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Abstract: The application area of a sound insulation material is highly dependent on the technology
adopted for its processing. In this study, thermoplastic rubber (TPR, polypropylene/ethylene
propylene diene monomer) composites were simply prepared via an extrusion method. Two
microscale particles, CaCO3 and hollow glass microspheres (HGW) were chosen to not only enhance
the sound insulation but also reinforced the mechanical properties. Meanwhile, the processing
capability of composites was confirmed. SEM images showed that the CaCO3 was uniformly
dispersed in TPR matrix with ~3 µm scale aggregates, while the HGM was slightly aggregated
to ~13 µm scale. The heterogeneous dispersion of micro-scale fillers strongly affected the sound
transmission loss (STL) value of composites. The STL values of TPR composites with 40 wt % CaCO3

and 20 wt % HGM composites were about 12 dB and 7 dB higher than that of pure TPR sample,
respectively. The improved sound insulation performances of the composites have been attributed
to the enhanced reflection and dissipate sound energy in the heterogeneous composite. Moreover,
the mechanical properties were also enhanced. The discontinued sound impedance and reinforced
stiffness were considered as crucial for the sound insulation.

Keywords: thermoplastic rubber; composites; sound insulation property; mechanical property;
viscous behavior

1. Introduction

Nowadays, noise pollution becomes much more serious with the rapid development of industry
and transportation. Therefore the technique that the preparation of damping and noise reduction
materials has attracted many attentions for environment and health safety [1]. Compared with the
traditional metal materials, polymer materials as a great advantage in noise control engineering
due to its superior performance, such as excellent viscoelasticity and good process-capability [2–4].
However, a number of polymer materials cannot meet the requirements on strength, toughness and
other mechanical properties.

Polymeric materials with micro/nano-structures have attracted increasing interest from both
academic and industrial field. The micro- or nano-structure in polymeric materials can give
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excellent physical properties and multifunctional applications [5–9]. Therefore, hierarchical scale
structure design of polymeric materials is regarded as one of the important route to achieve
outstanding performance [10–12]. To achieve outstanding sound-insulation property, many efforts
were contributed for fabrication of hierarchical scale structure. A number of soundproof composites
has been developed likes wood-waste tire rubber composite [13], inorganic particles/polymer
composites and nano-composites, including polypropylene/CaCO3 [14], resin/hollow glass bead [15],
poly(vinyl chloride)/mica [16], rubber/carbon nanotube [17], polyvinylpyrrolidone/graphene
oxide [18], poly(vinyl acetate) mesoporous carbon [19], and so on. Besides, the porous structure [20]
and honeycomb structure [21,22] can also enhance the sound insulation performance. But it is hard
to achieve both high soundproof and mechanical properties of traditional polymer composites. Very
recently, Guo’s group developed a bilayer and multilayer plate structure, which could efficaciously
attenuate acoustic energy by employing viscoelastic polymers as an interlayer of sandwich structure
to increase sound transmission loss due to their high damping properties [23]. Liang reported that
polymer foams in a sandwich structure could also enhance the soundproof property owing to the
viscoelastic air cells and increased sound wave propagation routine [24]. However, special die is
designed to achieve the multilayered distribution of fillers in polymer matrices and the multilayer
co-extrusion technique is necessary; as a result, the process has complicated and extra cost has
charged. Hereby, it is prominent to produce excellent soundproof polymer composites with enhanced
mechanical properties by means of common feasible processing technologies.

As a very important damping material, thermoplastic rubber (TPR) has broadly applied in
transportation, architecture and electronic products [25]. For large-scale and low-cost processing,
injection molding and extrusion are most stable processing methods, however, the soundproof, and
mechanical properties cannot simultaneously meet strict requirements. Previously, our group has
confirmed that adding either CaCO3 or hollow glass microspheres (HGM) could greatly increase the
stiffness of polymer, which is beneficial to enhance the sound wave refraction, scatting and reflection
(Figure S1 and Table S1). In addition, due to the great difference of elastic moduli between the
polymer and inorganic fillers, the sound wave can easily dissipate on the interface. For the sake of
excellent damping property of TPR, we choose the polypropylene/ethylene propylene diene monomer
(PP/EPDM) composite, compounding with micro-scale CaCO3 and HGM particles. The sound
insulation of the composites were markedly enhanced especially in a range of 50–1500 Hz, meanwhile
the mechanical properties were simultaneously improved.

2. Experiment

2.1. Materials and Sample Preparation

Ethylene propylene diene monomer (EPDM) was grade 725P and obtained from the Dow
Chemical Company. Polypropylene (PP) was grade T30s and purchased from the Daqing Petrochem.
Co., Ltd. (Daqing, China). The tacticity of PP is 96.5%. Prior to the melt extrusion, CaCO3 and HGM
particles were dried in vacuum for 1 h, then mixed in a mixing machine 1 h respectively, 2% content
tetrabutyl titanate was added and mixed together for 1 h, and finally dried in vacuum overnight.
The TPR samples were prepared in the HAAKE™ Rheomix OS Lab Mixer at 180 ◦C and 60 r/min for
10 min. The detailed specifications of all samples are summarized in Table 1.
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Table 1. The detailed specification of thermoplastic rubber (TPR) based composites.

Sample Description

TPR Melt blended PP/EPDM TPR (PP/EPDM = 30/70)
TPR/10%CaCO3 TPR composite with 10 phr CaCO3
TPR/20%CaCO3 TPR composite with 20 phr CaCO3
TPR/30%CaCO3 TPR composite with 30 phr CaCO3
TPR/40%CaCO3 TPR composite with 40 phr CaCO3
TPR/10%HGM TPR composite with 10 phr HGM
TPR/20%HGM TPR composite with 20 phr HGM
TPR/30%HGM TPR composite with 30 phr HGM

PP/EPDM: Melt blending of PP with EPDM (PP/EPDM = 30/70); HGM: hollow glass microspheres.

2.2. Morphology Characterization

The morphology of pure TPR, the inorganic fillers and the dispersion of inorganic particles in
the composites were characterized by using a scanning electron microscopy (SEM type S-4700, JEOL,
Akishima-shi, Japan). The fractured surface of TPR composites was obtained by immersing samples in
liquid nitrogen and spayed with gold before SEM examination. In order to verify the exact dispersion
of inorganic fillers, the fracture surface of TPR composites were etched by hydrochloride acid (10 wt %)
to remove CaCO3 particles, or hydrofluoric acid (1 wt %) to remove HGM particles.

2.3. Rheology and Mechanical Properties

The rheological properties of the blends were studied using a capillary rheometer (Rosand RH7,
Malvern, Worcestershire, UK) into which the material was loaded by a plunger through a capillary.
The load in the plunger provided the total pressure drop in the barrel and capillary. The rheological
experiments were carried out at 180 ◦C, using a L/R = 19.33 capillary. The corrections suggested by
Bagley [26] were used considering the data from the two capillary dies.

Dynamic mechanical thermal analysis was conducted using dynamic thermal mechanical analyzer
(DMA type Q-800 TA Instruments, New Castle, DE, USA). The sample size is cut to small plate with a
scale of 30 × 10 × 2 mm. The mode is single cantilever. The temperature range is ranging from −60 to
20 ◦C. The heating rate and frequency are set to 3 ◦C/min and 1 Hz, respectively.

Tensile specimens were obtained from hot-press to dumbbell-shaped samples. The tensile
testing used an Instron 5996 tension machine (Instron Corporation, Norwood, MA, USA) at 23 ◦C,
according to ASTMD 638, at the displacement rate of 50 mm/min. At least five specimens for each
sample were tested and the average value was calculated. Impact specimens were obtained from
hot-press to notched impact samples. The impact testing used a Ceast 9050 impact testing machine
(Instron Corporation, Norwood, MA, USA) at 23 ◦C, according to GB 1843-2008. At least five specimens
for each sample were tested and the average value was calculated.

2.4. Sound Insulation Property

The sound transmission loss (STL), representing the soundproof efficiency, is defined to the
logarithmic ratio of the incident acoustic power to transmitted acoustic power. STL value was tested
using a Bruel and Kjaer, four-microphone small standing wave tube (Type: 4206-T) as shown in
Figure S2. The effective sound wave was measured in the range from 500 to 6000 Hz at 25 ◦C.
The thickness of all samples was 5 mm. Detailed theory is summarized in the supplementary material.
The theoretical STL value was calculated by Equation (1) using a transfer function method

STL = −20 × log|t| (1)

where t is the ratio of the transmitting sound energy to the incident sound energy.
To investigate the acoustic impedance (Z), the stiffness (S) and surface density (ρ) of the material

can be calculated from the following equations, where S, E, h, µ, ρ and ρ are stiffness, modulus,
thickness, Poisson ratio, surface density and density of the sample, respectively.
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S =
1

12
× E× h3

1− µ2 (2)

ρ = ρ× h (3)

The acoustic impedance (Z) of the material is the product of sound speed (C) and the density (ρ) of
the material, while the longitudinal wave speed (C) in solid can be calculated according to Equation (3),
where E, µ and ρ are elastic modulus, Poisson ratio and density, respectively.

C =

√
E× (1− µ)

ρ× (1 + µ)× (1− 2µ)
(4)

= ρ× C (5)

2.5. Density Test

The weight (m) of samples was measured by the electronic scales (FA1104N, Shanghai, China).
The initial water volume (V0) and the volume (V) after the samples needled into the water were
measured by the measuring cylinder. The density equals quality divided by the volume that was V
minus V0. At least five specimens for each sample were tested and the average value was calculated.

ρ =
m

V −V0
(6)

3. Results and Discussion

3.1. Viscous Behavior

Figure 1 shows effects of inorganic filler content on shear viscosity of TPR composites at 180 ◦C.
The EPDM content of TPR matrix was chosen as 70 wt %, since there was almost one loss factor peak
at −27 ◦C (Figure S3), representing the good compatibility of PP and EPDM. It is apparent that TPR
and their composites showed typical shear-thinning behavior over the range of shear rates in that the
shear viscosity decreased with an increase in shear rate. This behavior was attributed to the alignment
or arrangement of the chain segments of polymers to the direction of the melt flow through capillary.
Such behavior was reported for other polymeric systems containing TPR [27–29]. In general, the high
value of viscosities at low shear rates would provide the integrity of the extrudate during extrusion,
while the low viscosities at high shear rates caused low injection temperature and pressure as well
as short time for injection cycle. Thus all composites in this study are suitable for processing by both
extrusion and injection. The viscosity values of the blends increased with the increase of inorganic filler
contents. These results were useful for optimizing the processing conditions of TPR composites would
be quite different from that of neat TPR. For example, the processing capability of TPR composites
whose viscosity was slight higher than neat TPR would be close to that of neat TPR.
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3.2. Morphology

To study the dispersion of CaCO3 and HGM in the TPR matrix, the samples of various composites
were fractured in liquid nitrogen. Thus, SEM could be applied to characterize the morphology
of different composites. As shown in Figure 2a,b, the average size of modified CaCO3 and HGM
micro-particle was 2.0 and 6.8 µm, respectively. Figure 2c shows the fracture surface of neat TPR matrix,
indicating very good compatibility of PP and EPDM. Li [30] reports on the excellent dispersivity of
Thermoplastic elastomer. As the content of CaCO3 micro-particles increased from 10 wt % to 40 wt %,
though the composites exhibited slight aggregation of CaCO3 from 2.8 to 3.4 µm (Figure 2k); while the
HGM was more likely to form orbicular agglomerations larger than 10 µm at the similar condition
(Figure 2k). The good dispersion of inorganic fillers not only can stiffen the polymer matrix, but also
can influence the movement of viscoelastic polymer domain.
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Figure 2. The morphology of inorganic particles and various TPR composites observed by SEM (the
magnification ratio was 1000 times). (a) micro CaCO3; (b) HGM; (c) pure TPR; (d) TPR/10%CaCO3;
(e) TPR/20%CaCO3; (f) TPR/30%CaCO3; (g) TPR/40%CaCO3; (h) TPR/10%HGM; (i) TPR/20%HGM;
(j) TPR/30%HGM; (k) average pore size of different content of inorganic particles.

3.3. Sound Insulation Property

Generally, the sound wave was reflected by the interface and absorbed by the viscoelastic materials.
In this work, frequencies ranging in 500 to 6000 Hz were selected to investigate the sound insulation
property of TPR composites, due to the soundproofing efficiency of the material corresponds to the
frequency of sound wave [13,31,32]. The dependence of sound transmission loss (STL) value was
depicted in Figure 3. All samples exhibited similar trends of STL value influenced by increasing the
sound wave frequency. Position of the first resonance frequency on the frequency scale can be used for
following the increasing stiffness of the tested materials. It was shifting from lower frequencies in the
case of virgin TPR to higher frequencies for micro-particle filled composites. This phenomenon quite
differed with crystalline polymer based system, such as high-density polyethylene (HDPE)/CaCO3

hollow sphere composite [33], while similar results could be referred in multilayered polymer [23] or
foam composites [34]. In comparison with neat TPR sample, the STL values of composite samples
improved significantly with the addition of CaCO3 and HGM micro-particles in lower frequency zone
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(below the first resonance frequency). With increasing either CaCO3 or HGM content, the STL value of
samples gradually enhanced. For comparison, the average STL values of all samples were plotted in
Figure 3c,d. The average STL value of neat TPR was 33.40 dB, while the sound insulation property of
composites was effectively improved. For example, the sample containing 30 wt % CaCO3 reached an
enhanced STL value of 43.52 dB, which was 1.30 time of that of neat TPR. Compared to CaCO3-filled
composite with the same filler content, HGM-filled samples showed better STL values below 30 wt %
filler content. However, the STL value of the sample with higher HGM content decreased, possibly
due to the propagation route of the sound wave would be chopped by aggregative fillers.
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When the sound frequency is low, the composites can respond imitatively the vibration from the
sound wave to make an equilibrium, and present obvious sensitivity of the transmission loss to the
sound frequency (Figure 3). While in the case of high sound frequency, the composites cannot respond
imitatively the vibration from the sound wave to make equilibrium, and present that the transmission
loss increases slightly with an increase of the sound frequency.

The stiffness and surface density are of importance that affects the soundproofing efficiency of
single plates [35]. It has been proven that the stiffness is critical below the first resonance frequency,
and the material complies with the mass law at higher frequency zones. The STL of material increases
with the increase of the stiffness and surface density. In order to identify the factors that dependents to
sound insulation property of TPR composites, the potential parameters are listed in Table 2. It has been
reported that the presence of CaCO3 or HGM in the matrix could restrict the movement of molecules
that would lead to the higher elastic modulus and stiffness [36–38]. Compared to neat TPR sample,
the stiffness and surface density of TPR composite samples are improved by at least 70% and 4%,
respectively. With the increment of CaCO3 content, the stiffness and surface density increased, leading
to the improved sound insulation property and the shifting of the resonance frequency moving to
high frequency region. However, the surface density of HGM-filled composites was lower to that of
CaCO3-filled composites at the same filler content. It is difficult to explain the improved STL value of
HGM-filled composites by using the parameters that dominate the STL of single plate.
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Table 2. Mechanical and acoustic parameters of PP, EPDM (Ethylene propylene diene monomer) and
different TPR composites.

Sample Density
(103 kg/m3)

Surface
Density
(kg/m2)

Elastic
Modulus

(MPa)

Poisson
Ratio

Stiffness
(10−2 Nm)

Sound
Speed
(m/s)

Acoustic
Impedance
(103 Pas/m)

TPR 0.87 4.36 50.73 0.30 54.30 279.47 243.42
TPR/10%CaCO3 0.90 4.50 86.12 0.31 92.54 365.71 329.14
TPR/20%CaCO3 0.96 4.82 104.14 0.35 113.31 415.88 400.50
TPR/30%CaCO3 1.06 5.30 96.90 0.40 107.71 438.99 464.89
TPR/40%CaCO3 1.15 5.73 108.40 0.31 116.38 362.24 414.77
TPR/10%HGM 0.89 4.42 97.97 0.30 104.94 387.50 342.28
TPR/20%HGM 0.90 4.50 83.83 0.32 90.37 367.22 330.32
TPR/30%HGM 0.94 4.72 85.64 0.31 91.81 352.00 332.22

In consider with the hollow structure of HGM particles and the density of HGM is little greater
than that of polymer, sound insulation property of HGM-filled composite is relative to the material
density, the content and size of the filler particles, sound speed as well as the sound frequency [39,40].
Acoustic impedance, which depends on the density and sound speed, can be modified by adding
filler [41]. Table 2 summarizes the relative sound speed and acoustic impedance of various composites.
The acoustic impedance mismatch of neat TPR and its composites were induced by the heterogeneous
dispersion of “hard” inorganic particles in “soft” TPR matrix. As shown in Figure 4, when an incident
sound wave propagated through a material, the sound energy of incident wave will be transferred
into three parts, energy of reflected wave, energy dissipated by material and energy of transmitted
wave. Firstly, the damping property of the TPR matrix could absorb the mechanical vibration energy,
thus the matrix could dissipate some of the sound energy. Secondly, the sound propagation routine
through the composite also plays an important role. The interfaces between the hard particles and the
TPR matrix, and the interfaces between HGM and inner air could scatter, diffract and refract sound
waves energy. Thirdly, the air inside the inner cavity of the HGM was confined in a narrow space and
could dampen the sound waves in the composite [42].
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The acoustic energy dissipation of material was associated with loss modulus and tan δ of
the material [43–46]. In this study, the loss modulus measured by DMA was used to characterize
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the vibration damping of TPR composites, which could represent the energy dissipating ability of
material. The storage modulus and loss modulus as function of temperature were shown in Figure 5.
It is clear that the storage modulus (E′) of TPR composites showed great improvement compared
with that of virgin TPR sample in the whole tested temperature range (Figure 5a,c). It indicates
the enhanced stiffness by the addition of inorganic fillers, which consists with the aforementioned
discussion. The loss modulus (E”) of TPR composites was also improved (Figure 5b,d). It means TPR
composites could dampen more mechanical vibration and dissipate more acoustic energy during the
sound propagation in the composites. With the addition of CaCO3 and HGM filler, the peak value
of loss factor (tan δ) value was slightly decreased (Figure S4). This phenomenon could be due to the
phase separation in the TPR matrix. In addition, the heterogeneous particles would constrain the
movement of polymer segments.
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3.4. Mechanical Properties

Beside the sound insulation property, mechanical properties of TPR composites are also important
for practical application. The addition of fillers can improve the sound insulation property of the
composites, but it may also greatly reduce the mechanical properties of material because of the
promoted propagation of cracks in matrix induced by fillers [47]. Figure 6 displays the mechanical
property of neat TPR and its composites, and the detailed values are summarized in Table 3. With
the increase of the CaCO3 content, both the tensile strength and impact strength of composite were
obviously increased from the 2.87 MPa of virgin TPR to 4.70 MPa with 40 wt % filler loading, while the
elongation at break would be reduced due to restricted polymer chains induced by CaCO3 particles.
Remarkably, the notched impact strength of neat TPR sample was 4.23 kJ/m2 and that of the composite
with 20 wt % CaCO3 was 10.74 kJ/m2, yielding an increase of 153.9%. Compared to CaCO3 particles,
HGM particles showed an optimal loading for improving the tensile and notched impact strength with
20 wt % HGM loading (Figure 6c,d) [48].
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Table 3. The mechanical properties of TPR composites.

Sample Tensile Strength (MPa) Elongation at Break (%) Impact Strength (KJ/m2)

TPR 2.87 ± 0.44 211.70 ± 2.32 4.23 ± 0.18
TPR/10%CaCO3 2.99 ± 0.35 172.75 ± 3.36 7.765 ± 0.18
TPR/20%CaCO3 3.67 ± 0.18 154.02 ± 2.25 10.74 ± 0.59
TPR/30%CaCO3 4.46 ± 0.09 114.23 ± 3.49 11.27 ± 1.07
TPR/40%CaCO3 4.70 ± 0.30 59.00 ± 3.55 11.57 ± 1.13
TPR/10%HGM 3.32 ± 0.23 183.51 ± 3.42 6.05 ± 0.30
TPR/20%HGM 3.24 ± 0.19 158.85 ± 3.69 6.61 ± 0.54
TPR/30%HGM 2.98 ± 0.30 71.47 ± 4.01 6.17 ± 0.27
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4. Conclusions

In this study, the sound insulation performance of TPR materials, especially in low frequency
range, was significantly improved after adding either micro-scale CaCO3 or HGM particles by simply
extrusion method. The all composites showed good processing capability. Owing to well dispersion
of fillers in the TPR matrix, the elastic modulus and stiffness of the composite were significantly
enhanced. Furthermore, the sound waves pathway through the composite propagated much longer,
resulting in more refraction and dissipation of sound energy. In addition, composites showed good
damping capability for mechanical vibration compared to that of virginal TPR. Besides, the mechanical
properties of composites were obviously improved in the aide of the well-dispersed particles. This
study provides an alternative and feasible approach for industry-scale production of TPR based
soundproof materials.
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41. Taşdemir, M.; Ersoy, S.; Uluğ, E. Effects of HIPS on the Sound Absorption and Impedance Ratio of
SEBS/HIPS/CaCO3 Polymer Composites. Polym. Plast. Technol. Eng. 2012, 51, 954–958. [CrossRef]

42. Shi, X.; Wu, J.; Wang, X.; Zhou, X.; Xie, X.; Xue, Z. Novel sound insulation materials based on epoxy/hollow
silica nanotubes composites. Compos. Part B Eng. 2017, 131, 125–133. [CrossRef]

43. Zhang, X.; Lu, Z.; Dong, T.; Li, H.; Lu, C. Mechanochemical devulcanization of ground tire rubber and its
application in acoustic absorbent polyurethane foamed composites. J. Appl. Polym. Sci. 2013, 127, 4006–4014.
[CrossRef]

44. Zhang, C.H.; Hu, Z.; Gao, G.; Zhao, S.; Huang, Y.D. Damping behavior and acoustic performance of
polyurethane/lead zirconate titanate ceramic composites. Mater. Des. 2013, 46, 503–510. [CrossRef]

45. Yu, Y.; Lu, M.; Chen, M.H.; Wang, L.S.; Bu, Z.X.; Song, G.; Sun, L. Modeling of dynamic mechanical properties
of polymer composites reinforced by one dimensional nanofillers. J. Appl. Phys. 2016, 120, 175103. [CrossRef]

46. Zeqiri, B.; Scholl, W.; Robinson, S.P. Measurement and testing of the acoustic properties of materials: A review.
Metrologia 2010, 47, S156–S171. [CrossRef]

47. Shunmugasamy, V.C.; Anantharaman, H.; Pinisetty, D.; Gupta, N. Unnotched Izod impact characterization
of glass hollow particle/vinyl ester syntactic foams. J. Compos. Mater. 2013, 49, 185–197. [CrossRef]

48. Li, C.; Deng, H.; Wang, K.; Zhang, Q.; Chen, F.; Fu, Q. Strengthening and toughening of thermoplastic
polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2011,
121, 2104–2112. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apacoust.2006.12.001
http://dx.doi.org/10.3176/proc.2012.3.03
http://dx.doi.org/10.1177/0731684408090713
http://dx.doi.org/10.1002/app.34824
http://dx.doi.org/10.1002/pc.23116
http://dx.doi.org/10.1080/03602559.2012.680563
http://dx.doi.org/10.1016/j.compositesb.2017.07.055
http://dx.doi.org/10.1002/app.37721
http://dx.doi.org/10.1016/j.matdes.2012.10.015
http://dx.doi.org/10.1063/1.4966663
http://dx.doi.org/10.1088/0026-1394/47/2/S13
http://dx.doi.org/10.1177/0021998313515290
http://dx.doi.org/10.1002/app.33892
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experiment 
	Materials and Sample Preparation 
	Morphology Characterization 
	Rheology and Mechanical Properties 
	Sound Insulation Property 
	Density Test 

	Results and Discussion 
	Viscous Behavior 
	Morphology 
	Sound Insulation Property 
	Mechanical Properties 

	Conclusions 
	References

