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ABSTRACT 
 

Background 

Breast cancer is multifactorial. Focusing on limited risk factors may miss high-risk individuals. 

 

Methods 

We assessed the performance and overlap of various risk factors in identifying high-risk individuals for 

invasive breast cancer (BrCa) and ductal carcinoma in situ (DCIS) in 161,849 European-ancestry and 

18,549 Asian-ancestry women. Discriminatory ability was evaluated using the area under the receiver 

operating characteristic curve (AUC). High-risk criteria included: 5-year absolute risk ≥1·66% by the 

Gail model [GAILbinary]; first-degree family history of breast cancer [FHbinary]; 5-year absolute risk 

≥1·66% by a 313-variants polygenic risk score [PRSbinary]; and carriers of pathogenic variants in breast 

cancer predisposition genes [PTVbinary]. 

 

Findings 

The 5-year absolute risk by PRS outperformed the Gail model in predicting BrCa (Europeansvs controls: 

AUCPRS=0·635 [0·632-0·638] vs AUCGail=0·492 [0·489-0·495]; Asiansvs controls: AUCPRS=0·564 [0·556-

0·573] vs AUCGail=0·506 [0·497-0·514]). PRSbinary and GAILbinary identified more high-risk European 

than Asia individuals. High-risk proportions were higher among BrCa (16-26%) and DCIS (20-33%) 

compared to controls (9-15%) among young Europeans and all Asians. Fewer than 7% of BrCa, 10% 

of DCIS, and 3% of controls were classified as high-risk by multiple risk classifiers. Overlap between 

PRSbinary and PTVbinary was minimal (<0·65% Europeans, <0·15% Asians) compared to the proportion 

at high risk using PTVbinary alone (Europeans: 4·6%, Asians: 4·4%) and PRSbinary alone (Europeans: 

13·9%, Asians: 8·5%). PRSbinary and FHbinary uniquely identified 5-6% and 9-11% of young BrCa, 

respectively.  

 

Interpretation 

The incomplete overlap between high-risk individuals identified by PRSbinary, GAILbinary, FHbinary, and 

PTVbinary highlights the need for a comprehensive approach to breast cancer risk prediction. 

 

SIGNIFICANCE 

This study shows that different ways of predicting breast cancer risk do not always flag the same 

people, suggesting that combining multiple risk factors could improve early detection and screening. 

 

KEYWORDS 

Breast cancer, Ductal Carcinoma In Situ (DCIS), Polygenic risk score (PRS), Gail model, Risk 

stratification, BRCA1, BRCA2, risk-based screening 
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INTRODUCTION 

A worldwide increase of 31% in the number of breast cancer cases is projected over the next two 

decades.1 Early detection significantly improves survival rates.2,3 Multiple studies have shown that 

mammogram screenings reduce mortality rates for women above 50 years of age, while the benefits 

of screening for those younger are less clear.4,5 Current screening guidelines are based on age, yet 

many patients are diagnosed before reaching the recommended screening age.6  

  

Advances in breast cancer research suggest the potential for more risk-based approaches to cost-

effective screening programs.7 Developed in the 1980s, the Gail model, a validated statistical tool, 

uses personal information to estimate breast cancer risk over the next five years. Originally developed 

for White females in the United States without a history of in situ or invasive breast cancer, its 

accuracy for non-White populations is debated.8-10 Common issues include both underestimation and 

overestimation in non-European populations, leading to unclear recommendations for diverse ethnic 

groups.9,11 

  

In addition to non-genetic risk factors, studies have explored the use of polygenic risk scores (PRS) to 

enhance existing prediction models.12,13 Breast cancer has a significant heritable component. While 

PRS has added value to prediction models, its implementation, particularly in Asian populations, 

remains inconclusive.15 This is partly because PRS training datasets have predominantly included 

European populations due to their larger representation in research.16  

 

Protein-truncating variants (PTVs) are another genetic factor used in risk prediction. Unlike PRS, 

which aggregates the associated effects of numerous, relatively common genetic variants across the 

genome, PTVs specifically target variants that lead to premature protein termination, potentially 

disrupting gene function. This distinction means that PTVs are specific genetic changes with known 

functional impacts, while PRS provides an overview of associated genetic risks of small effect sizes 

across the genome. PTVs in nine breast cancer predisposition genes, ATM, BRCA1, BRCA2, CHEK2, 

PALB2, BARD1, RAD51C, RAD51D, or TP53 have been shown clinically useful for inclusion on 

breast cancer risk prediction panels in a large analytical cohort comprising over 113,000 subjects and 

has been included in BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier 

Estimation Algorithm).17,18 

 

Studying the overlap of genetic and non-genetic risk factors in identifying high-risk individuals will 

provide us with information on complementary risk factors that will enhance our ability to identify the 

subgroup of the population who would benefit from risk reduction interventions. In this case-control 

analysis involving the Breast Cancer Consortium (BCAC) dataset, we explore how prediction tools—

such as the Gail model, PRS, PTVs in known breast cancer predisposition genes, and family history—

apply to both European and Asian populations across non-screening and screening age groups. 

   

METHODS 
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Study population 

BCAC is an international collaboration that was formed to provide large sample sizes for investigating 

genetic associations.19 Women diagnosed with invasive breast cancer (BrCa) or ductal carcinoma in 

situ patients (DCIS), and women with no prior diagnosis of breast cancer (controls) were recruited by 

study groups across the globe and collectively studied under BCAC.20 Our study focuses on 

individuals who are genetically Asian or European-White (from here on referred to as “European”).  

 

To reduce the influence of missing values on the performance of the Gail model, studies with missing 

values for 50% or more for each of at least two of the three risk factors in the Gail model8 –age of 

menarche, age at first live birth, and first-degree family history of breast cancer–were excluded. The 

studies included are listed in Supplementary Table 1· Exclusion was done separately for individual 

studies and each disease status (BrCa, DCIS, and controls).  

 

Further exclusions were made on an individual level (Supplementary Figure 1). Women with 

unknown age at enrolment for controls (n=5,566) and unknown age at diagnosis for BrCa and DCIS 

cases (n=2,103) were excluded. Women below the age of 30 years (n=2,360) and women above 80 

years (n=1,897) for whom the Gail model prediction is not valid were excluded. A total of 180,398 

individuals were included in our study. We compared demographic differences between the included 

and excluded individuals to assess potential selection bias. The result is presented in Additional 

Material - Supplementary Table 2·  

 

Criteria to identify women at high risk of breast cancer 

Four criteria were used to identify women at high risk of breast cancer: 1) 5-year absolute risk ≥1·66% 

by the Gail model [GAILbinary], 2) first-degree family history for breast cancer [FHbinary, yes/no], 3) 5-

year absolute risk ≥1·66% by a 313-variant breast cancer polygenic risk score14 [PRSbinary], and in a 

subset of women 4) carriers of pathogenic variants in breast cancer predisposition genes [PTVbinary]. 

The 1.66% five-year absolute risk threshold for breast cancer is widely adopted in clinical and 

research settings to reflect the level of risk at which women are considered for additional screening or 

preventive interventions, such as tamoxifen or raloxifene (from here onwards the high-risk category).21 

Details of each risk factor are presented in Additional Materials - Methods ·  

 

Due to the large number of studies with varying degrees of missing data for different risk factors, the 

parsimonious Gail model, which most studies would have information on, was selected.8 The R 

package “BCRA” (version 2.1.2) was used to calculate 5-year absolute risk.8 Implementation is 

described in Additional Material-Genetic breast cancer risk factor. In our analysis, those with unknown 

family history were considered to have no family history.  

 

We studied genetic risk based on common germline variants associated with breast cancer, using the 

breast cancer PRS with 313 variants calculated with PLINK (version 3) with the scoresum option.22,23 

The 5-year absolute risk was calculated by estimating the theoretical odds ratio of this percentile in 
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relation to the 40-60 percentile, which is taken to represent the general population.24 A subgroup of 

individuals (nEuropean=56,387, nAsian=3,617) had both genotyping and targeted-sequencing data. Nine 

breast cancer predisposition genes (PTVs in ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, 

RAD51C, RAD51D, or TP53) were studied collectively.  

 

Statistical analysis 

Differences in genetic and non-genetic breast cancer risk factors of BrCa, DCIS, and controls were 

assessed using the Chi-squared test (categorical variables) and Kruskal-Wallis test (continuous 

variables). Venn diagrams (R package “VennDiagram”) were used to visualise the overlaps in high-

risk individuals identified by the high-risk criteria. We subset the population by ancestry (European or 

Asian) and age (30-49 or 50-80 years). Overlaps between pairs of high-risk criteria were further 

considered by country. In the subset of individuals with both genotyping and targeted sequencing 

information (n=60,004), PRSbinary and PTVbinary (yes/no) were analysed for their ability to uniquely 

identify high-risk individuals. 

 

Evaluating the drivers of Gail risk score in differentiating breast cancer cases from controls 

Although studies with high missingness rates for variables required to compute the Gail risk score 

were excluded (see “Excluded participants” above), there were still individuals with missing values. 

Hence, we studied the potential drivers of the Gail risk score in discriminating BrCa cases from 

controls using logistic regression models. All combinations of risk factors, where available, were 

assessed. Discriminatory ability was assessed by the area under the receiver operator curve (AUC). 

Missing values were coded in accordance to the “BCRA”.8 

 

All analyses were performed in R version 4.2.2. 

 

RESULTS 

Cohort description 

A total of 180,398 women were included, where 161,849 (90%) women were of European-ancestry 

and 18,549 (10%) were Asian-ancestry (Table 1). Of the European women, 68,540 (42%) were 

controls, and 83,685 (52%) were diagnosed with BrCa. Of the 18,549 Asian women, 8,347 (45%) 

were controls and 9,222 (50%) were BrCa cases (Table 1). In addition, there were 9,624 (6%) and 

980 (5%) DCIS cases in European and Asian women, respectively (Table 1). 

 

European-ancestry study population 

The median age at diagnosis for BrCa cases of European ancestry was 57 years [interquartile range 

[IQR]: 49-65]. The corresponding age at interview for European-ancestry controls was 57 years [IQR: 

50-64] (Table 1). BrCa cases were more likely to have a family history than controls (14% vs 9%, 

respectively). The distribution of the 5-year absolute risk by the Gail model was very similar between 

BrCa cases (median 1·25% [IQR: 0·89-1·73]) and controls (1·25% [IQR: 0·92-1·64]). The median 5-

year absolute risk by PRS in BrCa cases was 0·95% [IQR: 0·62-1·44], significantly greater than that of 
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controls 0·69% [IQR: 0·46-1·05]. The PRS distributions (scoresum) and 5-year absolute risks were 

similar across countries (Supplementary Figure 2). Less than 40% of the population had PTV 

information. Out of 29,853 European BrCa patients, 1,927 (6%) were PTV carriers, which is three 

times the proportion found in the control group (583 out of 24,798, or 2%). The observations were 

largely similar for DCIS (Table 1).  

 

Asian-ancestry study population 

The median age at diagnosis for BrCa cases was 49 years [IQR: 43-57], and the age at enrolment 

was 50 years [IQR: 44-58] for controls (Table 1). Of the BrCa cases, 10% reported positive family 

history, while a smaller proportion of controls (6%) reported so. The distribution of 5-year absolute risk 

by the Gail model was not significantly different between BrCa cases and controls. The distribution of 

5-year absolute risk by PRS for BrCa patients was shifted rightwards of controls (p<0.001). The 

distribution of PRS (scoresum) and 5-year absolute risks varied by country (Supplementary Figure 

3). Among BrCa patients with known PTV information (n=2,178) 6% were mutation carriers. A smaller 

percentage (2%) of controls (n=1,115) were PTV carriers. As with the Europeans, the observations 

were mostly similar for DCIS in Asians (Table 1). and controls. 

 

Associations between risk stratifiers, BrCa and DCIS 

Table 2 and Table 3 display the strengths of association of different risk stratifiers (PRSbinary, 

GAILbinary, and FHbinary) with BrCa and DCIS, respectively, stratified by ancestry and age groups. Using 

both PRSbinary and GAILbinary (i.e. individuals is stratified as high risk when either PRS or GAIL is 

≥1.66%) improves the discriminatory ability as compared to using GAILbinary alone (in Europeans: 

AUCBrCa-PRS_GAIL=0·554 [0·552 to 0·557] vs AUCBrCa-GAIL=0·522 [0·520-0·524]; in Asian: AUCBrCa-

PRS_GAIL=0·527 [0·523 to 0·532] vs AUCBrCa-GAIL=0·506 [0·503-0·508]) (Table 2), In Europeans, the 

odds ratios and corresponding 95% confidence intervals for PRSbinary and GAILbinary (≥1·66% 5-year 

absolute risk threshold) were 2·60 [2·52-2·69] and 1·25 [1·22-1·28], respectively, for BrCa, and 2·21 

[2·08-2·35] and 1·21 [1·15-1·27], respectively, for DCIS. In Asians, PRSbinary showed significant 

associations with BrCa (1·83 [1·64-2·05]) and DCIS (2·30 [1·88-2·83]). The GAILbinary showed 

associations with BrCa (1·59 [1·31-1·92]) and DCIS (2·13 [1·51-3·00]) in Asians. The effect sizes for 

the associations between PRSbinary, GAILbinary and FHbinary were larger for younger Europeans than the 

older Europeans. In Asians, the same trend was observed for PRSbinary and BrCa, and FHbinary and 

DCIS.  

 

Intersection of high-risk individuals identified by different risk factors  

Figure 1 illustrates the overlap of high-risk individuals identified by PRSbinary, GAILbinary, and FHbinary 

across different ancestry and age groups. For young Europeans and all Asians, the proportion of high-

risk individuals among BrCa (16-26%) and DCIS (20-30%) cases was about twice that of the controls 

(9-13%). In these groups, women were primarily classified as high-risk due to FHbinary and PRSbinary. 

Less than 7%, 10%, and 3% of the BrCa, DCIS, and controls, respectively, were classified as high-

risk by more than one criterion (i.e. PRSbinary, GAILbinary, or FHbinary). PRSbinary uniquely identified 4-7% 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2025. ; https://doi.org/10.1101/2025.02.27.25323002doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.27.25323002
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

of young BrCa and DCIS cases as high-risk, and 10-18% of older BrCa and DCIS cases as high-risk. 

FHbinary uniquely identified 9-11% of young BrCa and DCIS cases as high-risk, and 2-5% of older BrCa 

and DCIS cases as high-risk. The proportion of young Europeans (aged 30-49) uniquely identified by 

GAILbinary to be at high-risk is 1%. Among Asians, all individuals classified as GAILbinary high-risk were 

also positive for FH (i.e. 0% uniquely called by GAILbinary). Among the older Europeans, 40% of the 

controls were identified as high-risk, compared to 52% of BrCa cases and 47% of DCIS cases.  

 

Breast cancer predisposition genes (PTVbinary) and common variants (PRSbinary) identified 

different high-risk individuals 

In the subgroup of individuals with target-enriched sequencing data, the proportion of women 

identified to be at high risk by both PRSbinary and PTVbinary  was limited (0·6% of European and 0·1% of 

Asian) compared to PTVbinary alone (Europeans: 4·6%; Asians: 4·4%) and PRSbinary alone (Europeans: 

13·9%; Asians: 8·5%) (Table 4). There were more older women than younger women at high risk due 

to PRS (2·3x in Europeans; 3·8x in Asians). Conversely, there were more younger women than older 

women at high risk due to PTV (1.9x in Europeans; 1.5x in Asians).  

 

Country-specific differences in high-risk individuals identified by PRS and GAIL  

Figure 2 shows the breakdown of BrCa/DCIS cases and controls identified to be at high risk by 

PRSbinary and GAILbinary by country and age. Generally, both PRSbinary and GAILbinary identified a higher 

proportion (%) of high-risk BrCa/DCIS individuals in the European-ancestry populations (median 

[IQR], PRSbinary-young: 5 [3-9], PRSbinary-old: 20 [10-23], GAILbinary-young: 3 [2-7], GAILbinary-old: 30 [24-39]) 

than the Asian countries (PRSbinary-young: 4 [2-5], PRSbinary-old: 15 [10-16], GAILbinary-young: <1 [<1 to 2], 

GAILbinary-old: 4 [2-10]).  

 

Factors influencing the performance of the Gail model across different demographics 

Figure 2 shows that both PRSbinary and GAILbinary identified a higher proportion of high-risk individuals 

in European-ancestry compared to Asian-ancestry populations, with variations in performance by age. 

By studying the factors that influence the Gail model's performance across different demographics, 

we can better understand what drives the model's effectiveness in various populations. In Figure 3A 

and Figure 3B, we show that in Europeans, incorporating both family history (number of first-degree 

relatives with breast cancer) and prior breast biopsies was sufficient to achieve the highest AUC. For 

younger Asians, the key factors affecting model performance are age at menarche and the number of 

prior biopsies, with higher discriminatory ability observed in models that did not include family history 

(Figure 3C). In older Asians, the model's performance was not significantly different between those 

that included both age at first live birth and family history (Figure 3D). This indicates that, while the 

Gail model’s performance for Europeans is primarily influenced by the number of first-degree relatives 

with breast cancer and prior biopsies, younger Asians are more influenced by age at first menarche, 

and for older Asians, both age at first live birth and family history are important. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2025. ; https://doi.org/10.1101/2025.02.27.25323002doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.27.25323002
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Applying the high-risk criterion of ≥1·66% 5-year absolute risk resulted in changes in the order of the 

models regarding their discriminatory ability (AUC) (Supplementary Figure 4). However, the AUCs of 

the models were small (highest AUC [95%CI]: 0·529 [0·526-0·531]) and not appreciably different 

(within 0·03 difference in AUCs. Excluding models with confidence intervals including 0·5, lowest 

AUC: 0·501 [0·500-0·501]) (Supplementary Table 2). 

 

Discussion 

We evaluated the performance of different risk stratifiers, including PRS, GAIL, and FH, in identifying 

high-risk individuals for BrCa and DCIS across various demographics and to understand the overlap 

and unique contributions of these models in different populations. The association between different 

risk stratifiers (PRS, GAIL, and FH) with BrCa and DCIS varies by ancestry and age. PRS 

demonstrated superior discrimination compared to the Gail model for predicting both BrCa and DCIS 

in European- and Asian-ancestry populations. Specifically, the 5-year absolute risk from PRS showed 

higher AUC values than the Gail model for both conditions. In Europeans, PRS and GAIL showed 

significant odds ratios for identifying high-risk individuals, with larger effect sizes observed in younger 

populations. In Asians, PRS and GAIL also showed significant associations. The overlap of high-risk 

individuals identified by PRS, GAIL, and FH revealed that PRS and FH were primary contributors to 

high-risk classification, particularly in young Europeans and all Asians. PRS uniquely identified a 

notable percentage of high-risk individuals that were missed by GAIL and FH, while GAIL identified a 

significant portion in older Europeans. Additionally, target-enriched sequencing data showed that 

high-risk individuals identified by both PRS and predisposition genes (PTV) were limited, with PRS 

alone identifying a larger proportion of high-risk individuals compared to PTV alone. Country-specific 

analysis indicated that both PRS and GAIL identified a higher proportion of high-risk individuals in 

European-ancestry populations compared to Asian-ancestry populations, with greater variability 

observed for GAIL. 

 

Given the complexity and multifactorial nature of breast cancer, relying on a single risk factor or model 

may not sufficiently capture all high-risk individuals.6,12 The analysis of the intersection between high-

risk individuals identified by PRS, GAIL, and FH reveals important insights into how these risk 

stratifiers overlap and uniquely contribute to risk assessment. Our results derived from the analysis of 

180,398 woman across diverse ancestries corroborate previous findings that report a limited overlap 

in the high-risk individuals identified by different risk predictors.6,12 The unique contribution of PRS is 

particularly notable. Traditional risk models like the Gail model are less accurate in younger 

populations. These models often rely on risk factors which may not fully capture the risk in younger 

women. Younger women may not have a significant personal or reproductive history, making genetic 

information from PRS and specific gene mutations particularly valuable for risk assessment.6,12 No 

single model is suitable for every subgroup within the general population. The limited overlap and the 

unique contributions of each risk stratifier suggest that using a combination of these tools could 

provide a more comprehensive risk assessment, capturing high-risk individuals that might be missed 

by any single model. Comprehensive risk models such as BOADICEA improve prediction, however 
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they can be challenging to implement at the general population level.18 In addition, calibration and 

validation for populations not used in the model’s development need to be done. 

 

The evaluation of country-specific differences in high-risk identification by PRS and GAIL shows that 

European-ancestry populations generally had higher proportions of predicted high-risk individuals 

compared to Asian-ancestry populations. This is expected, as two risk predictors utilize breast cancer 

incidence rates that were higher in Europeans (i.e. the “White” used to develop the Gail model) than in 

Asians (i.e. the “Chinese”).15 The variability in the performance of the GAIL model across different 

countries, with larger standard deviations compared to PRS, suggests that GAIL’s effectiveness may 

be more influenced by regional factors, such as differences in reproductive factors, lifestyle and 

healthcare practices.11,25 The analysis of factors influencing the performance of the Gail model reveals 

differences in its effectiveness based on age and demographic factors. For Europeans, incorporating 

family history and prior breast biopsies achieved the highest AUC, emphasizing the importance of 

these factors in risk prediction. In younger Asians, age at menarche and the number of prior biopsies 

were more influential, with models excluding family history showing better performance. While there 

are likely regional differences in genetics, lifestyle, and healthcare practices, the Gail model may be 

compounded by variations in data quality and recall.25,26  

The current guidelines for breast cancer screening are based on sex and age. The recommendations 

typically advocate biennial mammography for women aged 50 to 69 or 70 years.3,27 Previously, the 

US Preventive Services Task Force (USPSTF) advised that the decision to begin biennial screening 

before age 50 should be personalized, considering the patient's values regarding specific benefits and 

harms. It is unclear if clinicians are provided with directives on the specific topics to discuss with 

patients regarding screening suitability. For age groups where the evidence for mammography is less 

definitive, integrating comprehensive risk stratification into discussions about screening would ensure 

that recommendations are as relevant as possible. However, in Apr 2024, the USPSTF published in 

its Final Recommendation Statement biennial mammogram screenings for all women aged 40 to 74 

years to detect early-stage cancer (accessed Jul 23, 2024).28 While this earlier screening will benefit 

many, it also raises concerns about over-screening and its potential consequences. Risk stratification 

could enhance the effectiveness of the new USPSTF guidelines by targeting screening efforts more 

precisely. By incorporating complementary individual risk factors, healthcare providers can better 

identify those who are genuinely at higher risk for breast cancer. As a result, risk stratification can help 

balance the benefits of early detection with the potential drawbacks of excessive screening. 

Our study uses one of the largest breast cancer association study datasets, providing high statistical 

power for comprehensive risk factor analyses and diverse population coverage that includes both 

European and Asian ancestries. The study’s multi-center scope allowed for the comparison of risk 

models across different countries. However, differences in study design, data collection methods, and 

risk factor definitions across included studies may have introduced variability and affected the 

consistency of results. Variations in the time of data collection and changes in clinical practices over 

time could affect the comparability of data across studies. Combining different studies introduced 
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gaps in data (i.e. missingness) for some risk factors, and exclusions of certain studies affected the 

generalizability of our findings for those regions. In addition, while the study covers women of 

European and Asian ancestries, it does not represent all global populations. Regional variations in 

absolute risk—due to genetic differences, varying gene predispositions, lifestyle factors, and 

healthcare access—also impact the applicability of risk models to other settings or demographics.11,29 

Not all known breast cancer risk factors were considered in our analyses. Examples of other risk 

factors include mammographic density, physical activity, alcohol use, and smoking.18,30  

Overall, while PRS shows consistent superiority in breast cancer risk stratification across 

demographics, the complementary use of the Gail model and family history can enhance the overall 

risk assessment process. Integrating and calibrating these models for different ethnic populations, 

along with understanding their unique contributions and limitations, can lead to more precise 

identification of high-risk individuals who would otherwise be missed.13 Ideally, evaluating individual 

breast cancer risk could lead to more precise and cost-effective early detection by tailoring screening 

approaches to risk levels. However, despite advancements in risk assessment, it remains important to 

adhere to the established consensus guidelines for minimum mammography screening, as set by 

nationally recognized organizations with expertise in screening methodology. 
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Table 1· Characteristics of 161,849 European-ancestry and 18,549 Asian-ancestry individuals (non-breast cancer controls (controls), patients diagnosed with invasive breast 
cancer (BrCa) and patients diagnosed with DCIS (DCIS)) between ages 30 and 80 years. IQR interquartile range. Family history: number of first-degree relatives with breast 
cancer. 

 European-ancestry, n=161,849  Asian-ancestry, n=18,549 

  
Controls, 

n=68,540 (42%) 
BrCa, 

n=83,685 (52%) 
DCIS, 

n=9,624 (6%)   
Controls, 

n= 8,347 (45%) 
BrCa, 

n=9,222 (50%) 
DCIS, 

n=980 (5%) 
Median age (at interview/ diagnosis), years (IQR) 57 (50 to 64) 57 (49 to 65) 55 (50 to 63) 50 (44 to 58) 49 (43 to 57) 49 (43 to 56) 
Age at menarche, n (%) 

      <12 years  9,825 (14) 10,859 (13) 1,733 (18)   508 (6)   586 (6)  61 (6) 
12 to 14 years 30,243 (44) 33,476 (40) 4,546 (47) 

 
3,080 (37) 3,278 (36) 326 (33) 

>=14 years 21,133 (31) 23,169 (28) 2,758 (29) 
 

4,321 (52) 4,186 (45) 467 (48) 
Unknown  7,339 (11) 16,181 (19)   587 (6) 

 
  438 (5) 1,172 (13) 126 (13) 

Age at first full-term pregnancy, n (%) 
      Nulliparous  8,319 (12) 10,769 (13) 1,520 (16) 1,005 (12) 1,236 (13) 158 (16) 

<20 years  5,427 (8)  6,138 (7)   794 (8) 
 

  316 (4)   362 (4)  29 (3) 
20 to 24 years 21,863 (32) 21,927 (26) 2,899 (30) 

 
1,948 (23) 1,810 (20) 135 (14) 

25 to 29 years 17,543 (26) 18,174 (22) 2,382 (25) 
 

2,836 (34) 3,030 (33) 293 (30) 
>=30 years  8,487 (12)  9,973 (12) 1,386 (14) 

 
1,149 (14) 1,554 (17) 156 (16) 

Unknown  6,901 (10) 16,704 (20)   643 (7) 
 

1,093 (13) 1,230 (13) 209 (21) 
Family history, n (%)  

      No 45,629 (67) 48,903 (58) 4,005 (42) 7,181 (86) 7,500 (81) 708 (72) 
1  5,348 (8) 10,256 (12) 1,115 (12) 

 
  437 (5)   876 (9) 114 (12) 

2+    791 (1)  2,064 (2)   305 (3) 
 

   63 (1)    93 (1)  13 (1) 
Unknown 16,772 (24) 22,462 (27) 4,199 (44)   666 (8)   753 (8) 145 (15) 
Number of breast biopsy, n (%) 

      No    930 (1)  3,181 (4)    96 (1)     0 (0)     0 (0)   0 (0) 
1    277 (0)  3,148 (4)   216 (2) 

 
    0 (0)     0 (0)   0 (0) 

2+    103 (0)  1,822 (2)   148 (2) 
 

    0 (0)     0 (0)   0 (0) 
Unknown 67,230 (98) 75,534 (90) 9,164 (95) 

 
8,347 (100) 9,222 (100) 980 (100) 

Atypical hyperplasia, n (%) 
      No    930 (1)  3,181 (4)    96 (1)     0 (0)     0 (0)   0 (0) 

Yes      5 (0)     49 (0)     8 (0)     0 (0)     0 (0)   0 (0) 
Unknown 67,605 (99) 80,455 (96) 9,520 (99) 

 
8,347 (100) 9,222 (100) 980 (100) 

Median 5-year absolute risk by Gail (IQR) 1·25 (0·92 to 1·64) 1·25 (0·89 to 1·73) 1·29 (0·98 to 1·71) 0·61 (0·45 to 0·78) 0·61 (0·44 to 0·80) 0·61 (0·38 to 0·81) 
Protein truncating variants (9 Genes) 

      No 24,215 (35) 27,926 (33) 1,662 (17) 1,091 (13) 2,049 (22) 317 (32) 
Yes    583 (1)  1,927 (2)    74 (1)    24 (0)   129 (1)   7 (1) 
Unknown 43,742 (64) 53,832 (64) 7,888 (82) 

 
7,232 (87) 7,044 (76) 656 (67) 

Polygenic risk score (PRS) -0·45 (-0·86 to -0·04) -0·09 (-0·51 to 0·32) -0·15 (-0·55 to 0·27) 0·16 (-0·20 to 0·53) 0·37 (-0·01 to 0·76) 0·45 (0·05 to 0·83) 
Median 5-year absolute risk by PRS (IQR) 0·69 (0·46 to 1·05) 0·95 (0·62 to 1·44) 0·91 (0·61 to 1·37) 0·62 (0·40 to 0·95) 0·74 (0·44 to 1·15) 0·79 (0·44 to 1·28) 
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Table 2. Association between high-risk criteria and case-control status (invasive breast cancer cases/ non-breast cancer controls), using univariate logistic 
regression. Analysis was repeated by age categories 30 to 49 years (nEuropean=40,306, nAsian=8,456) and 50 to 80 years (nEuropean=111,919, nAsian=9,113). PRS: 
5-year absolute risk using polygenic risk score ≥1·66%. GAIL: 5-year absolute risk using the Gail model ≥1·66%. FH: having at least one first-degree family 
history of breast cancer. * High: individuals who were identified by any of the criteria were classified as "Yes". OR: odds ratio, CI: confidence interval, P: p-
value. 5-yr abs risk: 5-year absolute risk (continuous). 
 

All ages  Age 30 to 49 years 
 

Age 50 to 80 years 
  OR (95% CI) P AUC (95% CI)  OR (95% CI) P AUC (95% CI)   OR (95% CI) P AUC (95% CI) 
European-ancestry, 
n=152,225  
5-yr abs risk by PRS 
(continuous) 1·97 (1·94 to 2·01) <0·001 0·635 (0·632 to 0·638)  2·51 (2·39 to 2·62) <0·001 0·622 (0·617 to 0·628) 2·06 (2·02 to 2·11) <0·001 0·653 (0·650 to 0·656) 
5-yr abs risk by Gail 
(continuous) 1·12 (1·11 to 1·14) <0·001 0·492 (0·489 to 0·495)  1·35 (1·29 to 1·40) <0·001 0·493 (0·487 to 0·499) 1·18 (1·16 to 1·19) <0·001 0·517 (0·514 to 0·520) 
PRS (Yes, ref=No) 2·60 (2·52 to 2·69) <0·001 0·552 (0·550 to 0·554)  3·35 (3·02 to 3·70) <0·001 0·530 (0·528 to 0·532) 2·64 (2·55 to 2·74) <0·001 0·562 (0·560 to 0·564) 
Gail (Yes, ref=No) 1·25 (1·22 to 1·28) <0·001 0·522 (0·520 to 0·524)  2·61 (2·36 to 2·88) <0·001 0·523 (0·521 to 0·526)  1·27 (1·24 to 1·30) <0·001 0·527 (0·524 to 0·529) 
FH (Yes, ref=No) 1·56 (1·51 to 1·60) <0·001 0·529 (0·527 to 0·530)  1·87 (1·76 to 1·98) <0·001 0·538 (0·535 to 0·542)  1·47 (1·42 to 1·52) <0·001 0·525 (0·523 to 0·527) 
PRS/GAIL*  
(Yes, ref=No) 1·62 (1·58 to 1·65) <0.001 0.554 (0.552 to 0.557)  2·98 (2·77 to 3·21) <0.001 0.548 (0.545 to 0.551)  1·67 (1·63 to 1·71) <0.001 0.563 (0.560 to 0.565) 
PRS/GAIL/FH* (Yes, 
ref=No) 1·63 (1·60 to 1·67) <0·001 0·558 (0·556 to 0·560)  2·34 (2·22 to 2·47) <0·001 0·566 (0·562 to 0·569)  1·63 (1·59 to 1·67) <0·001 0·560 (0·557 to 0·563) 

 
 

Asian-ancestry, 
n=17,569  
5-yr abs risk by PRS 
(continuous) 1·48 (1·41 to 1·56) <0·001 0·564 (0·556 to 0·573)  1·62 (1·47 to 1·78) <0·001 0·551 (0·539 to 0·563) 1·64 (1·53 to 1·75) <0·001 0·600 (0·588 to 0·611) 
5-yr abs risk by Gail 
(continuous) 1·19 (1·09 to 1·30) <0·001 0·506 (0·497 to 0·514)  0·94 (0·81 to 1·08) 0·377 0·523 (0·511 to 0·535) 1·82 (1·61 to 2·07) <0·001 0·554 (0·543 to 0·566) 
PRS (Yes, ref=No) 1·83 (1·64 to 2·05) <0·001 0·523 (0·519 to 0·527)  2·24 (1·76 to 2·85) <0·001 0·515 (0·511 to 0·519) 1·89 (1·66 to 2·14) <0·001 0·535 (0·528 to 0·542) 
Gail (Yes, ref=No) 1·59 (1·31 to 1·92) <0·001 0·506 (0·503 to 0·508)  1·34 (0·84 to 2·13) 0·217 0·501 (0·499 to 0·503)  1·77 (1·44 to 2·19) <0·001 0·512 (0·507 to 0·516) 
FH (Yes, ref=No) 1·97 (1·76 to 2·19) <0·001 0·527 (0·523 to 0·531)  1·87 (1·59 to 2·19) <0·001 0·524 (0·518 to 0·530)   2·07 (1·78 to 2·41) <0·001 0·530 (0·524 to 0·535) 
PRS/GAIL*  
(Yes, ref=No) 1·78 (1·61 to 1·96) <0.001 0.527 (0.523 to 0.532)  2·02 (1·63 to 2·50) <0.001 0.516 (0.511 to 0.520)  1·89 (1·69 to 2·12) <0.001 0.543 (0.536 to 0.551) 
PRS/GAIL/FH* (Yes, 
ref=No) 1·91 (1·76 to 2·08) <0·001 0·544 (0·539 to 0·550)  1·95 (1·70 to 2·24) <0·001 0·535 (0·528 to 0·542)  2·01 (1·81 to 2·23) <0·001 0·556 (0·548 to 0·564) 
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Table 3. Association between high-risk criteria and case-control status (DCIS cases/ non-breast cancer controls), using univariate logistic regression. 
Analysis was repeated by age categories 30 to 49 years (nEuropean=19,424, nAsian=4,322) and 50 to 80 years (nEuropean= 58,740, nAsian=5,005). PRS: 5-year 
absolute risk using polygenic risk score ≥1·66%. GAIL: 5-year absolute risk using the Gail model ≥1·66%. FH: having at least one first-degree family history of 
breast cancer. * High: individuals who were identified by any of the three criteria (PRS, GAIL, FH) were classified as "Yes". OR: odds ratio, CI: confidence 
interval, P: p-value. 5-yr abs risk: 5-year absolute risk (continuous). 
 

All ages  Age 30 to 49 years 
 

Age 50 to 80 years 
  OR (95% CI) P AUC (95% CI)  OR (95% CI) P AUC (95% CI)   OR (95% CI) P AUC (95% CI) 
European-ancestry, 
n=78,164  
5-yr abs risk by PRS 
(continuous) 

1·63 (1·59 to 1·68) <0·001 0·626 (0·620 to 0·631)  2·56 (2·37 to 2·78) <0·001 0·657 (0·645 to 0·669)  1·56 (1·51 to 1·61) <0·001 0·620 (0·613 to 0·626) 

5-yr abs risk by Gail 
(continuous) 

1·23 (1·20 to 1·26) <0·001 0·537 (0·531 to 0·543)  2·28 (2·10 to 2·49) <0·001 0·610 (0·597 to 0·622)  1·19 (1·16 to 1·22) <0·001 0·519 (0·512 to 0·526) 

PRS (Yes, ref=No) 2·21 (2·08 to 2·35) <0·001 0·541 (0·537 to 0·544)  3·30 (2·78 to 3·91) <0·001 0·529 (0·523 to 0·535)  2·11 (1·98 to 2·26) <0·001 0·544 (0·539 to 0·549) 
Gail (Yes, ref=No) 1·21 (1·15 to 1·27) <0·001 0·518 (0·513 to 0·523)  3·35 (2·85 to 3·94) <0·001 0·534 (0·527 to 0·540)  1·12 (1·06 to 1·18) <0·001 0·512 (0·506 to 0·518) 
FH (Yes, ref=No) 1·75 (1·65 to 1·85) <0·001 0·537 (0·533 to 0·542)  2·24 (2·00 to 2·50) <0·001 0·553 (0·544 to 0·561)  1·62 (1·52 to 1·72) <0·001 0·532 (0·528 to 0·537) 
PRS/GAIL*  
(Yes, ref=No) 1·46 (1·40 to 1·53) <0.001 0.542 (0.537 to 0.547)  3·50 (3·09 to 3·96) <0.001 0.559 (0.551 to 0.567)  1·34 (1·28 to 1·41) <0.001 0.536 (0.530 to 0.542) 
PRS/GAIL/FH* (Yes, 
ref=No) 

1·52 (1·45 to 1·59) <0·001 0·549 (0·544 to 0·554)  2·74 (2·48 to 3·02) <0·001 0·581 (0·572 to 0·591)  1·36 (1·29 to 1·43) <0·001 0·538 (0·531 to 0·544) 

 
           

Asian-ancestry, 
n=9,327 

           

5-yr abs risk by PRS 
(continuous) 

1·67 (1·52 to 1·83) <0·001 0·587 (0·566 to 0·607)  1·70 (1·42 to 2·03) <0·001 0·556 (0·528 to 0·584)  1·89 (1·69 to 2·12) <0·001 0·654 (0·628 to 0·680) 

5-yr abs risk by Gail 
(continuous) 

1·25 (1·03 to 1·52) 0·023 0·507 (0·486 to 0·528)  0·99 (0·71 to 1·38) 0·93 0·533 (0·505 to 0·562)  1·88 (1·46 to 2·41) <0·001 0·542 (0·513 to 0·572) 

PRS (Yes, ref=No) 2·30 (1·88 to 2·83) <0·001 0·535 (0·524 to 0·546)  2·22 (1·43 to 3·43) <0·001 0·514 (0·504 to 0·525)  2·65 (2·09 to 3·36) <0·001 0·561 (0·542 to 0·580) 
Gail (Yes, ref=No) 2·13 (1·51 to 3·00) <0·001 0·511 (0·505 to 0·518)  1·86 (0·81 to 4·26) 0·144 0·503 (0·498 to 0·509)  2·41 (1·64 to 3·53) <0·001 0·521 (0·509 to 0·533) 
FH (Yes, ref=No) 2·76 (2·28 to 3·35) <0·001 0·547 (0·535 to 0·558)  2·89 (2·20 to 3·78) <0·001 0·550 (0·533 to 0·566)  2·64 (2·00 to 3·48) <0·001 0·544 (0·527 to 0·560) 
PRS/GAIL*  
(Yes, ref=No) 2·23 (1·85 to 2·69) <0.001 0.542 (0.530 to 0.554)  2·09 (1·41 to 3·10) <0.001 0.517 (0.505 to 0.528)  2·63 (2·11 to 3·28) <0.001 0.573 (0.553 to 0.593) 
PRS/GAIL/FH* (Yes, 
ref=No) 

2·58 (2·21 to 3·02) <0·001 0·571 (0·557 to 0·585)  2·63 (2·06 to 3·37) <0·001 0·557 (0·539 to 0·575)  2·76 (2·24 to 3·39) <0·001 0·589 (0·567 to 0·611) 
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Table 4. Overlap of individuals with 5-year absolute risk by polygenic risk score ≥1·66% (PRS) and 

carriers of protein-truncating variants in at least one of nine breast cancer predisposition genes (i.e. 

PTVs in ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, or TP53). 

High-risk 

 Status Ancestry  Age, years n PRS PTV PRS + PTV 
All European 30 to 80 56,387 7,844 (13·91) 2,584 (4·58) 350 (0·62) 

  30 to 49 13,843 971 (7·01) 1,002 (7·24) 71 (0·51) 

  50 to 80 42,544 6,873 (16·16) 1,582 (3·72) 279 (0·66) 

 Asian 30 to 80 3,617 306 (8·46) 160 (4·42) 5 (0·14) 

  30 to 49 2,358 101 (4·28) 118 (5·00) 3 (0·13) 

  50 to 80 1,259 205 (16·28) 42 (3·34) 2 (0·16) 

       

Control European 30 to 80 24,798 2,022 (8·15) 583 (2·35) 39 (0·16) 

  30 to 49 4,860 136 (2·80) 173 (3·56) 3 (0·06) 

  50 to 80 19,938 1,886 (9·46) 410 (2·06) 36 (0·18) 

 Asian 30 to 80 1,115 58 (5·20) 24 (2·15) 1 (0·09) 

  30 to 49 769 21 (2·73) 18 (2·34) 1 (0·13) 

  50 to 80 346 37 (10·69) 6 (1·73) 0 (0·00) 

       

Invasive breast 
cancer 

European 30 to 80 29,853 5,515 (18·47) 1,927 (6·45) 307 (1·03) 

 30 to 49 8,556 789 (9·22) 808 (9·44) 67 (0·78) 

 50 to 80 21,297 4,726 (22·19) 1,119 (5·25) 240 (1·13) 

Asian 30 to 80 2,178 208 (9·55) 129 (5·92) 4 (0·18) 

 30 to 49 1,400 70 (5·00) 95 (6·79) 2 (0·14) 

 50 to 80 778 138 (17·74) 34 (4·37) 2 (0·26) 

      

DCIS European 30 to 80 1,736 307 (17·68) 74 (4·26) 4 (0·23) 

  30 to 49 427 46 (10·77) 21 (4·92) 1 (0·23) 

  50 to 80 1,309 261 (19·94) 53 (4·05) 3 (0·23) 

 Asian 30 to 80 324 40 (12·35) 7 (2·16) 0 (0·00) 

  30 to 49 189 10 (5·29) 5 (2·65) 0 (0·00) 

    50 to 80 135 30 (22·22) 2 (1·48) 0 (0·00) 
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Figure 1· Venn diagram depicting the overlaps between individuals identified as high risk by the three 
criteria. Breast cancer polygenic risk score (PRS, 5-year absolute risk using polygenic risk score 
≥1·66%), the Gail model (GAIL, 5-year absolute risk using the Gail model ≥1·66%), and family history 
(FH, having at least one first-degree family history of breast cancer). European: women of European 
ancestry; Asian: women of Asian ancestry. 
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Figure 2· The proportion of individuals identified as at high risk by the breast cancer polygenic risk 
score (PRS) and the Gail model (GAIL), by country and age. The proportion of individuals identified as 
high risk by both criteria is indicated in grey. PRS: 5-year absolute risk using polygenic risk score 
≥1·66%. GAIL: 5-year absolute risk using the Gail model ≥1·66%. Numbers adjacent to the bars 
represent the number of high-risk individuals identified by respective risk tools. European: women of 
European ancestry; Asian: women of Asian ancestry. 
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Figure 3· Discriminatory ability of risk factor combinations in the Gail model. The five-year absolute 
risk was calculated using the R package “BCRA” and used to predict the invasive breast cancer case-
control status of the individuals. Dots represent risk factors included in the model, and crosses 
indicate the model with all risk factors with the addition of atypical hyperplasia. European: women of 
European ancestry; Asian: women of Asian ancestry.    
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