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Genomic and transcriptomic evidence for
scavenging of diverse organic compounds
by widespread deep-sea archaea
Meng Li1,2, Brett J. Baker1,3, Karthik Anantharaman1, Sunit Jain1, John A. Breier4,5 & Gregory J. Dick1,6,7

Microbial activity is one of the most important processes to mediate the flux of organic

carbon from the ocean surface to the seafloor. However, little is known about the micro-

organisms that underpin this key step of the global carbon cycle in the deep oceans. Here we

present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively

use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths

ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater

across three different ocean basins. Genome-enabled metabolic reconstructions and gene

expression patterns show that these marine archaea are motile heterotrophs with extensive

mechanisms for scavenging organic matter. Our results shed light on the ecological and

physiological properties of ubiquitous marine archaea and highlight their versatile metabolic

strategies in deep oceans that might play a critical role in global carbon cycling.
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A
rchaea are ubiquitous members of marine microbial
communities1–3. Four major groups of planktonic archaea
have been reported in the global ocean, including

Marine Group I Thaumarchaeota (MG-I)2,3, Marine Group II
Euryarchaeota (MG-II)4, Marine Group III Euryarchaeota
(MG-III)4 and Marine Group IV Euryarchaeota (MG-IV)5.
While MG-III and MG-IV are predominately found in the deep
oceans at relatively low abundance4,5, qualitative and quantitative
studies suggest that MG-II are abundant in surface waters4,6,7,
whereas MG-I dominates at greater depths, sometimes
constituting up to nearly 40% of marine microbial plankton8.

Out of the four major groups of planktonic archaea, only
representatives of MG-I have been cultured, which led to the
discovery that they oxidize ammonia9,10. The MG-I are now
generally recognized as the major drivers of nitrification in
marine environments11–13. Up till now, all MG-I cultures oxidize
ammonia and fix carbon, but there is also evidence for
heterotrophy or mixotrophy by this group10,14–16. In contrast
to the relatively well-studied MG-I, the physiology and energy
metabolism of MG-II, MG-III and MG-IV remains poorly
understood. Recent evidence indicates that MG-II can use
organic carbon in the surface oceans14,17, suggesting that
archaea may play an important role in the marine carbon cycle.
However, little is known about the heterotrophic metabolism of
archaea in the mesopelagic and bathypelagic realms of the
ocean18, which comprise about 70% of ocean volume, account for
the majority of marine microbial biomass and productivity19, and
contain huge numbers of archaea8.

In this study, we reconstructed 59 partial to near-completed
genomes and transcriptomes of several ubiquitous uncultured
archaea groups from deep-sea hydrothermal plumes and
surrounding background seawater at three distinct locations.
Hydrothermal vent plumes are hotspots of biogeochemical
activity in the deep oceans20 yet they are composed largely of
background deep-sea microorganisms, including archaea21–23.
Thus, plumes represent a valuable environment for studying
deep-sea microorganisms. Our results reveal metabolic
characteristics of these ubiquitous marine archaea and suggest
that they play critical roles in modulating carbon cycle in deep
oceans.

Results
Genomes and transcriptomes of deep-sea archaea. We
conducted shotgun metagenomic and metatranscriptomic
sequencing on samples from deep-sea hydrothermal vent plumes
and surrounding background seawaters at Mid-Cayman Rise in
the Caribbean Sea, Guaymas Basin in the Gulf of California and
Eastern Lau Spreading Center in the Western Pacific Ocean
(Supplementary Table 1). De novo assembly of metagenomic
reads (Supplementary Table 2) and binning by tetranucleotide
signatures revealed 32 archaeal genomic ‘bins’ containing an
estimated total of 59 archaeal genomes (Supplementary Fig. 1 and
Supplementary Table 3)24,25. Estimates of genome completeness
using an inventory of single-copy conserved genes26 indicate that
26 are more than 70% complete and 18 are 50–70% complete
(Supplementary Tables 3 and 4). Phylogenetic analysis revealed
the presence of five distinct groups, including 18 genomes from
MG-I, 31 from MG-II, 5 from MG-III, 3 from Parvarchaeota, and
2 from putative Deep-sea Hydrothermal Vent Euryarchaeaotic
Group-6 (DHVEG-6) (Table 1 and Supplementary Figs 2–4).

Comparative genomics showed that the five MG-I genomic
bins had 53 to 59% average amino acid identity to the
cultured Nitrosopumilus maritimus SCM1 (refs 27,28). One
genomic bin (Guaymas69) was the same MG-I population as
previously reported29, while other four bins (Lau19, Guaymas96,

Cayman117 and Cayman91) formed a separate deep-sea clade of
MG-I (Supplementary Fig. 5). MG-II genomic bins clustered into
three clades, congruent with the phylogeny of 16S rRNA genes
(Supplementary Figs 2–5). Consistent with previous results30,31,
the deep-sea MG-II did not contain genes for proteorhodopsin, a
light-driven proton pump present in MG-II from the photic zone,
indicating that the deep MG-II are not capable of photohetero-
trophic metabolism proposed for surface MG-II (refs 17,31–33).
Three MG-III genomic bins (Guaymas31/92/93) formed a unique
lineage with lower similarity to the fourth bin (Guaymas32, 48%)
and two partial single cell genomes (Supplementary Fig. 5).
Genomic bins related to Parvarchaeota were distantly related to
Parvarchaeota acidiphitum ARMAN-4 from acid mine drainage34

and Nanoarchaeota DUSEL1 SCGC-AAA011D5 from the
Homestake Mine in South Dakota26. We also obtained a
genomic bin belonging DHVEG-6, for which there are no
publicly available genomes (Supplementary Table 3).

Extracellular peptidases in deep-sea archaea. Our data indicate
that these deep-sea archaea are metabolically active as aerobic
heterotrophs or, in the case of MG-I, mixotrophs. Genes
encoding 28 different families of extracellular peptidases for
protein degradation were identified. Four of these families were
dominant (S08A, M28A, M14A and M22), comprising 70.5%,
72% and 52% of total extracellular peptidase genes in deep-sea
MG-I, -II and -III, respectively (Fig. 1, Supplementary Fig. 6a
and Supplementary Table 5). Transcripts of these extracellular
peptidase genes were among the most abundant in the tran-
scriptomes of MG-II and MG-III in both Guaymas and Cayman
plumes (Supplementary Figs 6a and 7). For MG-I, in addition
to the S08A and M22 peptidase families, transcripts for M01,
S26A and S26B were also detected (Supplementary Table 5),
though the most abundant transcripts in the MG-I transcriptome
were related to the transport and oxidation of ammonia
(Supplementary Fig. 8). Interestingly, the suite of specific extra-
cellular peptidases for which transcripts were detected varied
between archaeal groups (Supplementary Fig. 6a), suggesting
diverse protein utilization capabilities by MG-I, -II and -III in the
deep oceans35.

In contrast to MG-I, -II and -III, the genomic bins of
Parvarchaeota and DHVEG-6 contained only one gene related to
the S01C family (DegP peptidase) and two genes affiliated with
M48B family (HtpX peptidase), and no transcripts of these genes
were detected (Supplementary Table 5). These results indicate
that (1) MG-I, -II, -III, Parvarchaeota and DHVEG-6 are all
capable of degrading and utilizing extracellular proteins;
(2) protein degradation is a major metabolic pathway for
MG-II and -III while a minor metabolic route for MG-I; and
(3) the different archaeal groups each have a different suite of
protein degradation genes, suggesting niche differentiation on the
basis of substrate (Table 1 and Fig. 2).

Although many of the peptidases identified here are divergent
from experimentally studied proteins, family-level classifications
offer clues to their broad functions. S08A peptidases, one of the
largest groups of serine endopeptidases36, clustered into four
major phylogenetic groups: alkaline proteases, oxidant-stable
proteases, Bacillopeptidases F-like proteinases and unclassified
archaea subtilisin (Supplementary Fig. 9). S08A are N-terminus
peptidases containing a catalytic triad sequence of Asp, His and
Ser. M28A peptidases are zinc-dependent exopeptidases that
selectively cleave N-terminal amino acids from polypeptides37,38.
M28A-related genes in MG-II and -III fell into six
clusters (Supplementary Fig. 10). Clusters 1 and 6 had
abundant transcripts but their specific functions are unknown.
M14A peptidase is a group of zinc-containing proteolytic
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enzymes (including carboxypeptidase A), which catalyses the
hydrolysis of C-terminal peptide bonds in protein and peptide
substrates39. Genes encoding the M14A family in MG-II and -III
were divided into three clusters that are each significantly
different from known carboxypeptidase A (Supplementary
Fig. 11). This extensive suite of extracellular enzymes that
cleave peptides at different sites suggests comprehensive protein
degradation by deep-sea MG-II/III and potential use of protein as
a growth substrate.

Carbohydrate-active enzymes (CAZYs) in deep-sea archaea.
The archaeal genomes also contained diverse and tran-
scriptionally active carbohydrate-active enzymes (Fig. 1,
Supplementary Fig. 6b and Supplementary Table 6). In MG-I,
Parvarchaeota and DHVEG-6 we identified glycosyl transferases,
carbohydrate esterases and other auxiliary activities that may be
involved in the modification or creation of glycosidic bonds in
various form of organic matter within cells40. However, genes
related to glycoside hydrolases and carbohydrate-binding
modules were more diverse and common in MG-II and -III
(Supplementary Table 7), suggesting they are also involved in the
hydrolysis of glycosidic bonds in complex sugars40,41. Similar to
our observations of differential expression of peptidases in MG
–II and –III, we observed that a-mannosidase (GH38),
amylopullulanase (GH57), 4-a-glucanotransferase (GH77) and
chitinases (GH18/CBM5 and GH20/CBM5) were abundant in the
MG-II transcriptome, while only chitinases (GH18/CBM5 and
GH20/CBM5) were transcriptionally active in MG-III, suggesting

differentiation of carbohydrate use between archaeal groups
(Fig. 2 and Supplementary Table 7).

Lipid metabolism in deep-sea archaea. Archaeal genes involved
in beta-oxidation of fatty acids were present and abundantly
expressed in deep-sea MG-II and -III, suggesting that straight
chain lipids may also be organic substrates for these groups
(Supplementary Table 8 and Fig. 2). A recent study concluded
that MG-II can synthesize crenarchaeol42, a tetraether lipid
widely used in paleoceanography and previously considered to be
a unique biomarker for MG-I (refs 43,44). Here, we found the key
gene for tetraether lipid biosynthesis, geranylgeranylglyceryl
phosphate (GGGP) synthase, in MG-I, -II and -III genomes
(Supplementary Table 9). Phylogenetic analysis indicated that
GGGP synthase genes from MG-II and MG-III were different
from that of MG-I, forming two separate clusters (Supplementary
Fig. 12). The genetic basis for tetraether lipid synthesis requires
further study in order to better understand the lipid biosynthetic
potential of these different groups, and how the pathways
are regulated as a function of environmental conditions.
In addition, we also identified MG-II genes involved in
synthesis of archaeal ether-like lipids, polyunsaturated fatty
acids and glycerophospholipids (Supplementary Table 10).

Cell mobility and central metabolism in deep-sea archaea.
Genes involved in cell mobility were identified in deep-sea MG-I,
–II and –III genomes (Fig. 2 and Supplementary Table 11).
Particularly in MG-II and -III, several flagellar genes with dif-
ferent transcriptional patterns were identified as operons in the

Table 1 | Overview of genomes from five archaeal groups recovered in this study and their ecophysiological characteristics.

Archaea
group

Number of genome
bins

Number of
genomes

Lithoautotrophic metabolisms Heterotrophic metabolisms

MG-I 6 18 3-Hydroxypropionate/4-hydrobutyrate cycle,
ammonia oxidation

Protein degradation, carbohydrate
metabolism

MG-II 19 31 Not detected Protein degradation, carbohydrate
metabolism, b-oxidation

MG-III 4 5 Not detected Protein degradation, carbohydrate
metabolism, b-oxidation

Parvarchaeota 2 3 Not detected Protein degradation, carbohydrate
metabolism

Putative
DHVEG-6

1 2 Not detected Protein degradation, carbohydrate
metabolism

DHVEG-6, Deep-sea Hydrothermal Vent Euryarchaeaotic Group-6; MG, Marine Group.
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Figure 1 | Genes for extracellular peptidases and carbohydrate-active enzymes. Carbohydrate-active enzymes (CAZYs) include glycoside hydrolases

(GHs), glycosyl transferases (GTs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), auxiliary activities (AAs) and carbohydrate-binding

modules (CBMs). The two bar graphs indicate the unique genes (60% amino acids identity) for extracellular peptidases and CAZYs identified in five

archaeal groups, and the general function description for extracellular peptidases and carbohydrate-active enzymes is listed in Supplementary Tables 5–7.

The gene number has been normalized to the total number of genes recovered from each archaeal group.
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same contig (Supplementary Table 11 and Supplementary
Fig. 13), suggesting that these ubiquitous deep-sea archaea have
active flagella, which might facilitate acquisition of organic
substrates via chemotaxis45 or attachment to particles46.

Finally, genes related to central carbon metabolism were also
identified in these genomes and transcriptomes, including the
tricarboxylic acid cycle and glycolysis/gluconeogenesis pathway in
MG-II and MG-III, and the modified 3-hydroxypropionate/
4-hydroxybutyrate (3-HP/4-HB) cycle in deep-sea MG-I (Table 1,
Fig. 2 and Supplementary Table 12). These results further
highlight that these ubiquitous deep-sea archaea have versatile
metabolic pathways that are important for carbon utilization in
the deep oceans.

Discussion
Overall, the genomic and transcriptomic results presented
here indicate that widespread deep-sea archaea utilize diverse
proteins, carbohydrates and straight chain lipids as substrates
for heterotrophic growth (Table 1 and Fig. 2). Although our
previous work on hydrothermal plumes identified the major
groups responsible for production of organic matter through
chemosynthesis21,25,29,47, the results presented here indicate that
archaea play a role in consuming that fresh organic matter, which
can be regionally significant20. Further, because these archaea are
widespread throughout the deep ocean, they likely contribute to
the broader marine carbon cycle.

Microbial degradation of organic matter in the pelagic ocean-
water column strongly influences the export of carbon from the
surface oceans, and converts labile carbon into refractory organic
matter that can be preserved in deep-sea sediments or as
dissolved organic carbon (DOC)48–52. The deep-sea DOC
reservoir is massive, holding a quantity of carbon that is
roughly equivalent to that in the atmosphere. Recent evidence
suggests that 30% of the deep DOC reservoir is modern and
actively cycled on short time scales53. Although the contributions

of deep-sea archaea to such processes remain to be quantified, our
findings demonstrate an active archaeal response to pulses of
organic matter in the deep sea that may shunt carbon from
proteins and carbohydrates to CO2 and lipids. Because archaea
are ubiquitous across varying geochemical regimes and depths of
the world’s deep oceans30,54, these results implicate archaea as
key players in heterotrophy and provide new mechanistic
perspectives on carbon cycling in the deep oceans.

Methods
Sample collection. Samples from Mid-Cayman Rise in the Caribbean Sea were
collected on the cruises abroad R/V Atlantis in January 2010. Samples at different
depths of the rising plumes from Von Damm (B2200 m) and Beebe (B5000 m)
hydrothermal vent fields as well as their background were collected using a
Suspended Particle Rosette Samples (SUPR) mounted on remotely operated vehicle
ROV Jason II, which can be used for sampling rising plumes55,56. In brief, water
samples collected with SUPR (10–60 l) from different seawater depths were filtered
on to 0.2-mm pore size 142-mm polycarbonate SUPOR membranes and preserved
in RNAlater in situ (Supplementary Table 1). Samples from Guaymas Basin and
Eastern Lau Spreading Center were collected aboard several cruises using Niskin
bottles (Guaymas) and in situ filtration with the SUPR sampler (Lau)25,56,57,58.
The details of samples and the sampling locations are provided in Supplementary
Table 1.

Extraction of nucleic acids and sequencing. DNA and RNA were extracted from
1
4 filters following procedures21,57. For DNA extraction, the 1

4 filters was cut into
pieces and added to a 1.5 ml tube containing 200 mg each of 0.1, 0.5 and 2 mm
zirconium beads. Then, 580 ml of lysis solution (300 mM EDTA, 300 mM NaCl,
300 mM Tris buffer, pH 7.5), 70 ml of 15% SDS and 35 ml of 1 M DTT in 0.01 M
Na acetate were added. Tubes were vortexed, incubated at 70 �C for 30 min and
cooled to o40 �C. 14 ml of 5% lysozyme (w/v in water) was added and the tubes
were incubated at 37 �C for 20 min then beat on a FastPrep bead beater machine
for 45 s at setting 6.5. After that, 150 ml of 1 M KCl was added, and the tubes were
placed on ice for 2–5 min after vortex. The mixture was then centrifuged for 5 min
at 14,000 g, clear supernatant was transferred to a Montage PCR purification filter
unit and centrifuged at 1,000 g until all of the liquid passed through (B15 min).
The flow-through was discarded, and 400 ml of TE buffer was added to the filter
unit and it was centrifuged for 15 min at 1,000 g. The DNA was then eluted in
100 ml of TE and quantified using RiboGreen (Invitrogen). RNA was extracted
using the mirVana mRNA Isolation kit (Ambion), treated with DNase I to remove
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DNA and concentrated and repurified using the RNeasy MinElute Kit (Qiagen).
Total RNA was quantified using RiboGreen (Invitrogen). RNA amplification by
random priming and complementary DNA synthesis was performed using the
MessageAmp II-Bacteria Kit (Ambion). Shotgun sequencing of DNA and
complementary DNA were performed with Illumina HiSeq2000 at the University
of Michigan DNA Sequencing Core, and results are shown in Supplementary
Table 1.

De novo metagenomic assembly and gene annotation. The raw shotgun
sequencing metagenomic reads were deprelicated (100% identity over 100%
lengths) and trimmed using Sickle (https://github.com/najoshi/sickle). Samples
from the eight vent sites (Guaymas, Von Damm (Cayman Shallow), Beebe
(Cayman Deep), Kilo Moana, Abe, Mariner, Tahi Moana, Tui Malila) were each
assembled de novo to obtain eight separate assemblies (Supplementary Table 2).
Whole genome de novo assemblies were performed using IDBA-UD59 with the
following parameters: –mink 50, –maxk 92, –steps 4 or 6, –min_contig 500. Gene
calling and annotations were done using the DOE Joint Genome Institutes (JGI)
Integrated Microbial Genomes pipeline (http://img.jgi.doe.gov/cgi-bin/w/main.cgi).

Metagenome binning and metatranscriptomic data analysis. Binning of
assembled metagenomic sequences was performed using a combination of
tetranucleotide frequencies, contig coverage and %GC content in emergent
self-organizing maps24. A total of 32 genomic bins from eight assemblies were
identified as archaeal bins (Supplementary Fig. 1). Based the inventory of archaeal
162 single-copy conserved genes, 32 archaeal genomic bins were estimated to
contain 59 partial to complete genomes (Supplementary Tables 3 and 4). The
archaeal 16S and 23S rRNA genes and two ribosomal protein-coding genes from
each archaeal genomic bin were further analysed for identifying their taxonomic
positions (Supplementary Figs 2–4). Abundance of transcripts for each archaeal
genomic bins was determined by mapping all non-rRNA transcripts to the
assembled fragments using BWA with default settings60,61 and normalizing to
their sequence length and total number of non-rRNA transcripts in each
metatranscriptomic library.

Comparative genomics. Comparative genomics of the deep-sea archaea identified
in this study was performed against the representative archaeal genomes within
each group (Supplementary Fig. 5). Genomic similarity with known archaea
(Nitrosopumilus maritimus (CP000866)27 in MG-I; surface seawater uncultured
marine group II euryarchaeote (CM001443)17 in MG-II; two single cell genomes of
MG-III (SCGC-AAA007-O11 and SCGC-AAA288-E19) in MG-III, Parvarchaea
acidiphilium ARMAN-4 (PRJNA38567)34 and SCGC-AAA011-D5 (ref. 26) in
Parvarchaeota) was determined based on reciprocal best BLASTP hits between
known genomes and archaeal genomic bins. The average identity (amino acid
level) among each archaeal genomic bins and representative archaea genome were
generated as Supplementary Fig. 5.

Identification of key functional genes. For genes encoding peptidases and
carbohydrate-active enzymes, all annotated genes in deep-sea archaea genomic bins
were searched against public databases of peptidases (MEROPS)62 and CAZYs63

with E-value o10� 10 by BLASTP. All hits were compared against the non-
redundant NCBI protein database. Only those that had top hits to peptidases and
carbohydrate active enzymes were considered. The extracellular peptidases were
further confirmed based on the identification of extracellular transport signals
using SignaIP64, POSRTb65 or PRED-SIGNAL66 (Supplementary Table 5). Genes
related to carbohydrate active enzymes were further classified into different groups
according the prediction of CAZYs (Supplementary Tables 6 and 7). Genes
involved in lipid metabolic pathways (Supplementary Tables 8 and 9) and the
central metabolism (Supplementary Table 10) in MG-I/II/III were identified using
similar procedures based on the published gene databases17,67.

Sequence alignment and phylogeny. Alignment of amino acid sequences for
extracellular peptidase of S08A, M28 and M14A families was performed by
MUSCLE using default parameters followed by manual refinement68. Phylogenetic
analysis of representative peptidase of three families and GGGP synthases
were inferred by Maximum Likelihood implemented in Mega 6.069 using the
Tamura-Nei and passion model after testing by ProTest70 and bootstrapped
1000 times (Supplementary Figs 9–12).
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