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Abstract: The Greater Accra Region is the smallest of the 16 administrative regions in Ghana. It
is highly populated and characterized by tropical climatic conditions. Although efforts towards
malaria control in Ghana have had positive impacts, malaria remains in the top five diseases reported
at healthcare facilities within the Greater Accra Region. To further accelerate progress, analysis of
regionally generated data is needed to inform control and management measures at this level. This
study aimed to examine the climatic drivers of malaria transmission in the Greater Accra Region and
identify inter-district variation in malaria burden. Monthly malaria cases for the Greater Accra Region
were obtained from the Ghanaian District Health Information and Management System. Malaria
cases were decomposed using seasonal-trend decomposition, based on locally weighted regression
to analyze seasonality. A negative binomial regression model with a conditional autoregressive
prior structure was used to quantify associations between climatic variables and malaria risk and
spatial dependence. Posterior parameters were estimated using Bayesian Markov chain Monte
Carlo simulation with Gibbs sampling. A total of 1,105,370 malaria cases were recorded in the
region from 2015 to 2019. The overall malaria incidence for the region was approximately 47 per
1000 population. Malaria transmission was highly seasonal with an irregular inter-annual pattern.
Monthly malaria case incidence was found to decrease by 2.3% (95% credible interval: 0.7–4.2%) for
each 1 ◦C increase in monthly minimum temperature. Only five districts located in the south-central
part of the region had a malaria incidence rate lower than the regional average at >95% probability
level. The distribution of malaria cases was heterogeneous, seasonal, and significantly associated with
climatic variables. Targeted malaria control and prevention in high-risk districts at the appropriate
time points could result in a significant reduction in malaria transmission in the Greater Accra Region.

Keywords: Ghana; malaria; Bayesian; modelling; climatic

1. Introduction

Malaria is a preventable and treatable infectious disease caused by plasmodium
parasites. The disease is commonly transmitted through the bite of an infected female
Anopheles mosquito. Other routes include mother to child transmission, whereby infected
cells from the mother are transferred to the fetus through the placenta, transfusion of
infected blood to a healthy individual, donation of infected organs, and through needle
stick injuries among healthcare workers and intravenous drug users [1–4]. However, these
are considered minor sources of transmission. In 2019, an estimated 229 million new
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malaria cases and 409,000 malaria deaths occurred globally [5]. However, this burden is
not distributed evenly. It is estimated that around 93% of malaria cases occur in the World
Health Organization (WHO) African Region. Additionally, the group most vulnerable to
malaria infection are children under five years of age, accounting for 67% of the total malaria
mortality burden [5]. Malaria transmission is affected by multidimensional factors, linked
to vector characteristics, climatic conditions, land cover, genetics, and human behavior [6].
These disparate factors mean that malaria transmission rates can vary significantly at
local levels. Temperature and rainfall affect the life cycle and breeding of the mosquito by
enabling the parasite to complete its life cycle, thus increasing the transmissibility of the
disease to humans [7,8].

Similar to other endemic countries, malaria is a major cause of morbidity and is the
leading cause of mortality in Ghana [9]. The country experienced half a million new cases
of malaria in 2018, or 3% of all global malaria cases, and around 11,000 deaths [10]. The
total number of active malaria cases is currently around 6.6 million, from a population of
29 million people. WHO guidelines for malaria control incorporate vector control mea-
sures using insecticide treated nets (ITNs) and indoor residual spraying (IRS), and prompt
diagnosis and treatment. These control measures are further supported by implementa-
tion of the intermittent preventive therapy protocol (IPTp) in pregnant women [10,11].
In Ghana, the adoption of these approaches, together with increased health promotion
and educational campaigns, has led to significant reductions in malaria incidence and
mortality [12]. Malaria-associated mortality had been reduced by 14.8% in 2016 compared
to 2010 [13]. Case fatality rates in children under five years experienced a 4% reduction
within the same timeframe. In addition, the facility-based malaria fatality rate for children
under five years reduced from 14% in 2000 to 0.5% in 2016 [9]. Despite these achievements,
malaria remains a major health burden, and the reductions in incidence and mortality have
not been sustained. In fact, there was an 8% increase in malaria cases in Ghana in 2018
compared to 2017 [10].

As in other settings, the effects of climatic variables and location on malaria transmis-
sion are well established in Ghana [14]. In addition, social and economic factors affect the
incidence of malaria in the country [14,15]. In terms of location, malaria prevalence varies
significantly by region and tends to be higher in rural localities than in urban areas [9]. For
instance, the Greater Accra Region had the lowest malaria prevalence (5%) among children
under five years in the country in 2016, in contrast to the northern region (25%) and eastern
and central regions (both with 31%) [15]. This heterogeneity is influenced by several factors
such as the immune profile of populations, stability of mosquito breeding places (related to
climate factors), varying density of populations, and accessibility to public health interven-
tions and healthcare [16,17]. As a result, policies targeting malaria prevention and control
need to be designed specifically for regional and local levels, utilizing local specific data
rather than national-level aggregated data, which may not reflect disease distribution at the
regional and local levels. The aim of this study was to assess the inter-district variation of
malaria burden and the climatic drivers of malaria in the Greater Accra Region (Figure 1),
where malaria is among the top five infections reported at healthcare facilities [18], using
spatio-temporal statistical and analytical techniques.
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Figure 1. Map of Greater Accra Region with 29 districts and neighboring regions, roads, water 
bodies, and regional capital. Source: Authors’ own contribution. 
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country with a population of 5,055,765 in 2019 [18]. It is divided into 29 local government 
areas (LGAs), namely: 1—Adenta Municipal, 2—Ledzokuku Municipa, 3—Ada East, 4—
Shai Osudoku, 5—Ada West, 6—Ningo/Prampram, 7—La Dade-Kotopon, 8—La-Nkwan-
tanang-Madina, 9—Ga East, 10—Ayawaso West, 11—Ga South Municipal, 12—Ga West 
Municipal, 13—Ga Central Municipal, 14—Tema West Municipal, 15—Ashaiman Munic-
ipal, 16—Kpone Katamanso, 17—Ablekuma Central Municipal, 18—Korle Klottey Munic-
ipal, 19—Ablekuma North Municipal, 20—Ayawaso North Municipal, 21—Ayawaso East 
Municipal, 22—Okaikwei North Municipal, 23—Ga North Municipal, 24—Weija Gbawe 
Municipal, 25—Krowor Municipal, 26—Tema Metropolitan, 27—Ablekuma West Munic-
ipal, 28—Ayawaso Central Municipal, and 29—Accra Metropolis (Figure 1). Most of the 
LGAs are urban, and urban LGAs house more than 80% of the region’s residents [19]. The 
LGAs are classified as districts, municipalities, and metropolitan areas, with metropolitan 
areas being the most urban. However, for the purpose of this study, they are all referred 
to as districts. The blend of remote and urban communities within the region makes it a 
suitable site for this study. The climate of the area is categorized as tropical savannah with 
high humidity and high temperatures. 

2.2. Data Sources 
The study used secondary aggregated clinical data for all age groups, including both 

inpatients and outpatients, with confirmed malaria infections (rapid diagnostic test and 
microscopy) from 2015 to 2019 in the Greater Accra Region. All malaria cases were iden-
tified through passive case detection at health facilities and collated in the DHIMS at the 
district level. Yearly district population was obtained from the Health Information De-
partment of the Greater Accra Regional Health Directorate.  

Long-term average annual and seasonal temperature and rainfall variables were de-
termined using data obtained from the WorldClim project at a spatial resolution of 1 km 
[20]. The variables obtained from WorldClim had been created by spatial interpolation of 

Figure 1. Map of Greater Accra Region with 29 districts and neighboring regions, roads, water bodies,
and regional capital. Source: Authors’ own contribution.

2. Materials and Methods
2.1. Description of the Study Area

The study was conducted in the Greater Accra Region, which includes the country’s
capital city, Accra (Figure 1). It is the smallest of the 16 administrative regions in Ghana.
The area is about 3245 square kilometers. It is the second-most populated region in the
country with a population of 5,055,765 in 2019 [18]. It is divided into 29 local govern-
ment areas (LGAs), namely: 1—Adenta Municipal, 2—Ledzokuku Municipa, 3—Ada
East, 4—Shai Osudoku, 5—Ada West, 6—Ningo/Prampram, 7—La Dade-Kotopon, 8—La-
Nkwantanang-Madina, 9—Ga East, 10—Ayawaso West, 11—Ga South Municipal, 12—Ga
West Municipal, 13—Ga Central Municipal, 14—Tema West Municipal, 15—Ashaiman
Municipal, 16—Kpone Katamanso, 17—Ablekuma Central Municipal, 18—Korle Klottey
Municipal, 19—Ablekuma North Municipal, 20—Ayawaso North Municipal, 21—Ayawaso
East Municipal, 22—Okaikwei North Municipal, 23—Ga North Municipal, 24—Weija
Gbawe Municipal, 25—Krowor Municipal, 26—Tema Metropolitan, 27—Ablekuma West
Municipal, 28—Ayawaso Central Municipal, and 29—Accra Metropolis (Figure 1). Most of
the LGAs are urban, and urban LGAs house more than 80% of the region’s residents [19].
The LGAs are classified as districts, municipalities, and metropolitan areas, with metropoli-
tan areas being the most urban. However, for the purpose of this study, they are all referred
to as districts. The blend of remote and urban communities within the region makes it a
suitable site for this study. The climate of the area is categorized as tropical savannah with
high humidity and high temperatures.

2.2. Data Sources

The study used secondary aggregated clinical data for all age groups, including
both inpatients and outpatients, with confirmed malaria infections (rapid diagnostic test
and microscopy) from 2015 to 2019 in the Greater Accra Region. All malaria cases were
identified through passive case detection at health facilities and collated in the DHIMS
at the district level. Yearly district population was obtained from the Health Information
Department of the Greater Accra Regional Health Directorate.

Long-term average annual and seasonal temperature and rainfall variables were
determined using data obtained from the WorldClim project at a spatial resolution of
1 km [20]. The variables obtained from WorldClim had been created by spatial interpolation
of climate data gathered from global weather station sources between 2010 and 2018 by
utilizing a thin plate smoothing spline algorithm.
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Polygon shapefiles of administrative boundaries at the district level of the Greater
Accra Region were obtained from the DIVA-GIS website [21]. The spatial datasets, including
population densities per square kilometer (PD) and standard morbidity ratios (SMR) of
malaria cases, were imported into ArcGIS version 10.7.1 software [22] and projected to the
Universal Transverse Mercator (UTM) coordinate system (zone 48 N).

• A seasonal-trend decomposition, based on locally weighted regression (STL) was used to
decompose the time series of malaria incidence to reveal the seasonal relationship, inter-
annual pattern, and the residual variability. The STL model was structured as follows:

Yt = St + Tt + Rt (1)

where Yt, St, Tt, and Rt represent the local malaria cases with logarithmic transfor-
mation, additive seasonal component, trend, and remainder component, respectively,
while t signifies time in months [23–25].

• Standardized morbidity ratios (SMRs) per district were analyzed using the
following formula:

Yi =
Oi
Ei

× 100 (2)

where Y denotes the total SMR in district i, and O and E are, respectively, the total
number of the observed and expected malaria cases in district i across the study period.
The expected number (E) was calculated by multiplying the regional malaria incidence
by the average population for each district over the study period.

Annual Parasitic Incidence (API) per district were calculated using the formula:

Annual Parasitic Incidence (API) =
Total No. o f Malaria Cases in a Year

Total Population
× 1000 (3)

2.3. Independent Climatic Variable Selection

A preliminary negative binomial (NB) regression was used to select the significant
climatic covariates. Maximum and minimum temperature and rainfall with zero-, one-,
two-, three-, four-, five-, and six-month lag times were entered into univariate NB models.
The most significant (p < 0.05) climatic variables with the lowest Akaike’s information
criterion (AIC) were selected for inclusion in the model (Table S1). The co-linearity of the
selected variables was tested using variance inflation factors (VIF). Minimum temperature
without lag, rainfall lagged at one month, and maximum temperature lagged at six months
were selected (Table S2). Preliminary statistical analyses were all performed using STATA
software, version 16.0 [26].

2.4. Spatio-Temporal Model

NB regression was selected over Poisson regression because of the overdispersion
and lower Akaike’s information criterion and Bayesian information criterion (Table S3).
NB models were created via a Poisson–Gamma distribution structure using the Bayesian
statistical software WinBUGS, version 1.4 [27] (Table S4). Three models were created,
incorporating spatially unstructured (Model I), spatially structured (Model II), and both
structured and unstructured random effects (Model III). Each model included the climatic
variables as fixed effects. The best-fit parsimonious model was selected with the lowest
deviance information criterion (DIC). Model III, which includes all components of the other
models, was structured as follows:

Yij ~ Poisson (µij) (4)

log (µij) = log (Eij) + θij (5)

θij = α + β1 × trendj + β2 × rainfallij + β3 × max tempij + β4 × min tempij + ui + si +
wij

(6)
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and the dispersion parameter were defined as:

τi ∼ G(α, α) (7)

α = exp(log α) (8)

log α ∼ Normal(0, 0.01) (9)

where Y is the observed count of malaria for the ith district (i = 1 . . . 60) in the jth month
(January 2015 to December 2019), E is the expected number of malaria cases included as an
offset to control for population size, and θ is the mean log relative risk (RR); α is the intercept
and β1, β2, β3, and β4 are the coefficients for monthly malaria trend, rainfall lagged at one
month, maximum temperature lagged at six months, and minimum temperature without
lag, respectively. The unstructured and spatially structured random effects are represented
by ui and si, each with a mean of zero and with variances of σu

2 and σs
2 and wij is the

spatio-temporal random effect (with a mean of zero and variance of σw
2).

The spatially structured random effect was calculated using a conditional autoregres-
sive (CAR) prior structure. Spatial relationships between the districts were computed using
queen contiguity, where an adjacency weight of 1 was allocated if two districts shared a
common border or vertex and 0 if they did not. The intercept was delineated with a flat
prior distribution, while the coefficients were defined by a normal prior distribution. Non-
informative gamma distributions, characterized by shape and scale parameters equivalent
to 0.01, were used to specify priors for the precision (1/σu

2 and 1/σs
2) of the unstructured

and spatially structured random effects. Additionally, models were established without the
structured (Model I) and unstructured (Model II) random effects to determine if including
them improved model fit.

The burn-in, comprising the initial 10,000 iterations, were discarded. The simulation
chains were then run for blocks of 20,000 iterations to assess for convergence. Convergence
was determined through visual inspection of posterior density and history plots for each
model and was achieved at 100,000 iterations. Markov Chain Monte Carlo simulation
with Gibbs sampling was used to estimate model parameters [28]. Values of the posterior
distributions were then stored and summarized for analysis (posterior mean and 95%
credible intervals (CrI)).

An α-level of 0.05 was used to indicate statistical significance (as shown by 95% CrI
for coefficients (β) that excluded 0). ArcMap 10.5 software (ESRI, Redlands, CA, USA) was
used to produce maps [22].

3. Results
3.1. Descriptive Analysis

A total of 1,105,370 malaria cases were recorded in the region during the study period
(2015–2019). The overall malaria incidence was approximately 47 per 1000 population at
risk. All districts recorded malaria cases during the study period. Malaria transmission
was spatially heterogeneous across the study area, with Ashaiman district recording the
highest number of cases (187,322, 16.9%) and Ayawaso West district the lowest (1739,
0.2%) (Figure 2). Ashaiman district had the highest API of 168.8, while Ablekuma Central
district recorded the lowest API of 3.4 (Table 1). Generally, higher rates of malaria infection
were observed in the north-eastern districts with low population densities, including Shai
Osudoku, Ningo Prampram, Kpone Katamanso, Ashaiman, and Adenta, whereas districts
with higher population densities, located in the south-western part of the study area, were
associated with lower malaria incidence (Figure 2). The highest rainfalls were experienced
in June, while maximum temperatures were experienced in February. January was the
month with the lowest minimum temperatures during the study period, except for 2016
and 2017 when August had the lowest minimum temperatures (Table 2).
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Table 1. Total malaria cases and API stratified by 29 districts (2015–2019).

No. Districts Total Malaria Cases Percentage API *

1 Adenta Municipal 69,758 6.3 156.1
2 Ledzokuku Municipal 39,394 3.6 49.7
3 Ada East 32,175 3.0 78.0
4 Shai Osudoku 48,989 4.4 164.2
5 Ada West 23,941 2.2 70.1
6 Ningo/Prampram 66,714 6.0 162.7
7 La Dade-Kotopon 17,437 1.6 16.4
8 La-Nkwantanang-Madina 51,889 4.7 80.2
9 Ga East 68,924 6.2 80.1

10 Ayawaso West 1739 0.2 4.0
11 Ga South Municipal 57,602 5.2 36.3
12 Ga West Municipal 54,642 5.0 77.0
13 Ga Central Municipal 36,113 3.3 53.3
14 Tema West Municipal 6369 0.6 9.6
15 Ashaiman Municipal 187,322 16.9 168.8
16 Kpone Katamanso 93,987 8.5 148.3
17 Ablekuma Central Municipal 3355 0.3 3.4
18 Korle Klottey Municipal 20,227 1.8 26.5
19 Ablekuma North Municipala 11,356 1.0 12.6
20 Ayawaso North Municipal 10,142 0.9 22.4
21 Ayawaso East Municipal 5981 0.5 9.9
22 Okaikwei North Municipal 21,544 1.9 18.0
23 Ga North Municipal 49,129 4.4 84.6
24 Weija Gbawe Municipal 25,038 2.3 27.4
25 Krowor Municipal 6241 0.6 11.8
26 Tema Metropolitan 16,993 1.5 16.5
27 Ablekuma West Municipal 13,122 1.2 13.7
28 Ayawaso Central Municipal 7523 0.7 6.5
29 Accra Metropolis 57,724 5.2 22.3

Total 1,105,370 100 1630.1

* API-annual parasite incidence per 1000 population.

Table 2. Monthly average rainfall (mm), average maximum temperature (◦C), and average minimum temperature (◦C) in
the Greater Accra Region from 2015 to 2019.

Month Average Rainfall Average Max. Temperature Average Min. Temperature
2015 2016 2017 2018 2019 2015 2016 2017 2018 2019 2015 2016 2017 2018 2019

Jan. 6.5 9.2 21.7 4.7 4.7 32.4 33.5 33.5 33.0 33.0 23.0 23.8 23.5 23.0 23.0
Feb. 66.0 15.8 19.7 36.8 36.8 33.7 34.8 34.2 34.0 34.0 24.7 25.1 24.5 24.7 24.7
Mar. 121.6 96.9 68.1 74.7 74.7 33.8 34.0 34.2 33.1 33.1 24.5 24.9 24.8 24.2 24.2
Apr. 83.5 98.9 88.7 84.6 84.6 33.7 33.5 33.6 33.3 33.3 24.7 25.3 25.0 24.6 24.6
May 120.4 175.2 166.6 137 136.9 32.8 32.6 32.1 32.4 32.4 24.6 24.6 24.5 24.4 24.4
Jun. 211.1 195.4 314.9 178 178.3 30.6 30.2 30.2 30.4 30.4 24.1 23.9 23.9 24.0 24.0
July 45.9 52.8 72.5 67.8 67.8 29.3 29.2 29.4 29.3 29.3 23.2 23.3 23.3 23.3 23.3
Aug. 34.0 31.8 41.2 45.0 45.1 29.0 29.0 28.6 29.0 29.0 23.0 23.0 22.6 23.0 23.0
Sept. 64.7 102.5 82.5 115.1 115.1 30.2 29.9 29.9 30.1 30.1 23.3 23.5 23.2 23.3 23.3
Oct. 120.0 111.7 65.2 145.5 145.5 31.5 31.8 32.0 31.5 31.5 23.7 23.9 23.9 23.8 23.8
Nov. 77.1 99.0 119.5 50.6 50.6 33.0 33.1 33.0 32.8 32.8 24.1 24.5 24.1 24.2 24.2
Dec. 11.6 44.0 28.7 26.1 26.1 33.0 34.0 33.2 32.9 32.9 23.7 24.7 24.1 23.5 23.5
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Figure 2. Standard morbidity ratios (SMRs) and population densities per square km by district in the Greater Accra Region,
2015–2019. Source: Authors’ own contribution.

3.2. Time Series Decompositions

Time series decomposition analysis revealed seasonal patterns of malaria cases during
the study period. Four peaks were observed, with the largest peak occurring in June of
2016 and 2017, and in July of 2015 2018, and 2019. The three smaller peaks occurred in
March, September, and October throughout the study period. The inter-annual pattern
indicated a general increasing trend of cases, but with sharp fluctuations (Figure 3).

3.3. Negative Binomial Regression Analysis

Model I, with unstructured random effects, was the best-fit, most parsimonious model
(as indicated by the lowest DIC). Monthly malaria cases increased by 22.9% (95% CrI:
19.6–25.6%) per month during the study period. Malaria incidence decreased by 2.3% (95%
CrI: 0.7–4.2%) for each 1 ◦C increase in monthly mean minimum temperature without lag.
Monthly rainfall and maximum temperature were not statistically significant in predicting
malaria cases (Table 3 and Figure 4a).

In 17 districts, there was a >95% probability of a higher than national average increas-
ing trend, while five districts had a >95% probability of monthly malaria trend lower than
the regional average, and these were in the south-central part of the region (Figure 4b).
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Figure 3. Temporal decomposition of numbers of malaria cases for the Greater Accra Region, 2015–
2019. Source: Authors’ own contributions.

Table 3. Regression coefficients, relative risk, and 95% credible interval from Bayesian spatial and non-spatial models of
malaria in the Greater Accra Region, Ghana, January 2015–December 2019.

Model/Variable Coeff, Posterior Mean
(95% CrI)

RR, Posterior Mean
(95% CrI)

Model I (Unstructured) **
Mean monthly trend 0.207 (0.179, 0.228) 1.229 (1.196, 1.261)
Monthly rainfall (10 mm) * 1.58 × 10−5 (−9.39 × 10−5, 4.65 × 10−4) 1.000 (1.000, 1.000)
Monthly maximum Temp (◦C)
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Heterogeneity
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Model II (Structured)
Mean monthly trend 0.261 (0.254, 0.268) 1.231 (1.202, 1.260)
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⁑ lagged six months. Abbreviations−1.59 × 10−3 (−1.17 × 10−2, 8.6 × 10−3) 0.998 (0.988, 1.009)
Monthly minimum Temp (◦C) −2.17 × 10−2 (−3.76 × 10−2, −5.22 × 10−3) 0.978 (0.963, 0.995)
Heterogeneity

Structured (trend) 0.508 (0.272, 0.828)
Structured (spatial) 0.116 (0.064, 0.184)
DIC 16,589.8
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Table 3. Cont.

Model/Variable Coeff, Posterior Mean
(95% CrI)

RR, Posterior Mean
(95% CrI)

Model III (Mixed)
Mean monthly trend 0.207 (0.182, 0.232) 1.230 (1.200, 1.261)
Monthly rainfall (10 mm) * −5.35 × 10−6 (−1.06 × 10−4, 8.20 × 10−5) 1.000 (0.9999, 1.0001)
Monthly maximum Temp (◦C)
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4. Discussion

This study assessed the inter-district variation of malaria burden and the climatic
drivers of malaria in the Greater Accra Region of Ghana. Malaria incidence varied across the
region and increased over the study period with a strong seasonal pattern. The significant
covariate of malaria transmission was monthly minimum temperature without lag.

The incidence of malaria was found to vary significantly between districts, with only
five out of the 29 districts, located in the southcentral area, having a lower trend than the
regional average trend. Additionally, less urbanized districts were found to be associated
with more cases and higher disease risk compared to less urbanized districts. Previous
studies have reported that lower incidence of malaria in more urban areas was related to
greater social and economic development, including access to better housing and drainage
systems as well as more accessible healthcare, resulting in decreased human vector contact
and more active case management [29–31]. Populations in less urbanized areas are also
more likely to be engaged in agricultural and other occupational activities, leading to
more exposure to mosquitos, which breed in these areas [16,32]. This study also showed a
strong relationship between population density and malaria incidence, as seen in Figure 2.
Districts with lower population densities tended to be less urbanized and correlated with a
higher malaria incidence. This could be due to a lower ratio of humans to vectors in these
districts, resulting in an increased biting rate [14,33,34].

There was a clear indication of seasonality and an irregular inter-annual pattern of
malaria transmission in the Greater Accra Region; higher numbers of cases were recorded
in the rainy seasons and in 2017 and 2019, respectively. A previous study by Donovan
et al. [35], which utilized clinical and self-reported malaria data, also found that malaria
transmission increased during the rainy season in Accra. However, rainfall lagged at one
month was not found to be statistically significant in predicting malaria cases in this study,
contradicting findings from previous studies [35,36]. For example, some studies found poor
associations between malaria and rainfall [37,38], while others reported a strong negative
association between malaria transmission and rainfall [39,40]. At the population level, lag
effects are linked to factors affecting mosquito development and parasite incubation [41,42].
As such, features in urban areas, including open gutters and poor disposal of refuse, may
provide breeding conditions conducive to mosquito survival and an increase in malaria
risk. Additionally, wet seasons are usually associated with flooding and pooling of water.
This, together with the few water bodies found in the environment, serve as breeding
grounds for the malaria vector. These may have contributed significantly to the rise in
malaria cases. However, the decreasing number of cases in 2016 and 2018 could be due to
the protection offered from the mass distribution of LLIN in those years, but LLIN was not
included in our model.

The model results from this study showed that increasing monthly maximum temper-
ature negatively correlated with malaria incidence. This association was not statistically
significant (RR: 0.996, 95% CrI: 0.969–1.007). However, the effects of increasing temperature
on vector populations, the incubation period of malaria parasites, and malaria transmission
are well-known [43,44]. Increasing temperature promotes malaria transmission rates and
extends malaria geographically [45]. Optimal temperature values from 23 ◦C to 31 ◦C
usually favor malaria parasite development and vector survival, resulting in an increased
malaria incidence [46]. Temperature values above the optimal range have negative effects
on the malaria vector and parasite, leading to reduced malaria incidence. Additionally,
there is general recognition of the relationship between lagged climatic variables and
malaria incidence over time. For instance, in a systematic review by Reiner Jr. et al. [47] on
the seasonality of Plasmodium falciparum transmission, lagged temperature varying from
zero month to nine months were observed to drive global malaria incidence significantly.
Individual or a combined influence of factors, including habitat formation, vector devel-
opment, infectivity, and emergence of signs and symptoms in humans during the lag’s
periods, affects malaria transmission dynamics [48–50].
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It is uncertain why an increase in minimum temperature was associated with re-
duced malaria incidence during the study period. Minimum temperature was also found
to affect the transmission of malaria in previous studies [51,52]. One would expect an
increase in minimum temperature to decrease the extrinsic incubation period (EIP) for
P. falciparum [53–56], thereby, increasing malaria transmission. However, the complex
interactions among vector, parasitic, behavioral, socioeconomic, and healthcare factors not
included in the model may have contributed to the results observed.

Findings from this study need to be interpreted with the consideration of some lim-
itations. Firstly, district by district data were not available to measure and compare the
availability, accessibility, and usage of malaria control and prevention strategies (LLIN,
IPTp, IRS), which could have potentially influenced malaria transmission in the Greater
Accra region. Hence, these factors were not included in the model. Secondly, the study used
passive surveillance data, for which the quality and reliability could not be readily ascer-
tained. Thirdly, unmeasured risk modifiers, including living standards and socio-economic
development, treatment seeking behaviors, and population mobility, were not accounted
for in this study. Lastly, consideration was not given to individuals who sought care in
healthcare facilities outside their districts of residence because of personal preferences or
proximity. The limitations discussed above were suggested to have influenced the pattern
of diseases, including malaria transmission in previous studies [25,57–59]. However, our
results agree with prior studies on the relation between climate and malaria [47]. Malaria
transmission within the region may have been mediated by multiple factors apart from
the climatic covariates assessed, including vector characteristics and environmental and
human population dynamics [48,50]. Hence, future studies should use methods that will
explore both linear and non-linear relationships between climatic conditions and malaria
incidence within the study region.

5. Conclusions

Findings from this study showed a negative correlation between malaria and mini-
mum temperature in the Greater Accra Region of Ghana from 2015 to 2019. Additionally,
malaria transmission was heterogeneous across the districts and showed strong seasonal
and inter-annual variations. The results reported in this study expand on knowledge re-
garding the influence of climatic factors on malaria transmission previously found in other
parts of Ghana, sub–Saharan Africa, and other malaria endemic countries [14,33,37,47]. Our
study also highlighted the variations in malaria incidence at a small geographical scale and
shows the relevance of using modelling and geographical information systems methods
to explore the spatial and temporal patterns of malaria transmission. It is also relevant to
mention the interactions between malaria and COVID-19 in the current era. In resource con-
strained low- and middle-income countries, including Ghana, the COVID-19 pandemic has
the potential to undermine targeted malaria control efforts based on our findings because
of overlapping symptoms, and because of diversion of limited public health resources
from malaria control to COVID-19 response [60–62]. Although the transmission pattern
identified in our study could be influenced by other variables not considered, our findings
showed that malaria is still a disease of great importance in Ghana. Hence, there is a need to
continue with malaria control and prevention interventions alongside COVID-19 measures
in general to ensure that the malaria situation does not worsen post COVID-19. Most
importantly, malaria control measures should be intensified in the high-risk districts by
increasing LLINs, IRS, and IPTp, especially during periods during which climatic variables
assessed were identified to be associated with high malaria transmissions in the region.
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10.3390/ijerph18116080/s1. Supplementary Table S1: Univariate preliminary analysis of variables
using negative binomial regression. Supplementary Table S2: Variance inflation factor (VIF) for
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information criterion and Bayesian information criterion. Supplementary Table S4: WinBugs codes
for negative binomial mixed model.
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