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Temperature has a profound impact on insect fitness and performance via metabolic,
enzymatic or chemical reaction rate effects. However, oxygen availability can interact
with these thermal responses in complex and often poorly understood ways, especially
in hypoxia-adapted species. Here we test the hypothesis that thermal limits are reduced
under low oxygen availability – such as might happen when key life-stages reside within
plants – but also extend this test to attempt to explain that the magnitude of the effect
of hypoxia depends on variation in key respiration-related parameters such as aerobic
scope and respiratory morphology. Using two life-stages of a xylophagous cerambycid
beetle, Cacosceles (Zelogenes) newmannii we assessed oxygen-limitation effects
on metabolic performance and thermal limits. We complement these physiological
assessments with high-resolution 3D (micro-computed tomography scan) morphometry
in both life-stages. Results showed that although larvae and adults have similar critical
thermal maxima (CTmax) under normoxia, hypoxia reduces metabolic rate in adults to
a greater extent than it does in larvae, thus reducing aerobic scope in the former far
more markedly. In separate experiments, we also show that adults defend a tracheal
oxygen (critical) setpoint more consistently than do larvae, indicated by switching
between discontinuous gas exchange cycles (DGC) and continuous respiratory patterns
under experimentally manipulated oxygen levels. These effects can be explained by
the fact that the volume of respiratory anatomy is positively correlated with body
mass in adults but is apparently size-invariant in larvae. Thus, the two life-stages of
C. newmannii display key differences in respiratory structure and function that can
explain the magnitude of the effect of hypoxia on upper thermal limits.
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INTRODUCTION

Temperature is a key environmental driver of insect population
dynamics since it directly affects life-history traits (Angilletta,
2009). In the context of climate change, geographic range
shifts of insects are tightly linked with climate variability at a
range of spatial and temporal scales (Rosenzweig et al., 2008).
Understanding insect responses to temperature is therefore
crucial in estimating how global warming will affect terrestrial
arthropods (Bale et al., 2002; Huey et al., 2012). This is
particularly true for insect pests, whose distribution and
population dynamics are likely to be modified with changing
climate (Battisti and Larsson, 2015; Lehmann et al., 2019a).
For these reasons, estimating thermal limits is critical, since
they represent the environmental limits of key traits, such as
activity, survival, development and reproduction of ectothermic
organisms (Angilletta, 2009). Yet thermal tolerances are affected
by a range of methodological and environmental factors
(Kovacevic et al., 2019) at diverse time-scales, from evolutionary
to more recent thermal history. Thermal limits can be influenced,
for example, by a large number of endogenous and exogenous
parameters (Colinet and Boivin, 2011) including sex (Colinet
and Hance, 2009; Nyamukondiwa and Terblanche, 2009), the
rate of change in temperature (Kelty and Lee, 1999), acclimation
or acclimatization history (Sejerkilde et al., 2003; Hoffmann
et al., 2005; Koštál et al., 2011), reproductive status (Marshall
and Sinclair, 2010; Javal et al., 2016), stage of development
(Zhang et al., 2015), age (Bowler and Terblanche, 2008), body
condition (Mitchell et al., 2017), humidity (Terblanche et al.,
2011; Bubliy et al., 2012), or photoperiod (Kim and Song, 2000;
Fischer et al., 2012).

One major factor of interest is atmospheric oxygen levels,
and how this interacts with – or perhaps jointly determines –
organismal thermal tolerance. For example, using a microarray
approach, Boardman et al. (2018) recently found a novel
candidate gene with unknown functions underlying high
temperature stress resistance during hypoxia in Drosophila
melanogaster. The “oxygen-and capacity-limited thermal
tolerance” (OCLTT) hypothesis proposes to explain variation in
heat tolerance in ectotherms under oxygen-limited conditions.
This hypothesis states that insufficient capacity to supply
oxygen to meet the oxygen demand of tissues can cause a
progressive decline in animal performance as temperatures
deviate from the optimum (Giomi et al., 2014). Many aquatic
species conform to one or several predictions derived from the
OCLTT hypothesis (Pörtner, 2010). The results for terrestrial
insects, however, remain somewhat equivocal with some species
showing strong support (Woods and Hill, 2004; Boardman
and Terblanche, 2015), some showing partial support (Stevens
et al., 2010) and others showing little or no support (Klok
et al., 2004; Lehmann et al., 2019b; reviewed in Verberk et al.,
2016b). This hypothesis has proven controversial and is the
focus of several recent discussions questioning, in particular,
the appropriate methods for falsifying predictions thereof
(Clark et al., 2013; Jutfelt et al., 2014; Pörtner, 2014) and how
widespread the evidence might be supporting OCLTT across
diverse taxa (Verberk et al., 2016b; Jutfelt et al., 2018). In cases

where strong or obvious support was not found for OCLTT
in terrestrial insects, the reasons are typically unclear and not
the focus of current investigation. Most commonly, structure-
function dynamics of the respiratory system is widely expected
to drive variation in support for the OCLTT hypothesis even
in air-breathing insects (Verberk et al., 2016b). Differences in
respiratory media (gas vs. liquid physico-chemistry, reviewed
in Verberk et al., 2016a; Terblanche and Woods, 2018) may
also account for variation in support for the OCLTT hypothesis
among diverse arthropods.

The longhorned beetle Cacosceles (Zelogenes) newmannii
Thomson (1877) (Coleoptera: Cerambycidae) is native to
Mozambique, Eswatini and South Africa. Larvae of this beetle
were found feeding on sugarcane (Saccharum sp. hybrids)
for the first time in 2015 in the KwaZulu-Natal Province
of South Africa. They dig galleries into the sugarcane stool
and upwards into the stalks, causing considerable crop loss,
as sucrose is stored in the lower nodes of mature sugarcane
stalks. Although the level of hypoxia expected inside living plant
tissues can vary with many different parameters (Pincebourde
and Casas, 2016), this species is expected to show hypoxia
adaptations, at least at the larval stage, owing to the wood-boring
nature of larvae (Way et al., 2017), although it is possible the
sugarcane plant is more aerated than the woody natural host
plants in the region.

We explored the potential connection between thermal
tolerance and oxygen limitation in this cerambycid beetle using
diverse experimental laboratory approaches. We investigated
whether oxygen availability influenced upper critical (=lethal)
temperature through thermolimit respirometry (TLR; Lighton
and Turner, 2004) in larvae and adults under normoxia and
hypoxia. Our first prediction was that hypoxia reduced upper
critical temperature (CTmax) in both life stages. Our second
prediction was that the magnitude of the oxygen limitation
effect on CTmax would differ between adults and larvae, and
that this was related to variation in respiratory structure and
function. Adult beetles are expected to have greater aerobic
scope (i.e., the excess capacity of the respiratory system to
deliver oxygen) than larvae, because of more energetically
demanding behaviors such as flight and/or mating. Adults are
therefore expected to be able to maintain a more consistent
respiratory pattern with decreasing oxygen level. Larvae on the
other hand are expected to be more hypoxia-tolerant due to
their saproxylic or wood-boring nature but to perhaps have
limited aerobic scope since their activities do not imply large
energy expenditure at this stage (e.g., they lack flight ability).
Overall, these differences are expected to be associated with
structural differences in the tracheal system (i.e., respiratory
anatomy): in conditions of constant energy demand, adults
would have a more developed tracheal system (estimated as
e.g., total air volume) relative to their body size compared to
larvae, indicative of greater potential upper capacity for oxygen
flux (supply).

Using a combination of experimental respirometry and
3D-imaging of respiratory anatomy, we investigate functional
hypoxia and temperature tolerance in a member of a previously
unexamined group of terrestrial arthropods.
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MATERIALS AND METHODS

Experimental Animals
Cacosceles newmannii larvae and adults of both sexes were
collected by hand on sugarcane farms in the Entumeni District
(28◦ 55′S; 31◦19′E), KwaZulu-Natal, South Africa (Way et al.,
2017). Sampling of C. newmannii larvae included digging up
sugarcane stalks, by prioritizing the ones looking unhealthy.
Specimens were usually found in the base of the stalks, which
had to be carefully split open to obtain the larvae. These were
brought back to the laboratory at the South African Sugarcane
Research Institute (SASRI) in 4 L plastic trays with perforated
lids, containing moist peat in order to avoid stress or excessive
desiccation. In the laboratory they were placed individually into
3 L plastic bottles with perforated lids, 30% filled with moist
autoclaved peat, and a 22 cm long piece of sugarcane, with
a 14 mm diameter hole bored 6 cm deep into one end to
facilitate the larva’s entrance into the stalk to feed. The piece
of sugarcane was replaced with fresh sugarcane every 3 weeks.
The old stalk was carefully dissected to remove the feeding larva
which was transfered into a new stalk. Larvae were then kept
individually at 25◦C in a 16L:8D regime, in an environmentally
controlled room in the SASRI Insect Unit, before being couriered
overnight, singly placed in plastic 250–600 ml jars filled with
freshly crushed sugarcane, to the Department of Conservation
Ecology and Entomology (ConsEnt), Stellenbosch University,
Western Cape Province, South Africa. Adults were found flying
(mainly males) or walking (mainly females) in sugarcane fields,
mainly in January and February. They were collected by hand
and transported individually in 250–600 ml plastic jars with
perforated lids to ConsEnt. Shredded paper was placed in the
bottle to provide a perching substrate and some protection from
excessive movement for the adults, and a damp a piece of cotton
to provide water in transit.

Thermolimit Respirometry
Larvae and adults were placed individually in flow-through
chambers to perform TLR. All individuals were weighed before
and after respirometry on a microbalance (to 0.1 mg; AB104-
S/Fact, Mettler Toledo International, Inc., Columbus, OH,
United States), and the average value of the two measurements
was used for statistical analyses. Thermal limits from metabolic
rate data (V̇CO2 CTmax) under normoxia (21 kPa O2) and hypoxia
(2.5 kPa O2, balance N2) were assessed following methods
adapted from Boardman and Terblanche (2015). Briefly, air flow
was regulated at 200 ml min−1 (STPD) [controlled by a mass
flow control valve (SideTrak, Sierra International, United States)]
into a Li-7000 infra-red CO2/H2O analyzer fully calibrated for
CO2 at 386 ppm (balanced nitrogen) and water at 5◦C dew point.
The standard LiCor software (Li-Cor, Lincoln, NE, United States)
recorded the CO2 production differentially (V̇CO2) in ppm.
Activity was monitored using an infra-red activity detector (AD-
2, Sable Systems International, Las Vegas, NV, United States).
Animals were given a 15-min equilibration period at 25◦C,
after which the temperature in the chamber was ramped up
at a rate of 0.06◦C min−1 to 55◦C using a programmable

circulating and heating water bath (CC410wl, Huber, Berching,
Germany). Baseline recordings were taken before and after each
run to correct for potential drift, which was typically negligible.
Sample sizes for each treatment are given in Table 1. Oxygen
availability levels were chosen according to what is commonly
used in similar work on terrestrial arthropods (e.g., Van Voorhies,
2009; Basson and Terblanche, 2010; Stevens et al., 2010; Owings
et al., 2014; Boardman and Terblanche, 2015; Boardman et al.,
2015, 2016) and in order to mimic extreme environmental levels
(Pincebourde and Casas, 2016) as well as to maximize insects’
responses over the time-scales examined here.

Determination of Respiratory Patterns
and Ambient Oxygen Effects
Assuming that discontinuous gas exchange cycles (DGC, i.e.,
showing a clear prolonged spiracle-closed phase) are undertaken
to defend a particular tracheal respiratory pO2 setpoint of 4–
5 kPa (as argued for moth pupae in Hetz and Bradley, 2005),
we investigated whether respiration patterns (continuous or
discontinuous gas exchange cycles) were affected by variation
in ambient oxygen availability. For determination of respiratory
patterns, the same methodology as described for TLR was used.
Five adults and eight larvae were placed sequentially in individual
chambers maintained at 25◦C. Chambers were then measured for
40 min at each of five randomly assigned oxygen partial pressures
(0, 2.5, 5, 8, 10.5 kPa O2, balance N2), starting and ending
with a measurement at 20.9 kPa O2 and pattern-type classified
according to spiracle behavior (openings and closings). The levels
of oxygen partial pressure were chosen in order to target a wide
range of hypoxia levels, and are similar to what is commonly
found in the insect literature (e.g., Basson and Terblanche, 2010;
Owings et al., 2014; Boardman et al., 2016).

Respirometry Data Extraction and
Analysis
Expedata (v. 1.9.10, Sable Systems International) was used to
transform recorded CO2 values in ppm to V̇CO2 in ml CO2/h,
to correct for potential baseline drift for all respirometry files
(TLR and respiratory patterns data), and to record activity
(body movement) data.

In addition, minimum and maximum metabolic rates over
60 s, and mean CO2 were extracted from the normoxia data of the
TLR using Expedata. Effects of life stage and mean mass on these
values, as well as on normoxia CTmax (for the specimens used in
the TLR experiment only), were computed using ANCOVAs.

Critical temperatures were assessed from the TLR data
for normoxia and for hypoxia using Expedata 1.9.10 (Sable
Systems International). The coefficient of variation (COV) at
25◦C, CTmax (defined as the point at which spiracles switched
from high to low variability and indicating that spiracle
control was lost, reliably seen as a smooth curve of V̇CO2,
Supplementary Figure S1), absolute aerobic scope (i.e., the
difference between resting and maximum metabolic rates) and
Q10 values over different temperature ranges [as defined by
Bělehrádek (1930), the factor by which a reaction rate increases
for a 10◦C increase in temperature] were computed according
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to Boardman and Terblanche (2015). Statistical analyses of the
TLR data were conducted in Statistica (StatSoft Inc., Tulsa,
OK, United States). Normality of data was checked and, when
violated, non-parametric tests were used. Larval and adult mass
differences between oxygen treatments were analyzed with t-tests,
and comparisons between groups were made with ANOVAs or
Mann–Whitney U-tests, followed by Tukey post hoc tests.

Expedata 1.9.10 (Sable Systems International) was used to
visualize the effect of ambient oxygen on the proportion of
individuals showing DGC.

Computation of the Total Internal Air
Volume of Respiratory Anatomy of Adults
and Larvae
X-ray micro computed tomography (µCT) was performed with
scan parameters optimized according to du Plessis et al. (2017).
For these measurements, 4 adults (2 males and 2 females) and
4 larvae were selected based on their size, such that a wide
spectrum of available morphologies was represented. All samples
were scanned with identical settings in order to ensure direct
comparison, specifically 120 kV and 220 µA for X-ray generation,
magnification was set to achieve a voxel size of 30 µm, and each
image was acquired in 131 ms, with averaging and skipping of
images to enhance image quality. A total of 2200 step positions
were used in one full rotation of the sample.

Images were segmented and analyzed in Volume Graphics
VGSTUDIO MAX 3.1 software. The segmentation was achieved
using a combination of image morphological operations, with
slight modifications depending on the size of the sample.
The main challenge was to achieve a closed surface including
the whole tracheal system including the connected internal
air cavities, while not including exterior air spaces, despite
the entire system being open. The final result was manually
checked and potential errors were corrected by modifying the
segmentation. The segmentation process was manual but started
with an automated surface determination function, guiding
the selection of void spaces. The final segmented volume was
checked manually to ensure no exterior air was included in
the segmentation, and only interior air was included. A skin
of two voxels all around the outside of the sample was then
eroded, to leave only the interior of the sample including material
and air. This was used to calculate internal air volumes. These
were transformed into scaling relationships of air volume against
body mass with fitted linear regression. Data fitted better to the
regression without log scaling and therefore statistical testing was
done on untransformed data.

For analyzing the scaling relationships between the traits,
we used the general equation Y = aMb where Y is the air
volume, a is a scaling coefficient, M is the body mass, and b is
the scaling value (Huxley, 1932; LaBarbera, 1989). The slopes,
i.e., b, were derived by using ordinary least squares regression
estimates and then compared to the commonly used theoretical
scaling values 1, 0.67, and 0.75 (Chown et al., 2007). When
comparing air volume to mass, the value 1 reflects isometry and
is often used as a null hypothesis in anatomy scaling studies
(LaBarbera, 1989). The value 0.67 is also isometry that reflects
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surface area to volume geometry (Kozłowski et al., 2003). The
value 0.75 reflects isometry under fractal similarity of nutrient
supply which also means that an organ grows less than body size
(West et al., 1997, 1999). We used slope tests with a t-statistic
computed as t = slope1-slope2/SE1 (following e.g., Chown et al.,
2007). This approach assumes no variance in the theoretical slope
value but employs the estimated slope and standard error of
the empirical data (Zar, 1997). However, while scaling patterns
of respiratory structures are expected to vary among tracheated
arthropod species, they may also be highly variable across and
within stages of the same species due to the discontinuous
growth of the tracheal system and, in some cases, complex life
histories (e.g., occurrence of diapause) (Helm and Davidowitz,
2013; Vogt and Dillon, 2013; Greenlee et al., 2014). Therefore,
no specific allometry model or anatomical scaling hypothesis has
been adequately developed yet regarding the scaling relationship
of the tracheal volume in this study with body size to test, and
we instead sought here to statistically compare the estimated
scaling slopes (regression exponents) with other scaling values
commonly reported in the literature across a wide range of
species (Chown et al., 2007) and between the two main life-
stages investigated.

Visualizations of segmented volume data were performed
using isosurface views in VGSTUDIO MAX. Tracheal volumes
were colored according to their local volume, which is equivalent
to local diameter, using wall thickness analysis (sphere method,
in mm). This function calculated the largest sphere that fitted in
any given segmented region, and is usually applied to analysis
of objects with varying wall thickness, but in this case the local
thickness of the tracheal volumes were colored for visual clarity
of large vs. small areas of connected volumes.

RESULTS

Thermolimit Respirometry
Larvae were significantly heavier than adults [F(1,37) = 14.888,
p < 0.001, Table 1]. Under normoxia, CTmax was significantly
influenced by life-stage and by the interaction between life-
stage and mean body mass (Table 2). CTmax increased with
mass for adults (R2 = 0.135) but decreased with mass for larvae
(R2 = 0.811) (Figure 1). Mass and life stage did not have any
significant impact on mean CO2 production nor on minimum
or maximum metabolic rates (Table 2). Normoxic metabolism
of both life stages of this species was independent of body
mass in our data.

Individuals used for normoxia and hypoxia did not differ in
mass (t = −1.26, p = 0.216 and t = 0.610, p = 0.550 for larvae
and adults, respectively). Hypoxia lead to a significant decline in
thermal tolerance for both larvae and adults: CTmax decreased by
3.8 and 1.8◦C, respectively (Table 1).

Variation in Metabolic Rates
Both mass-specific absolute aerobic scope and maximum
metabolic rate were significantly higher for adults than for larvae
regardless of the gas treatment [F(1,34) = 25.040, p < 0.001 and
F(1,34) = 9.302, p = 0.004, respectively, Table 1]. The effect of

TABLE 2 | Results of factorial ANCOVAs with CTmax (A), minimum metabolic rate
(Min MR) (B), maximum metabolic rate (Max MR) (C), and mean CO2 production at
25◦C (D) of C. newmannii life stages at normoxia as dependant variables.

Effect df MS F p

(A) CTmax Life stage 1 7.031 6.823 0.020

Mean mass 1 0.001 0.001 0.976

Life stage × mean mass 1 5.589 5.424 0.035

Error 14 1.030

(B) Min. MR Life stage 1 0.056 0.527 0.474

Mean mass 1 0.039 0.371 0.548

Life stage × mean mass 1 0.001 0.006 0.941

Error 26 0.106

(C) Max. MR Life stage 1 0.568 0.082 0.777

Mean mass 1 15.081 2.165 0.153

Life stage × mean mass 1 13.526 1.941 0.175

Error 26 6.967

(D) Mean CO2 Life stage 1 2.198 3.420 0.076

Mean mass 1 0.006 0.010 0.921

Life stage × mean mass 1 0.713 1.109 0.302

Error 26 0.643

Significant results appear in bold.

FIGURE 1 | CTmax under normoxia of C. newmannii adults (males: white
circles; females: gray circles) and larvae (gray triangles) of different masses.
Regression equations are displayed on the figure (for adults, r2 = 0.135; for
larvae, r2 = 0.811).

hypoxia on maximum metabolic rate depended on life-stage:
for larvae, hypoxia did not alter the maximum metabolic rate
(Tables 1, 3 and Supplementary Figure S2), while in adults
hypoxia decreased maximum metabolic rate to only 36% of
normoxic levels (Tables 1, 3 and Supplementary Figure S2).

Respiratory pattern switching was monitored at the individual
level as a test of innate hypoxia sensitivity. Both life-stage
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TABLE 3 | Results of factorial ANOVAs with CTmax (A), maximum metabolic rate (B), and mass-specific absolute aerobic scope (C) of C. newmannii life stages as
dependent variables, and the associated Tukey post hoc tests.

df MS F p Tukey p

(A) CTmax (◦C) Life stage 1 2.48 1.21 0.281

Gas mixture 1 74.94 36.43 <0.001

Life stage × gas mixture Adult vs. larvae (normoxia) 1 5.79 2.81 0.104 0.97

Adult vs. larvae (hypoxia) 0.25

Normoxia vs. hypoxia (larvae) 0.00

Normoxia vs. hypoxia (adults) 0.03

Error 29 2.06

(B) Maximum metabolic rate (mlCO2 h−1) Life stage 1 39.57 7.07 0.01

Gas mixture 1 20.22 3.61 0.07

Life stage × gas mixture Adult vs. larvae (normoxia) 1 36.07 6.44 0.02 0.00

Adult vs. larvae (hypoxia) 0.99

Normoxia vs. hypoxia (larvae) 0.96

Normoxia vs. hypoxia (adults) 0.02

Error 32 5.60

(C) Absolute aerobic scope (mlCO2 h−1 g−1) Life stage 1 95.45 22.25 <0.001

Gas mixture 1 29.41 6.86 0.013

Life stage × gas mixture Adult vs. larvae (normoxia) 1 22.10 5.15 0.03 0.00

Adult vs. larvae (hypoxia) 0.36

Normoxia vs. hypoxia (larvae) 0.99

Normoxia vs. hypoxia (adults) 0.01

Error 32 4.29

Significant results are shown in bold.

and O2 partial pressure affected the proportion of individuals
displaying DGC (life-stage: χ2 = 8.971, p = 0.003; O2 partial
pressure: χ2 = 16.37, p < 0.001). More adults showed DGC
than larvae across all O2 partial pressure treatments (Figure 2).
Within life-stages, adult DGC proportion increased dramatically
above 5 kPa O2. Only two larvae showed DGC, at 10.5 kPa
O2 and at normoxia, the rest displayed continuous respiration
patterns. At 0 and 2.5 kPa O2, V̇CO2 was generally stable, in
both adults and larvae, suggesting steady-state conditions had
been achieved.

Respiratory Anatomy
The entire respiratory structure was taken into account down to
the minimum voxel resolution achieved in the CT scans. Smaller
air spaces than the voxel size might not be included in the
analysis, but this is expected to be negligible at the high resolution
used here, given the large volume fraction of air space and the
clearly visible tracheal systems in the datasets. In addition, the
underestimation of the total tracheal volume due to the voxel size
used in this study is similar for adults and larvae (Greco et al.,
2014; Iwan et al., 2015), therefore allowing comparison of the
two life stages.

Total internal air volume was greater in adults than in
larvae (t = 5.859, p = 0.009; Figures 3, 4). The internal air
volume of adults increased with body mass (R2 = 0.791), while
larval air volume remained constant even though body mass
increased over threefold (R2 = 0.021) (Figure 4). However,
even if the life-cycle and duration of each larval stage is
not completely described yet for C. newmannii, individuals in

FIGURE 2 | Percentage of C. newmannii individuals showing DGC as a
function of oxygen concentration (pO2) for adults (light gray, n = 5) and larvae
(black, n = 8).

this mass range are believed to belong to the same instar,
according to preliminary observations. Neither larvae nor
adults showed isometric growth (LaBarbera, 1989) between
mass and respiratory structure air volume (t = 43.079,
p < 0.001 and t = 2.456, p < 0.05, respectively), in both
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FIGURE 3 | Central view of an adult male (A) and a larva (B) of C. newmannii. Ventral view of the tracheal structure of adult (C) and larva (D). Air-filled structures are
colored according to their local diameter, using wall thickness analysis (sphere method), and scaled as shown on the left. The wall thickness measures the size of the
largest sphere that fits in every location inside the structure.

FIGURE 4 | Tracheal volumes of C. newmannii adults (males: white circles,
n = 2; females: gray circles, n = 2) and larvae (gray triangles, n = 4) of different
masses. Regression equations are displayed on the figure (for adults,
r2 = 0.791; for larvae, r2 = 0.021).

cases the scaling showed a negative allometry. We could
not distinguish between scaling of 0.67 and 0.75 statistically
for adults (t = 0.739, p > 0.25 and t = 1.155, p > 0.05,
respectively). Interestingly, adults of both sexes showed a

relatively large air sac in their abdomen, which was connected
to the rest of the tracheal system (Figures 3A,C and
Supplementary Figure S3).

DISCUSSION

In this study, we assessed the tolerance to different environmental
conditions (oxygen and temperature) of a previously unreported
cerambycid pest species, representing a taxonomic family which
is often considered to be hypoxia-adapted over evolutionary
timescales (Chappell and Rogowitz, 2000; Pincebourde and
Casas, 2016). While many aspects of the specific biology
of C. newmannii remain unknown (Way et al., 2017), here
we found that the upper thermal tolerance (CTmax) of
this species is broadly consistent with estimates of CTmax
in other Coleoptera from diverse families (Klok et al.,
2004; Vorhees and Bradley, 2012; García-Robledo et al.,
2016; Chidawanyika et al., 2017). C. newmannii larvae, it
is presumed, typically live inside wood, a microenvironment
that is assumed to be hypoxic and/or hypercapnic relative
to the ambient atmosphere (Hoback and Stanley, 2001;
Pincebourde and Casas, 2016). Regardless, it is frequently
proposed that unlike adults, cerambycid larvae routinely
experience hypoxia stress, as well as thermal constraints,
given that behavioral thermoregulation is limited within
plant tissues (Chappell and Rogowitz, 2000; Pincebourde and
Casas, 2016; Javal et al., 2018). This microenvironment may
therefore have contributed to evolved variation in larvae upper
thermal limits. However, CTmax was not significantly different
between larvae and adults in the present study, unlike a
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previous comparison of life-stages in a Lepidoptera species
(Boardman and Terblanche, 2015).

One mechanistic theory proposed to explain variation in
heat tolerance in ectotherms under hypoxic conditions is the
OCLTT hypothesis. This hypothesis argues that insufficient
capacity to supply oxygen to meet the oxygen demand of
tissues can cause a progressive decline in animal performance
as temperatures deviate from the optimum temperature (Giomi
et al., 2014). For the OCLTT hypothesis to be supported, at
least two key predictions can be made (reviewed in Verberk
et al., 2016b). First, there should be a reduction in thermal
performance, which is linked mechanistically with variation
in thermal tolerance, when oxygen supply is reduced, and
second, a decrease in the aerobic scope is expected when
temperature approaches the critical limit (Verberk et al.,
2016b). Even though many aquatic species conform to one
or several predictions of the OCLTT hypothesis (Pörtner,
2010), the results for terrestrial insects remain equivocal
and controversial (Verberk et al., 2016b). In our study,
however, a reduction in CTmax was observed in both adults
and larvae, although to different extents between the life-
stages, when ambient oxygen supply was experimentally
reduced, giving some support to the OCLTT hypothesis for a
terrestrial arthropod.

If adults and larvae do not differ in terms of thermal
tolerance, they do differ in several notable behaviors, as
typically expected of holometabolous insect life-cycles, which
in turn affects the way they can modulate their metabolism
depending on their environmental constraints. Indeed, adults
engage routinely in energy-costly behaviors such as fighting,
flying or mating and were therefore expected to show a higher
aerobic scope than larvae (Niven and Scharlemann, 2005). Larvae
appeared to be more constrained in their aerobic scope than
adults, but they were better able to sustain their maximum
metabolic rate under hypoxic conditions. This could be related
to the respiratory patterns that both life-stages can show.
According to the metabolic rate hypothesis (Contreras and
Bradley, 2009, 2010), insects with low metabolic rate will be
more likely to show DGC than cyclic respiratory patterns.
Since low metabolism is generally associated with low oxygen
consumption (and CO2 production), spiracles can stay closed
for longer without compromising the insect’s ability to meet
its cellular metabolic demands. One can therefore assume
that, as O2 partial pressure decreases, spiracles must remain
open for a larger proportion of the time in order to meet
a constant oxygen demand. This most likely explains why
larvae maintain their metabolic rate at hypoxia but show a
much lower proportion of DGC compared to adults, that
are more likely to reduce their maximum metabolic rate
to cope with hypoxic conditions. Indeed, hypoxia reduced
maximum metabolic rate in adults to a greater degree than it
did in larvae, thus reducing adults’ aerobic scope. A similar
pattern was observed in two Heteroptera species where
juveniles and adults did not differ in type of respiration
and consequently did not differ in either CTmax nor the
extent to which CTmax was influenced by oxygen levels
(Verberk and Bilton, 2015).

The differences between life-stages observed in the present
study could be due to ontogenetic variation or changes in
respiratory structure-function relationships. Major remodeling
or change in these relationships, within and across taxa, should
produce predictable variation in the impacts of oxygen limitation
on thermal tolerance. Depending on the type of metabolic
theory and its mechanistic underpinnings (see e.g., Chown
et al., 2007; Snelling et al., 2011a,b; Maino and Kearney,
2014; Harrison, 2018; Harrison et al., 2018) there may be
considerable variation predicted in how the respiratory structure
scales with body size. This scaling, in turn, is expected
to have functional consequences for respiratory and athletic
performance of a species (White et al., 2008; Snelling et al.,
2011a,b). Differences among life-stages in breathing patterns
and modulation thereof were expected to result from structural
differences in the tracheal system. Indeed, in other insect species
investigated to date (mainly Lepidoptera), the larval internal
air volume stays constant within an instar, with increasing
larval mass (Callier and Nijhout, 2011; Harrison, 2018). This
unchanging internal air volume probably leads to an increasing
mismatch between their resting metabolic rate and oxygen
supply as the larvae grow, before molting (see e.g., Greenlee
and Harrison, 2005 for Lepidopteran larvae, but see Kivelä
et al., 2016, 2019), as suggested by the negative correlations
between CTmax and body mass we observed. Adults, on the
other hand, appear to have a larger tracheal system that
increases with body mass and CTmax. This result is unusual
and perhaps noteworthy in air-breathing insects. One potential
explanation for this outcome is that the respiratory system
has most likely evolved for high oxygen demand activities
(such as flight), and is therefore dramatically oversized for
demands during resting periods (see discussions in Snelling
et al., 2011a,b). Indeed, the presence of an air sac in the
adults’ abdomen further supports such an assertion, even
though flight muscles might also help in convection of air
and the insect may still have limited capacity when it does
not use these muscles (Komai, 2001). Such air sacs have been
described for many other insect species (although typically in
Orthoptera) in which they are intermittently compressed by
contracted muscles during flight to create enhanced oxygen
delivery to flight muscles (Wasserthal et al., 2018; reviewed
in Chapman, 2012). In addition, since the respiratory pattern
used by an insect can reflect its oxygen delivery capacity
(Respiratory adequacy hypothesis; Contreras and Bradley, 2010),
the enlarged oxygen delivery capacity of the adult tracheal
system is a likely explanation for why adults are able to
express DGC even under relatively low experimental O2
partial pressures.

In agreement with other intra-specific studies on insects (e.g.,
Lease et al., 2012; Harrison et al., 2014), our results imply
that metabolic rate is size-independent for C. newmannii, at
least in the uncontrolled, although mainly resting, state. Several
biological explanations have been reviewed by Harrison et al.
(2014) but none can be formally supported on the basis of our
data. Beside biological hypotheses, this result can be attributed
to the experimental respirometry protocol which did not seek
to restrict or prevent activity of individuals; most animals were
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active during the equilibration period of the TLR trials. The
absence of a relationship between normoxic metabolism and
body mass could also be due to the relatively small sample size
that was available, although this is likely offset by the large
change in mass among specimens included (>fourfold difference
in mass between the smallest and the largest specimens used, for
both adults and larvae). However, detailed comparison of scaling
relationships and the underlying mechanistic basis thereof was
beyond the scope of this present study and would require far
larger sample sizes before robust interpretations could be made.

To conclude, our study shows that marked divergence in terms
of aerobic scope and respiratory patterns between life-stages were
most likely due to both structural and functional differences, but
these may be coupled with, or have co-evolved with, life-stage
specific behavioral and physiological adaptations. Our data thus
show that thermal limits, and any hypoxia effects thereon, are
more predictable if respiratory structure-function relationships
are fully characterized.
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differences among life stages.

FIGURE S3 | Video illustrating the tracheal structures of a male adult
C. newmannii. Air-filled structures are first colored according to their local volume,
using wall thickness analysis (sphere method), and scaled as shown on the left,
and then shown in black and white.
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