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Background: Type 2 diabetes mellitus (T2DM) is associated with an increased risk of non-Hodgkin lymphoma (NHL), but the 
underlying mechanisms remain unclear. This study aimed to identify potential biomarkers and elucidate the molecular mechanisms 
underlying the co-pathogenesis of T2DM and NHL.
Methods: Microarray datasets of T2DM and NHL were downloaded from the Gene Expression Omnibus database. Subsequently, 
a protein-protein interaction network was constructed based on the common differentially expressed genes (DEGs) between T2DM 
and NHL to explore regulatory interactions. Functional analyses were performed to explore underlying mechanisms. Topological 
analysis and machine learning algorithms were applied to refine hub gene selection. Finally, quantitative real-time polymerase chain 
reaction was performed to validate hub genes in clinical samples.
Results: Intersection analysis of DEGs from the T2DM and NHL datasets identified 81 shared genes. Functional analyses suggested 
that immune-related pathways played a significant role in the co-pathogenesis of T2DM and NHL. Topological analysis and machine 
learning identified three hub genes: GZMM, HSPG2, and SERPING1. Correlation analysis revealed significant correlations between 
these hub genes and immune cells, underscoring the importance of immune dysregulation in shared pathogenesis. The expression of 
these genes was successfully validated in clinical samples.
Conclusion: This study suggested the pivotal role of immune dysregulation in the co-pathogenesis of T2DM and NHL and identified and 
validated three hub genes as key contributors. These findings provide insight into the complex interplay between T2DM and NHL.
Keywords: type 2 diabetes mellitus, non-Hodgkin lymphoma, immunity, microarray analysis, machine learning

Introduction
T2DM is a chronic disorder characterized by insulin resistance and progressive pancreatic β-cell dysfunction, leading to 
metabolic disturbances and hyperglycemia.1 It is the most prevalent form of diabetes, accounting for 90–95% of all 
diabetes cases.2 Over the past few decades, the incidence of T2DM has risen at an alarming rate, posing a significant 
global public health challenge.3 Environmental factors including obesity, sedentary lifestyles, and unhealthy diets, as well 
as genetic predispositions, contribute to the various pathophysiological disruptions responsible for glucose homeostasis 
dysfunction in T2DM.4 This condition is associated with numerous complications, including cardiovascular disease, 
nephropathy, neuropathy, and retinopathy, which contribute significantly to global morbidity and mortality.5

Emerging evidence highlights a connection between T2DM and an increased risk of various cancers such as liver,6 

gallbladder,7 prostate,8 gastric,9 lung,10 and oral cancers.11 Moreover, among hematological malignancies, previous research 
suggests that T2DM is linked to a heightened risk of NHL, leukemia, and myeloma.12–14 It is worth mentioning that a growing 
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body of research has identified a potential association between T2DM and NHL, a heterogeneous group of malignant 
lymphoid tumors.15–18 NHL is the most prevalent hematological malignancy worldwide, accounting for approximately 3% 
of all cancer diagnoses and deaths, and its incidence has steadily increased in recent decades.19 The development of NHL is 
influenced by complex factors, including genetic susceptibility, immune dysfunction, and viral infections, such as those caused 
by the Epstein-Barr virus and human immunodeficiency virus.19–21 However, the precise mechanisms underlying the 
association between T2DM and NHL remain poorly understood. Further research is crucial to elucidate the underlying 
mechanisms and identify potential biomarkers that could enable targeted therapeutic strategies for coexisting conditions.

In recent years, advancements in high-throughput technologies, such as microarray analysis, have enabled researchers to 
profile gene expression patterns comprehensively, thereby offering valuable insights into the molecular mechanisms under
lying complex diseases.22,23 Coupled with the power of machine learning algorithms, these tools allow the identification of 
critical biomarkers and key genes associated with disease progression, as well as the discovery of potential therapeutic 
targets.24,25 Machine learning facilitates the integration and analysis of large, multidimensional datasets and provides a robust 
framework for distinguishing meaningful biological signals from noise.26–28 In this study, we aimed to identify the hub genes 
and elucidate the mechanisms underlying the co-pathogenesis of T2DM and NHL by integrating microarray analysis, machine 
learning, and experimental validation.

Materials and Methods
Data Collection
This study was conducted in accordance with the Declaration of Helsinki and received approval from the Ethics 
Committee of Shanghai Yangpu Hospital (LL-012). Microarray datasets were obtained from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The GSE25724 dataset, which included samples from T2DM patients and non- 
diabetic controls, was used for T2DM-related analysis. The GSE25638 dataset, which included samples from patients 
with various types of NHL and normal controls, was used for NHL analysis. Detailed information on these datasets is 
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provided in Supplementary Table S1. To ensure consistency and reliability across datasets, raw data were normalized to 
address potential batch effects. Peripheral blood samples were obtained from three groups at Shanghai Yangpu Hospital: 
five patients with T2DM, five patients diagnosed with NHL, and five healthy donors. T2DM samples were selected based 
on the American Diabetes Association diagnostic criteria. Inclusion criteria required patients to meet at least one of the 
following: fasting plasma glucose ≥126 mg/dL (7.0 mmol/L), 2-hour plasma glucose ≥200 mg/dL (11.1 mmol/L) during 
an OGTT, or HbA1c ≥6.5%. NHL samples were included after diagnostic confirmation via morphological examination, 
immunohistochemistry, flow cytometry, and molecular genetic testing. Healthy donors were required to be free from 
significant illnesses (eg, chronic diseases, autoimmune disorders, infections, or malignancies). The general exclusion 
criteria included patients with significant comorbidities (eg, autoimmune diseases, active infections, or other malignan
cies), individuals with other types of diabetes (eg, type 1, gestational, or secondary diabetes), patients taking medications 
affecting glucose metabolism or immune function (eg, corticosteroids), individuals under 18 or over 75 years of age, 
pregnant or lactating women, and cases with poor-quality blood samples (eg, hemolysis or clotting).

Identification of DEGs
Differential expression analysis was conducted on the above-mentioned datasets to identify DEGs using the “LIMMA” 
(version 3.56.2) package. DEGs were selected based on the criteria of adjusted p-value < 0.05 and |log fold change| > 
0.585. The “VennDiagram” (version 1.7.3) package was used to identify genes common to both T2DM and NHL.

Construction of a PPI Network
To analyze the regulatory interactions among the identified DEGs, a PPI network was constructed using the STRING database 
(http://string-db.org). The resulting network was then imported into Cytoscape software (version 3.8.2) for further analysis. 
Within Cytoscape, the MCODE algorithm was used to identify key functional modules. The selection criteria for the MCODE 
analysis were set as follows: degree cutoff = 2, node score cutoff = 0.2, k-core value = 2, and maximum depth = 100. A topological 
analysis was performed using the CytoHubba plugin to rank the most significant genes in the PPI network. Based on a previous 
study,29 we identified ten genes with the highest degree values as key genes. To further investigate the relationships between these 
key genes, a co-expression network was constructed using GeneMANIA (http://www.genemania.org/), a tool that provides 
insights into the functional associations between gene sets.

GO and KEGG Analyses
GO and KEGG analyses were conducted to explore the underlying mechanisms. The enrichment analysis helps to 
identify the potential mechanisms through which these genes contribute to disease development, offering theoretical 
support for further investigation. A significance threshold of p < 0.05 was applied in both analyses. The results were 
visualized using the “clusterProfiler” (version 4.8.1) and “enrichplot” (version 1.20.0) packages.

Selection of Hub Genes Using Machine Learning Algorithms
Advanced machine learning techniques were used to identify hub genes from the key genes in the PPI network, ensuring 
a rigorous and reliable selection process. The LASSO regression, recognized for variable selection and regularization to 
prevent overfitting, uses one standard error criterion to balance model complexity and performance.30 The SVM 
algorithm is an effective supervised learning method known for its ability to handle high-dimensional data by maximiz
ing the separation between classes.31 To enhance predictive accuracy, we applied SVM-RFE, which iteratively refines the 
feature set by removing less important features. In addition, the RF algorithm, an ensemble learning method, effectively 
manages unbalanced data and estimates feature importance.32 The final set of hub genes was derived from an intersection 
analysis of the results of the LASSO logistic regression, SVM-RFE, and RF methods. The implementation and 
visualization of these machine learning algorithms were carried out using the “glmnet” (version 4.1.7), “e1071” (version 
1.7.13), and “randomForest” (version 4.7.1.1) packages, respectively.
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GSEA and Correlation Analysis
GSEA was performed to identify the pathways significantly associated with the hub genes. Moreover, ssGSEA was 
performed to quantify the enrichment levels of 28 immune cells in the T2DM and control groups, as well as in the NHL 
and control groups, offering a comprehensive overview of immune cell involvement. Spearman correlation analysis was 
used to investigate the relationship between the hub genes and infiltrating immune cells. The analysis and visualization 
were conducted using several packages, including “vioplot” (version 0.4.0), “reshape2” (version 1.4.4), “ggplot2” 
(version 3.4.2), and “org.Hs.eg.db” (version 3.17.0).

qRT-PCR
Total RNA was extracted from the samples using TRIzol reagent (Takara, Japan), according to the manufacturer’s 
instructions. The isolated RNA was reverse-transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit 
(Thermo Scientific, USA). Subsequently, qRT-PCR was conducted in 96-well plates using the SYBR Green PCR Master 
Mix (KAPA, Japan) and the Applied Biosystems 7900HT Fast Real-Time PCR System (Thermo Fisher Scientific, USA). 
Gene expression levels were calculated using the 2−ΔΔCt algorithm, with GAPDH as the internal control. Primer 
sequences used for qRT-PCR are listed in Supplementary Table S2.

Statistical Analysis
Data analysis and visualization were performed using R software (version 4.3.0) and GraphPad Prism (version 8.0.1). For 
group comparisons involving normally distributed quantitative variables, the Student’s t-test was applied, while the 
Wilcoxon test was used for non-normally distributed data. Statistical significance was determined using the following 
thresholds: *p < 0.05, **p < 0.01, and ***p < 0.001.

Results
Identification of DEGs
The flowchart in Figure 1 illustrates the analyses performed in this study. In the GSE25724 dataset, we identified 1807 DEGs 
between patients with T2DM and controls, including 754 upregulated and 1053 downregulated genes (Figure 2A and B). 
Similarly, we identified 2487 DEGs between patients with NHL and controls in the GSE25638 dataset, consisting of 1494 
upregulated and 993 downregulated genes (Figure 2C and D). Intersection analysis of DEGs from the T2DM and NHL 
datasets identified 81 common genes, of which 52 were upregulated and 29 were downregulated (Figure 2E and F). GO 
analysis revealed that these common DEGs were significantly involved in immune-related biological processes, including 
response to type II interferon, lymphocyte differentiation, complement activation, mononuclear cell differentiation, and 
immune response activation (Figure 2G). KEGG analysis further revealed significant enrichment in immune-related path
ways, including primary immunodeficiency, complement and coagulation cascades, pertussis, hematopoietic cell lineage, and 
Staphylococcus aureus infection (Figure 2H).

Construction of the PPI Network
The PPI network was constructed to analyze the shared DEGs between T2DM and NHL (Figure 3A). Using the MCODE 
plug-in in Cytoscape, we identified two interconnected gene modules comprising 14 common DEGs (Figure 3B and C). 
GO analysis indicated that these genes were significantly enriched in immune-related biological processes, including 
complement activation, immune response activation, and type I interferon-mediated signaling pathway (Figure 3D). 
KEGG analysis further showed significant involvement of immune-related pathways, such as complement and coagula
tion cascades, Staphylococcus aureus infection, and primary immunodeficiency (Figure 3E).

Subsequently, we identified the top ten genes with the highest degree values as key genes using topological analysis: 
ZAP70, IL7R, GZMM, CD8A, GBP2, HSPG2, LTBP2, IFITM1, SERPING1, and SAMHD1 (Figure 4A). To gain deeper 
functional insights, we used the GeneMANIA database to construct a co-expression network and analyze the interactions 
among these genes (Figure 4B). Functional analysis showed that these genes were significantly involved in immune- 
related processes, including lymphocyte differentiation, T cell differentiation, positive regulation of leukocyte activation, 
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positive regulation of cell activation, response to type I interferon, cellular response to type I interferon, and receptor 
signaling pathway via STAT.

Selection of Hub Genes Using Machine Learning Algorithms
Multiple machine learning algorithms were used to identify hub genes from the set of ten key genes. Using LASSO 
regression, four genes were identified based on the variables (Figure 5A and B; Supplementary Table S3). The SVM-RFE 
method identified six genes with an accuracy of 0.98 and an error of 0.02 (Figure 5C and D; Supplementary Table S4). 
Moreover, the RF algorithm was used to analyze the relationship between the error rate and the number of classification 
trees, ultimately identifying seven genes of relative importance (Figure 5E and F; Supplementary Table S5). By cross- 
referencing the results of all three algorithms, we identified three overlapping hub genes: GZMM, HSPG2, and 
SERPING1 (Figure 5G).

Figure 1 Flowchart of this study.
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Figure 2 Identification of differentially expressed genes (DEGs). (A and B) Heatmap (A) and volcano plot (B) of the DEGs of T2DM. (C and D) Heatmap (C) and volcano 
plot (D) of the DEGs of NHL. (E) Venn diagram of the common upregulated DEGs. (F) Venn diagram of the common downregulated DEGs. (G) The barplot of the Gene 
Ontology analysis. (H) The barplot of the Kyoto Encyclopedia of Genes and Genomes analysis.
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Figure 3 Construction of the protein-protein interaction (PPI) network and module analysis. (A) The PPI network of the common differentially expressed genes between 
type 2 diabetes mellitus and non-Hodgkin lymphoma, with downregulated genes denoted by green dots and upregulated genes indicated by red dots. (B and C) Two 
interconnected gene modules. (D) The barplot of the Gene Ontology analysis. (E) The barplot of the Kyoto Encyclopedia of Genes and Genomes analysis.
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Figure 4 The top 10 genes in the protein-protein interaction network. (A) The ten genes with the highest degree values. Genes are represented using a color gradient, with 
darker hues indicating higher degree values. Bright red corresponds to the highest degree, while yellow represents the lowest. (B) The co-expression network of key genes 
derived from the GeneMANIA database.
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Figure 5 Selection of hub genes using machine learning algorithms. (A and B) Regression coefficients (A) and cross-validation curve (B) derived from the least absolute 
shrinkage and selection operator regression algorithm. (C and D) Cross-validation accuracy (C) and error (D) in the support vector machine-recursive feature elimination 
algorithm. (E) Relationship between error rate and quantity of trees in the random forest algorithm. (F) Importance of feature genes. (G) Venn diagram of the hub genes 
from the intersection of results from the above-mentioned algorithms.
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GSEA and Correlation Analysis
To investigate the underlying mechanisms, GSEA was conducted to identify pathways significantly associated with hub genes. 
GZMM was predominantly enriched in complement and coagulation cascades, natural killer cell-mediated cytotoxicity, and 
T-cell receptor signaling pathway (Figure 6A). HSPG2 was enriched in complement and coagulation cascades, ECM-receptor 
interaction, and cancer pathways (Figure 6B). SERPING was primarily enriched in complement and coagulation cascades, 
cytokine-cytokine receptor interaction, and ECM-receptor interaction (Figure 6C). Collectively, these findings indicated that all 
hub genes were enriched in immune-related pathways. Further analysis using ssGSEA revealed significant differences in the 
enrichment levels of 19 of the 28 immune cells between T2DM patients and controls (Figure 6D). In patients with NHL, all 28 
immune cells showed significant differences compared to the controls (Figure 6E). These findings suggested a strong 
association between immune cell infiltration and both diseases. Furthermore, correlation analysis demonstrated significant 
associations between the hub genes and immune cells (Figure 6F).

qRT-PCR
To validate these findings, qRT-PCR was performed on clinical samples from patients with T2DM, patients with NHL, 
and controls. As anticipated, T2DM patients showed significantly higher expression levels of GZMM, HSPG2, and 
SERPING1 than the controls (Figure 7A–C). Similarly, NHL patients exhibited a consistent pattern, with all three hub 
genes showing significant upregulation compared to controls (Figure 7D–F).

Discussion
Previous studies have indicated that T2DM may increase the risk of developing NHL, although the mechanisms 
underlying this association remain unclear. In this study, functional analyses suggested an important role of immune- 
related pathways in the co-pathogenesis of T2DM and NHL. Identifying biomarkers is crucial to elucidate the molecular 
connections between these diseases. By integrating microarray analysis and machine learning, we identified three hub 
genes involved in the co-pathogenesis of T2DM and NHL. These genes demonstrated significant correlations with 
immune cells, further supporting the potential role of immune dysregulation in the shared pathogenesis. Experimental 
validation using clinical samples was performed to ensure the reliability of the hub genes in clinical practice. These 
findings provide valuable insights into the shared pathogenic mechanisms of T2DM and NHL, emphasizing the genetic 
changes that inform molecular pathways and could guide future research and therapeutic strategies.

Functional analyses highlighted the role of immune-related pathways in the co-pathogenesis of T2DM and NHL. Immune 
cell analysis further demonstrated a significant association between both diseases and immune cell infiltration, highlighting 
immune dysfunction as a common feature. Patients with T2DM demonstrate increased susceptibility to infections, resulting in 
higher morbidity and mortality rates than non-diabetic individuals.33 This increased susceptibility is largely due to abnorm
alities in both the innate and adaptive immune responses that interact with each other during the progression of T2DM.34–36 

Specific changes, such as altered T cell and macrophage proliferation as well as impaired NK cell and B cell function, reflect an 
overall dysfunction in immune regulation in patients with T2DM.37 These immune alterations suggest that patients with 
T2DM may be immunodeficient, increasing their vulnerability to various diseases, including cancer. On the other hand, NHL 
is associated with dysregulation of the immune system. Individuals with compromised immune systems, such as those with 
HIV/AIDS or those who have undergone organ transplantation, and patients with autoimmune disorders involving chronic 
immune activation and inflammation, are known to have an elevated risk of NHL.38–40 Disruptions in immune function 
promote the neoplastic transformation of blood cells into lymphoid malignancies through mechanisms, such as chronic 
immune stimulation, persistent inflammation, defective immune surveillance, and impaired anticancer immunity.40,41 

Therefore, it is plausible that chronic immune dysfunction in T2DM may create an environment of sustained inflammation 
and impaired immune surveillance, facilitating the development of lymphoid malignancies such as NHL.

Ten key genes were identified in the PPI network of the DEGs shared between T2DM and NHL: ZAP70, IL7R, 
GZMM, CD8A, GBP2, HSPG2, LTBP2, IFITM1, SERPING1, and SAMHD1. ZAP70 is a cytoplasmic tyrosine kinase 
that plays an essential role in T-cell receptor signaling.42,43 Previous research has identified ZAP70 as a promising 
biomarker for follicular lymphoma and implicated it in the development and progression of this disease through 
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immune-related pathways.44 IL7R, the receptor for interleukin-7, is critical for B cell development and T cell 
maturation.45,46 GZMM, a serine protease expressed in cytotoxic lymphocytes, contributes to tumor cell destruction, 
inhibits cytomegalovirus replication, and plays a role in inflammation.47 CD8A encodes the alpha chain of the CD8 
glycoprotein, which is predominantly expressed in cytotoxic T cells and is vital for antigen recognition and immune 

Figure 6 Gene set enrichment analysis (GSEA) and correlation analysis. (A-C) GSEA of the significantly enriched pathways of GZMM (A), HSPG2 (B), and SERPING1 (C). 
(D) Violin plot of immune cells between T2DM and control samples. (E) Violin plot of immune cells between NHL and control samples. (F) Heatmap of correlations 
between hub genes and immune cells. Statistical significance was determined using the following thresholds: *p < 0.05, **p < 0.01, and ***p < 0.001.
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responses.48,49 GBP2, part of the GTPase family, is essential in innate immunity against bacterial, viral, and 
protozoan pathogens and is significantly upregulated by interferon-γ.50,51 HSPG2 encodes perlecan, a protein that 
plays a key role in ECM and immune signaling.52,53 LTBP2, a member of the ECM glycoprotein family, regulates 
the activity and function of transforming growth factor-beta, which has immune-modulating properties.54,55 IFITM1 
is an interferon-induced transmembrane protein that is involved in antiviral immunity, immune response regulation, 
and cellular membrane function.56,57 SERPING1, a plasma protein, regulates immune responses and blood clotting 
by inhibiting key enzymes in the complement, coagulation, and fibrinolytic systems.58 SAMHD1, 
a triphosphohydrolase, restricts viral replication by degrading intracellular deoxynucleoside triphosphate in non
dividing cells.59–61 All these genes share a connection with immune system regulation, highlighting the immune 
dysregulation underlying the co-pathogenesis of T2DM and NHL.

Figure 7 qRT-PCR. (A-C) Expression levels of GZMM (A), HSPG2 (B), and SERPING1 (C) between T2DM and control samples. (D-F) Expression of GZMM (D), HSPG2 (E), 
and SERPING1 (F) between NHL and control samples. Statistical significance was determined using the following threshold: *p < 0.05.
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To further explore the biomarker genes involved in the co-pathogenesis of T2DM and NHL, we applied machine 
learning algorithms that were known for their ability to identify hidden patterns and enhance predictive model 
accuracy.26,62,63 This approach led to the identification of three hub genes as key contributors to shared pathogenesis: 
GZMM, HSPG2, and SERPING1. Validation with clinical samples confirmed the reliability of these genes in clinical 
practice. GSEA revealed that all three hub genes were enriched in the immune-related pathways. Correlation analysis 
also revealed significant associations between these hub genes and immune cells, further supporting the hypothesis that 
immune dysregulation played a central role in the co-pathogenesis of T2DM and NHL. By identifying biomarker genes 
and exploring the involved mechanisms connecting these two diseases, this study provides a foundation for future 
research and potential therapeutic development. However, further research is required to elucidate the specific mechan
isms by which these genes mediate the complex interplay between T2DM and NHL.

In previous studies, hub genes associated with T2DM and NHL were explored separately.64–68 In contrast, our study 
focused on identifying shared hub genes and the mechanisms underlying these two diseases. Functional analyses highlighted 
the critical role of immune-related pathways in the co-pathogenesis of T2DM and NHL. Additionally, using a combination of 
microarray analysis and machine learning, we identified three hub genes that showed strong correlations with immune cells, 
further emphasizing the role of immune dysregulation in shared pathogenesis. Furthermore, hub genes were successfully 
validated in clinical samples. Our study introduced a novel integrative approach combining microarray analysis, machine 
learning, and experimental validation to provide a comprehensive understanding of the mechanisms underlying the association 
between T2DM and NHL. However, it is important to acknowledge the limitations of this study. First, the analyzed datasets 
from the GEO database primarily focused on B-cell NHL, because data on T-cell NHL were less comprehensive. Although the 
immunological similarities between the two subtypes suggest potential parallels, future studies should include T-cell NHL to 
validate the generalizability of our findings. Second, the relatively small sample size of the clinical specimens used for 
experimental validation may limit the robustness of our conclusions. Larger sample sizes are necessary in future studies to 
strengthen our results. Finally, although potential hub genes were identified, the exact mechanisms in mediating the interaction 
between T2DM and NHL remained unclear. Further experimental studies are required to fully elucidate these mechanisms. 
Addressing these limitations will be the focus of future studies to achieve a more comprehensive understanding of the shared 
pathophysiology between T2DM and NHL.

Conclusion
Our study suggested that immune-related pathways played a significant role in the shared pathogenesis of T2DM and NHL. 
By integrating microarray analysis, machine learning, and experimental validation, we identified and validated three key hub 
genes that were critical contributors to co-pathogenesis. These findings enhance our understanding of the complex interplay 
between T2DM and NHL and may pave the way for future therapeutic advancements.
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