomic features 
are currently available for predicting glycolysis status. 
In the study, 11 selected glycolysis-related radiomic 
features capture various aspects of tumor heterogeneity 
and microenvironmental characteristics, which are 
closely linked to the biological behavior of NSCLC. For 
instance, CentreOfMassShift indicates asymmetry in 

tumor growth, reflecting uneven cellular proliferation. 
Uniformity and AngularSecondMoment are texture-based 
features that measure the homogeneity of pixel intensities, 
potentially correlating with the consistency of glycolytic 
activity across the tumor. LongRunsEmphasis and 
related features (e.g., LongRunLowGreyLevelEmphasis, 
LargeZoneHighGreyLevelEmphasis )  capture the 
distribution of voxel intensities in specific patterns, 
which might reflect the metabolic state and structural 
complexity of the tumor. These features together provide 
a comprehensive radiomic signature that can offer insights 
into the underlying glycolytic processes and tumor 
aggressiveness, ultimately contributing to the prediction 
of patient outcomes. The connection between the selected 
radiomic features and immune responses is an area of 
growing interest, particularly in understanding their role 
in predicting sensitivity to immunotherapy. Features like 
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CentreOfMassShift and Uniformity may be associated with 
the spatial distribution of immune cells within the tumor 
microenvironment, reflecting how immune infiltration 
varies across different tumor regions. Texture features such 
as AngularSecondMoment and LongRunsEmphasis might 
correlate with the density and arrangement of immune 
cells, potentially indicating areas of immune activity or 
evasion. Exploring these connections could provide valuable 
insights into how these radiomic signatures not only reflect 
tumor biology but also predict the tumor’s response to 
immunotherapy.

This study leveraged glycolysis-related radiomics to 
develop a deep neural network model called the DeepGR 
model. Subsequently, we identified the DEGs between the 
DeepGR-low and DeepGR-high groups. The DeepGR-
high group showed a more favorable response to PD-1 
immunotherapy, characterized by a significant infiltration 
of resting memory CD4+ T cells, monocytes, and dendritic 
resting cells, that had not previously been reported. 
Glycolysis may have distinct effects on immunotherapy 
response, and thus deserves further investigation. 
Additionally, the genomic network analysis and KEGG 
pathway enrichment analysis revealed the significant 
enrichment of metabolic functions in the DeepGR. In 
clinical practice, there will be a three-step workflow to 
facilitate its practical application: clinicians first gather 
clinical information and perform CT annotation; next, the 
model’s risk scores are computed using LifeX and our deep-
learning framework; and finally, the model provides output 
on predicted survival outcomes. While the DeepGR model 
has shown strong performance in predicting prognosis 
in NSCLC patients, we acknowledge the importance of 
further external validation. In future work, we plan to 
expand validation with data from multiple centers to further 
strengthen the model’s generalizability.

This study had several limitations. First, variations 
between devices might have influenced the outcomes, even 
though we restricted image acquisition to two CT systems 
and preprocessed them before segmentation. Moreover, 
the process of semi-automatic tumor segmentation 
proved to be time-consuming for the operators. Besides, 
the restricted sample size emphasizes the necessity for 
additional prospective studies to support the generalizability 
and robustness of the constructed model. Finally, this 
study may not fully capture the heterogeneity of NSCLC 
across different demographics, clinical settings, or imaging 
platforms. Future work will aim to incorporate data 
from more diverse populations to enhance the model’s 

generalizability and to mitigate overfitting.

Conclusions

A novel approach to assess glycolysis status by integrating 
radiomics and deep-learning models is proposed. This 
approach could aid clinicians in the near future to optimize 
treatment strategies and to minimize invasive sample 
harvesting in NSCLC patients. The results are surprising 
but a more standardized procedure must be trained before 
promoting translation into routine clinical practice.
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