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Abstract

High-throughput sequencing (HTS) enables most pathogens in a clinical sample to be detected from a single analysis,
thereby providing novel opportunities for diagnosis, surveillance, and epidemiology. However, this powerful technology is
difficult to apply in diagnostic laboratories because of its computational and bioinformatic demands. We have developed
DisCVR, which detects known human viruses in clinical samples by matching sample k-mers (twenty-two nucleotide
sequences) to k-mers from taxonomically labeled viral genomes. DisCVR was validated using published HTS data for eighty-
nine clinical samples from adults with upper respiratory tract infections. These samples had been tested for viruses meta-
genomically and also by real-time polymerase chain reaction assay, which is the standard diagnostic method. DisCVR
detected human viruses with high sensitivity (79%) and specificity (100%), and was able to detect mixed infections.
Moreover, it produced results comparable to those in a published metagenomic analysis of 177 blood samples from patients
in Nigeria. DisCVR has been designed as a user-friendly tool for detecting human viruses from HTS data using computers
with limited RAM and processing power, and includes a graphical user interface to help users interpret and validate the out-
put. It is written in Java and is publicly available from http://bioinformatics.cvr.ac.uk/discvr.php.
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1. Introduction

The standard method for rapidly detecting known human viruses
in clinical samples is the polymerase chain reaction (PCR), in
which short oligonucleotides are used to amplify and probe spe-
cific regions of viral genomes. The limitations of this technique in-
clude the targeting of a relatively small number of viruses per
assay and a dependence on sequence conservation among viral
strains. High-throughput sequencing (HTS) provides approaches
to viral diagnosis that have much greater scope. Thus, metage-
nomic analysis of HTS data can provide extensive viral genotyping

information, as well as the characterization of complex multiple
infections (Thorburn et al. 2015). Several metagenomic pipelines
using de novo assembly and homology matching have been devel-
oped for virus detection (Wang, Jia, and Zhao 2013; Scheuch,
Höper, and Beer 2015; Li et al. 2016; Ren et al. 2017; Zheng et al.
2017; Maarala et al. 2018). However, analyzing HTS data using
such approaches brings heavy computing and bioinformatic
demands that are difficult to meet and standardize in diagnostic
laboratories (Flygare et al. 2016). As a consequence, we have devel-
oped DisCVR, which is a fast, accurate and easy-to-use tool for
detecting known human viruses in clinical samples.
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DisCVR employs an abundance-based method, which is a
metagenomic approach for rapidly profiling the organisms pre-
sent in a sample. It works by creating a database of short nucle-
otide sequences (k-mers) from a large set of viral reference
sequences, tagging the k-mers taxonomically according to the
viruses from which they came, screening each read in the HTS
dataset for the presence of virus k-mers, and organizing a sum-
mary of the viruses present in the sample via the tags. This ap-
proach makes data analysis very efficient, thereby minimizing
the computing effort required (Orton et al. 2016).

Several existing tools utilize the abundance-based method
to classify the reads in an HTS dataset. Naive Bayes
Classification (Rosen, Reichenberger, and Rosenfeld 2011)
employs a naı̈ve Bayesian classifier to assign a log-likelihood
score to each read. This classifier is trained by using a set of
unique profiles of fifteen nucleotide k-mers from microbial
genomes, and then allows users to upload the dataset to a web
site and obtain a summary of results listing the best taxonomic
match for each read. Kraken (Wood and Salzberg 2014) assigns
each k-mer in the database to the last common ancestor of spe-
cies having that k-mer, and then assigns each read to the taxon
with the most matching k-mers. CoMeta (Kawulok and
Deorowicz 2015) creates a database of all k-mers for each rank
in the taxonomic tree, and then uses these databases to classify
the reads at each rank. CLARK (Ounit et al. 2015) collects target-
specific k-mer sets from reference genomes belonging to a cer-
tain taxonomic rank (e.g. genus), and then classifies reads at
that rank. This approach reduces the database size but requires
a different database to be built for each rank. To improve the ac-
curacy of the classification, CSSSCL (Borozan and Ferretti 2016)
creates a BLAST database, a k-mer database and a compression
database from a collection of reference genomes. Sequences in
the sample are classified according to a combined sequence
similarity score (CSSS) (Borozan, Watt, and Ferretti 2015) calcu-
lated from information in the pre-computed databases. In con-
trast to Kraken, CLARK, and CoMeta, all of which assign
individual reads, MetaPalette (Koslicki and Falush 2016) profiles
the entire dataset and returns the relative proportions of organ-
isms present by using k-mer sizes of 30 and 50, based on the ra-
tionale that using two different k-mer sizes allows strain-level
variation to be captured more accurately. Taxonomer (Flygare
et al. 2016) compares each read to multiple reference databases,
assigning it to a high-level taxonomic category on the basis of
the k-mer content of the read, and then uses exact k-mer
matching to assign each read to a reference by maximizing the
total k-mer weight. This weight, which is a function of the k-
mer count in the reference and the database, provides a
database-specific measure of how likely it is that a k-mer origi-
nated from a particular reference sequence.

Despite the growing number and popularity of k-mer-based
classification tools, these tools have limitations. The databases
are built using a limited set of reference sequences and there-
fore are of restricted utility for classifying organisms with
sequences that diverge from the reference. This limitation can
be a particular problem when significant variation exists in an
organism at strain level. It can be addressed by incorporating a
range of variants into the database, but this creates a much
larger database that may make the analysis challenging to run
on resource-limited computers. Furthermore, many of the cur-
rent tools are run on Linux systems and hence require the oper-
ator to have expertise in command line usage and an
understanding of bioinformatics, which may be difficult to find
in diagnostic settings. To our knowledge, the only tool that has
been developed for ease of use and for application on

computers with limited resources is Truffle (Visser, Burger, and
Maree 2016). This is designed to screen for a limited set of
user-specified viruses, comes preloaded with probe-sets for
grapevine viruses, and cannot easily be updated for large sets of
viruses from other hosts.

Here, we present DisCVR, a k-mer-based classification tool
for detecting known human viruses from HTS data derived
from clinical samples. DisCVR can be installed on a desktop
computer to allow diagnostic laboratories to analyze large, con-
fidential datasets by using a simple, straightforward graphical
user interface (GUI) without specialized bioinformatics exper-
tise. It is optimized to run on Windows, Linux and Mac OS, using
minimal RAM and processing power without compromising
speed and accuracy. The tool currently integrates curated viral
databases at the taxonomic levels of species and strain, but
may be used to build a customized database at any taxonomic
level, thereby overcoming the limitations of using a restricted
set of reference sequences. DisCVR utilizes k-mer counts de-
rived from an entire HTS dataset to detect the viruses present in
a sample, and validates the results by showing the coverage
and depth of reads mapping to a reference sequence.

2. Methods
2.1 The k-mer databases

A k-mer is a short sequence of k nucleotides. A k-mer dataset is
generated iteratively by sliding a window of size k along a se-
quence one nucleotide at a time. Extracting k-mers and counting
their frequencies in a set of sequences can be computationally
intensive, especially when k is large and the sequences are nu-
merous. Dedicated k-mer counting programs, such as Jellyfish
(Marçais and Kingsford 2011) and Khmer (Zhang et al. 2014), can
be incorporated into abundance-based tools in order to optimize
speed. KAnalyze (Audano and Vannberg 2014) was chosen for in-
tegration into DisCVR because the k-mers it generates are sorted
lexicographically, thus making the search for matches very effi-
cient. KAnalyze also uses the canonical representation of a k-
mer, which is lexicographically the smaller of a k-mer and its re-
verse complement. These features allow the program to work
with 3 Gb RAM.

For the purpose of this study, we define a virus k-mer as a k-
mer that uniquely represents a virus or set of related viruses, to
the exclusion of the host. A shared k-mer is defined as a k-mer
that is common to a virus and the host. By excluding shared k-
mers, it is not necessary for the user to remove host reads be-
fore using DisCVR, thus speeding up the overall processing
time. If k is small, many copies of shared k-mers are generated,
and if k is large, many copies of virus k-mers are found.
Choosing the optimal k-mer size depends on balancing the
advantages of speed (small k) with those of specificity and sen-
sitivity (large k). Furthermore, it is necessary to reduce the num-
ber of low-complexity k-mers in the virus k-mer database, as
these may be repetitive in sequence and present in otherwise
unrelated viruses. The filtering of low-complexity k-mers and
the selection of the size of k is explained in Supplementary
Section S1 (Shannon 1948; Sims et al. 2009; Wu et al. 2009).

For constructing the virus k-mer databases, three compre-
hensive datasets of complete or partial viral sequences were
extracted from the NCBI taxonomy database. The first, the hu-
man hemorrhagic virus dataset (shortened below to ‘hemor-
rhagic dataset’), contained 33,367 sequences of the hemorrhagic
fever viruses listed by the Centers for Disease Control and
Prevention (Centers for Disease Control and Prevention, n.d.).
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The second, the human respiratory virus dataset (‘respiratory
dataset’), contained 442,282 sequences of viruses associated
with respiratory disease. The third, the human pathogenic virus
dataset (‘pathogenic dataset’), consisted of 1,762,968 sequences
of viruses identified in the UK Health and Safety Executive list
of biological agents (Health and Safety Executive: The Approved
List of Biological Agents 2013).

2.2 Database build

DisCVR operates via three modules concerned with database
build, sample classification and validation (Fig. 1).

Currently, the database build module includes three virus
k-mer databases, derived from the hemorrhagic, respiratory,
and pathogenic datasets, for use in the sample classification
module. In addition, some of the sequences in these datasets,
defined largely by their presence in the NCBI RefSeq database,
are used as a set of reference genome sequences in the valida-
tion module. DisCVR also allows the user to create customized
databases and sets of reference sequences using the command-
line utility scripts provided with the DisCVR distribution. The
database build module involves selecting the relevant viral
dataset, collecting the k-mers, and removing those that are
shared with the host or are of low complexity. Each remaining
k-mer is then identified with a taxonomic tag and an indication
of the number of times it occurs in the sequences. The k-mers
are further subdivided into those that exist in a single virus (i.e.
specific k-mers) and those that exist in multiple viruses (i.e.
nonspecific k-mers). These assignments are made at the level of
species and strain and are used in the output to illustrate the
degree of specificity of the k-mers matching a virus (Fig. 2).

2.3 Sample classification

To analyze an HTS dataset, the file is loaded into DisCVR via the
GUI. The k-mers are extracted and their frequencies are calculated,
the single copy k-mers, which are mainly attributed to sequencing
errors (Manekar and Sathe 2018), and low-complexity k-mers,
which commonly give confounding matches that have nothing to
do with homology (Altschul et al. 1994), are filtered out, and the
remaining k-mers are compared with the chosen virus k-mer data-
base. As the number of k-mers in the sample can be enormous, var-
ious data structures were considered to optimize the classification
on machines with limited RAM. Although searching the trie is fast
O(n), where n is the size of the k-mer, it requires O(n2) overall time

to build, and the space needed is quadratic. Instead, DisCVR uses a
fast searching algorithm that groups similar k-mers together.
Briefly, the k-mers in the virus database are divided among smaller
sub-files according to the first five nucleotides. The same procedure
is used to divide the k-mers derived from the entire HTS dataset.
Searching commences by loading the corresponding sub-files from
the virus k-mer database and the sample k-mers into memory, and
performing a binary search for the presence of each sample k-mer
among the database k-mers. Only matched k-mers are retrieved.
Finally, DisCVR displays a straightforward list of all the virus hits
detected, along with summary statistics and taxonomic informa-
tion on the sample k-mers (Fig. 2).

2.4 Validation

DisCVR helps the user to assess the significance of the findings
by facilitating an examination of k-mer distribution (allowing
up to three mismatches) across a reference sequence represent-
ing the target genome. As an alternative, it also incorporates an
examination of sequence read distribution carried out by using
Tanoti (Sreenu, n.d.), which is a BLAST-guided, reference-based
short read aligner that is particularly tolerant of mismatches. In
each case, the output is a graph showing the depth and cover-
age of k-mers or sequence reads across the reference genome
and a summary of statistics for the mapping results (Fig. 3).

2.5 Accuracy

The respiratory database was used to analyze published RNA-seq
data from nasopharyngeal swab samples (n¼ 89) that had been
collected from adults with upper respiratory tract infections
(Thorburn et al. 2015) (Supplementary Table S2; the average num-
ber of reads per sample was 660,640, range 30,872–1,278,122). The
samples had been tested using a standard real-time PCR (RT-PCR)
assay for human rhinovirus (HRV), influenza viruses A and B (IFA/
IFB), respiratory syncytial virus (RSV), adenovirus (ADV), human
metapneumovirus (hMPV), parainfluenza viruses (PIV) 1–4, and
human coronaviruses (HCoV) HKU1, NL63, OC43 and 229E
(Thorburn et al. 2015). The top hit for each sample (i.e. the virus
having the greatest number of distinct k-mers) using DisCVR was
compared with the virus detected previously by RT-PCR. The sam-
ples were also classified using three independent k-mer-based
programs that require command-line usage on a Linux operating
system: Kraken (Wood and Salzberg 2014), KrakenHLL (Breitwieser
and Salzberg 2018), and CLARK (Ounit et al. 2015). As the pre-built
database for Kraken only contains the RefSeq viral genomes
(11,489 sequences), a more comprehensive k-mer database was
built for each program from the same 442,282 sequences in the re-
spiratory dataset in order to standardize the results. This success-
fully accommodated within species sequence diversity, which is
not normally taken into account using the pre-built database.

The initial objective was to determine the number of distinct
k-mers that would maximize both sensitivity (effectiveness in
identifying samples containing viruses) and specificity (effec-
tiveness in identifying samples lacking viruses) for DisCVR. The
output of DisCVR was categorized on the basis of the number of
distinct k-mers for the top hit, and that of the other programs
was assessed on the basis of the number of reads assigned to
the top hit. For each tool, sensitivity and specificity were de-
fined as TP/(TP þ FN) and TN/(TN þ FP), respectively, where TP,
FN, TN, and FP are the number of true positive, false negative,
true negative, and false positive samples relative to the RT-PCR
results. We define samples as (1) true positive when the top vi-
rus hit was detected by both RT-PCR and DisCVR, (2) true

Viral sequences Host genomes

Unique k-mers

Remove human sequences

Remove low-complexity k-mers

Label taxonomy

Virus k-mer database

Virus reference genome library

1. Database Build 2. Sample Classification

Sample Unique k-mers

k-mers FilteringSample k-mers

Match k-mers Output List

3. Validation

Reference-base assembly:
1. Read assembly (Blast-based)
2. k-mer assembly

Coverage and depth of assembly

Figure 1. DisCVR framework. Each colored box represents a component of the

tool. Dashed rectangles indicate processes and solid rectangles show input and

output.
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negative when neither RT-PCR nor DisCVR detected a virus, (3)
false negative when a virus was detected by RT-PCR but not by
DisCVR, and (4) false positive when a virus was detected by
DisCVR but not by RT-PCR. Receiver Operating Characteristics
(ROC) curves were generated for DisCVR, Kraken, KrakenHLL
and CLARK using the pROC package in R and Youden’s statistic
(Youden 1950).

2.6 Application

DisCVR was used to analyze 177 HTS RNA-seq libraries derived
from serum specimens collected in Nigeria from healthy indi-
viduals (n¼ 120) and patients with unexplained acute febrile ill-
ness (n¼ 57) and analyzed in a previous study (Stremlau et al.
2015). The raw data were downloaded from SRA BioProject
PRJNA271229. The top hit using DisCVR was compared with the
viral reads identified using BLASTn and BLASTx in the original
study (https://doi.org/10.1371/journal.pntd.0003631.s017).

3. Results

The ROC curve (Fig. 4) derived from the datasets from respira-
tory tract infections (Thorburn et al. 2015) compares the

sensitivity and specificity for different k-mer thresholds. It sug-
gests that a value of 850 k-mers is the optimal threshold on the
basis of the point on the curve furthest from the identity (diago-
nal) line (Supplementary Table S2). The ROC curves of DisCVR
and the other programs (Fig. 4) did not differ significantly from
each other, and had overlapping confidence intervals. Kraken
and KrakenHLL had identical curves. Kraken and CLARK rated
as slightly more sensitive but less specific than DisCVR as a re-
sult of HCoV NL63 being the top hit in sample 1D3 and the sec-
ond hit in DisCVR (Table 1; Supplementary Table S2). The top
hit in DisCVR was HRV-A, which was the second hit in Kraken
and CLARK but was not detected using RT-PCR. It was not infor-
mative to compare average execution time and memory usage
for the programs, as it is not possible to run CLARK, Kraken, and
KrakenHLL natively on Windows operating systems. Also, on a
Linux operating systems CLARK and Kraken required more than
30 Gb of RAM to run samples against the respiratory dataset,
whereas DisCVR ran with only 8 Gb.

A total of 48/89 (54%) of the samples had been shown to con-
tain viruses by RT-PCR, and the remaining 41/89 lacked all vi-
ruses tested. Considering only the samples in the set of eighty-
nine for which DisCVR identified �850 k-mers for the top hit,
the following findings were made. DisCVR identified the viruses

Figure 2. DisCVR GUI. The top screenshot shows the scoring panel with the top three virus hits, and the bottom screenshot shows the full analysis.
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that were detected by RT-PCR in 32/48 (67%) of samples (true
positives). It did not detect viruses in samples in which no vi-
ruses had been found by RT-PCR in 22/41 (54%) of samples (true
negatives). It detected viruses in samples in which no viruses
had been detected by RT-PCR in 19/41 (46%) of samples (false
positives), and either detected viruses that did not correspond
with those detected by RT-PCR or did not find any virus with
�850 k-mers in 16/48 (33%) of samples (false negatives).

The RT-PCR assay was limited by the range of viruses that it
could detect, by its dependence on sequence conservation, and
consequently also by its potential to identify infections by mul-
tiple viruses. Consequently, the false positive results were
assessed using the validation module (Table 2), and the false
negative results were investigated by examining the second hits
recorded by DisCVR (Table 1). In most false positive cases, the
validation module showed that there were multiple reads

Figure 3. DisCVR validation. Coverage and depth of matched k-mers (top) and reads (bottom) to a reference genome.
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mapping (mean¼ 98 6 73 reads) to several regions of the refer-
ence genome (mean¼ 6 6 1% coverage of sites), thus confirming
the presence of the viruses identified by DisCVR even though
they had not been detected by RT-PCR. Some samples had low
coverage because a single RefSeq sequence in the validation

represented the entire species but diverged in sequence from
the virus present in the sample. For example, sample 1B3
yielded HRV-A89 (the reference for species Rhinovirus A) as the
top hit, with only 7.6 per cent genome coverage and four
mapped reads. Using the capability of DisCVR to build a custom-
ized database drawn from the �100 prototypic strains of
Rhinovirus A, HRV-A49 was revealed as the top hit, with 81.71
per cent genome coverage and 263 mapped reads. This dramatic
improvement illustrates the potential to strengthen the valida-
tion module by adding user-specific curated sets of sequences
or by the proposed expansion of RefSeq entries capturing a
greater degree of diversity (Brister et al. 2015). In the sixteen
false negative cases, DisCVR detected the virus identified by RT-
PCR as the top hit in three samples (1G2, 1I5, and 2B6), but the
number of distinct k-mers was <850 (Table 1; Supplementary
Table S2). In addition, the virus identified by RT-PCR was
detected as the second hit in 10 samples (1B5, 1D3, 1E5, 1G1,
1F7, 1F8, 2A2, 2B9, 2C4, and 2D3), and, in one case (1C2), the RT-
PCR assay did not have the potential of identifying the top hit
(enterovirus D). An important finding was made in two of these
samples (1B5 and 1D3), in which the viruses detected by RT-PCR
were not the top hits but still had �850 distinct k-mers in the
sample (Table 1). This suggests that these patients were
infected by multiple viruses. Finally, DisCVR did not detect any
k-mers for the virus detected by RT-PCR in two samples (1C9
and 2D4), but identified HRV-A in 1C9, which was validated by
reference assembly. The validation module thus yielded strong
evidence for the presence of the viruses detected by DisCVR, at
least where the number of k-mers was �850. These findings
were taken into account in reassessing the sensitivity and spe-
cificity of DisCVR at 79 and 100 per cent, respectively (Fig. 4).
The optimal threshold for CLARK and Kraken based on the ROC
curves suggests 150 reads as the threshold. Recalculating the
sensitivity and specificity based on this threshold gave values
of 70.7 and 91.7 per cent for CLARK and 68.7 and 76 per cent for
Kraken.

The threshold of 850 k-mers was also used in the analysis of
the Nigerian datasets (Stremlau et al. 2015). The top hit from
DisCVR was the same as that from the BLAST results in the orig-
inal study for 101/177 (57%) cases, and viruses were detected in
both healthy (n¼ 68) and febrile (n¼ 33) patients
(Supplementary Table S5). In nine cases, the top hit from
DisCVR differed from the top BLAST hit, but the second hit
matched. In fifty-five cases, the number of k-mers was below
the threshold in DisCVR, and the number of reads with BLAST
matches was also low (an average of twenty-four reads per
dataset). In the remaining twelve discordant samples, DisCVR
detected human immunodeficiency virus 1 (n¼ 9), XMRV-
related virus (n¼ 1), and human T-lymphotropic virus 1 (n¼ 1)
as the top hit, whereas the BLAST results supported the pres-
ence of human ADV or Heterosigma akashiwo RNA virus (an al-
gal virus). Mapping of reads to reference genomes suggested
that the DisCVR and BLAST hits are false positives.

4. Discussion

Using HTS in diagnostic settings offers many advantages, in-
cluding the ability to sequence pathogen genomes both individ-
ually and as communities. However, the uptake of HTS in such
settings has been slow, due partly to the cost, turnover time and
bioinformatic demands of this technology. We developed
DisCVR to help address these challenges. DisCVR is a fast, accu-
rate program for detecting viruses from HTS data using the in-
creasingly exploited approach of k-mer classification. It offers
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Table 1. Results of the second hits in the respiratory samples.

Sample RT-PCR
diagnosis

DisCVR top
hit and (no.)a

DisCVR second
hit and (no.)a

Top hit with �850 k-mers matching
1G2 PIV-3 PIV-3 (366) HRV-A (149)
1I5 HRV HRV-A (749) HRV-C (470)
2B6 RSV RSV (742) IFA H3N2 (262)

Second hit with �850 k-mers matching
1B5 PIV-3 HRV-A (3,758) PIV-3 (3,111)
1D3 HCoV NL63 HRV-A (2,420) HCoV NL63 (1,841)

Second hit with �850 k-mers matching
1C2 HRV Enterovirus D (1,633) HRV-A (269)
1E5 RSV HRV-C (1,777) RSV (415)
1F8 HCoV NL63 HRV-B (3,876) HCoV NL63 (724)
2B9 HRV RSV (1,105) HRV- C (94)
2A2 HCoV 229E HRV-C (770) HCoV 229E (176)
2C4 HCoV 229E HRV-A (264) HCoV 229E (5)
2D3 HCoV OC43 HRV-A (438) HCoV OC43 (135)
1F7 HRV hMPV (27) HRV-B (20)
1G1 ADV/HRV HCoV OC43 (163) HRV-B (118)

Not detected
1C9 hMPV HRV-A (3,083) Enterovirus D (7)
2D4 PIV-2 HRV-A (579) HCoV OC43 (225)

aNumber of k-mers matching the classification. Hits with �850 k-mers are

shown in bold.
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the advantage of a non-targeted approach and also enables typ-
ing below the species level (e.g. subtype, serotype, genotype, or
strain). Unlike other tools for detecting viruses from HTS data,
DisCVR is easy to use in diagnostic settings through the GUI,
requires no bioinformatic expertise, and can be used on the
Windows operating systems that are commonly used in diag-
nostic laboratories. The basic output is easy to interpret, and
the advanced output provides more detailed statistics and a val-
idation capability.

DisCVR was designed for detecting known viruses and can-
not be used to discover novel viruses. Indeed, the paper on the
Nigerian patients (Stremlau et al. 2015) reported novel rhabdovi-
ruses in healthy patients using a metagenomic approach, and
these were not detected by DisCVR. However, metagenomics
requires bioinformatic infrastructure and expertise at levels
that are not commonly available in diagnostic laboratories.
Nonetheless, DisCVR enables the detection of 148 pathogenic
human viruses using one of the three implemented datasets
(the pathogenic dataset), and more using the others. This repre-
sents a greater than ten-fold increase in target species over
multiplex RT-PCR. Moreover, the number of viruses incorpo-
rated into the DisCVR databases is flexible and can also be ex-
panded by building custom databases.

In the datasets from respiratory tract infections, DisCVR had
high sensitivity and specificity levels but did not identify all the
viruses detected by RT-PCR when the threshold of �850 k-mers
was used. This threshold may be set by the user and was calcu-
lated for the respiratory dataset for which we had paired RT-
PCR and HTS data. As more datasets with paired information
become available, it will be possible to tune the threshold more
accurately to specific sample types and sizes. For example, the
coverage depth of sequencing data is likely to play an important
role in the threshold of detection. Further efforts could also be
made to calibrate DisCVR from artificially constructed commu-
nities of viruses in various proportions.

Finally, DisCVR is configured as a human viral diagnostic
tool, but could be readily expanded to include non-viral human

pathogens and pathogens with non-human hosts by using the
custom-build scripts in the DisCVR distribution.
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