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1  | INTRODUC TION

Colorectal cancer (CRC) is one of the most prevalent gastrointestinal 
malignancies with adverse prognosis. Currently, it has become the 

fourth most deadly tumour globally and accounts for approximately 
10% of annual cancer- associated deaths.1 Surgery or endoscopic 
treatment is the cornerstone of curative therapy for patients with 
CRC. Chemoradiotherapy such as fluoropyrimidine combined with 
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Abstract
As essential regulators of gene expression, miRNAs are engaged in the initiation and 
progression of colorectal cancer (CRC), including antitumour immune response. In 
this study, we proposed an integrated algorithm, ImmuMiRNA, for identifying miRNA 
modulators of immune- associated pathways. Based on these immune- associated 
miRNAs, we applied the LASSO algorithm to develop a reliable and individualized 
signature for evaluating overall survival (OS) and inflammatory landscape of CRC pa-
tients. An external public data set and qRT- PCR data from 40 samples were further 
utilized to validate this signature. As a result, an immune- associated miRNA prog-
nostic signature (IAMIPS) consisting of three miRNAs (miR- 194- 3P, miR- 216a- 5p and 
miR- 3677- 3p) was established and validated. Patients in the high- risk group pos-
sessed worse OS. After stratification for clinical factors, the signature remained a 
powerful independent predictor for OS. IAMIPS displayed much better accuracy 
than the traditional clinical stage in assessing the prognosis of CRC. Further analysis 
revealed that patients in the high- risk group were characterized by inflammatory re-
sponse, abundance immune cell infiltration, and higher immune checkpoint profiles 
and tumour mutation burden (TMB). In conclusion, the IAMIPS is highly predictive of 
OS in patients with CRC, which may serve as a powerful prognostic tool to further 
optimize immunotherapies for cancer.
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radiotherapy can benefit inoperable patients in clinical practice.2 
Though recent advances in various treatments, the overall survival 
(OS) of CRC remains unsatisfactory.3 More complicated, owing to 
the high heterogeneity of CRC, it is also challenging to predict prog-
nosis and make clinical decision individually.

Over the past decade, immunotherapy has illustrated tremen-
dous sensation owing to its remarkable efficacy in the treatment 
of solid tumours, such as melanoma, non- small- cell lung cancer, 
gastric carcinoma, head and neck squamous cell carcinoma, renal 
cell carcinoma and CRC.4,5 Immune checkpoint inhibitors (ICIs) aim 
to help the immune system recognize and attack cancer cells by 
acting on the primary targets including programmed death- ligand 
1 (PD- L1), programmed death 1 (PD- 1) and cytotoxic T- lymphocyte- 
associated protein 4 (CTLA- 4).6 In CRC, ICI therapy was approved 
in 2017 for the treatment of patients with DNA mismatch repair 
deficient (dMMR) or advanced microsatellite instability (MSI). 
However, only a subset of patients with CRC could benefit from 
immunotherapy.7 Therefore, it is imperative to pursue reliable bio-
markers that are competent to accurately assess immunotherapy 
response.

MiRNAs are a series of small non- coding single- stranded RNA 
molecules that can post- transcriptionally regulate gene expression 
by binding to target mRNAs and inhibiting the translation. MiRNAs 
have profound impacts on the prognosis of CRC. For instance, 
overexpressed miR- 21 and miR- 200c have been demonstrated to 
be indicators of adverse prognosis, and high miR- 150 level was 
significantly associated with better prognosis in CRC.8 Moreover, 
miRNAs play non- negligible roles in immune infiltration and im-
munotherapy. Previous studies have reported that the down- 
regulation of miR- 506- 3p led to macrophage recruitment in CRC 
and the overexpression of miR- 200c promoted the expansion and 
immune suppressive activity of myeloid- derived suppressor cells 
(MDSCs).9,10 Several miRNAs such as miR- 21, miR- 20b and miR- 
130b are dramatically up- regulated in advanced CRC and inhibit 
PTEN expression, further resulting in PD- L1 overexpression, which 
suggests that miRNA- PD- L1 axis might be a therapeutic target for 
CRC.11 Therefore, miRNAs have great implications for the progno-
sis and immunotherapy.

Considering the significant implications of miRNAs on the 
prognosis and immunotherapy of CRC, we proposed an integrated 
algorithm, ImmuMiRNA, for identifying miRNA modulators of 
immune- associated pathways. Based on these identified immune- 
associated miRNAs, the LASSO algorithm was applied to establish 
a risk signature for evaluating OS of CRC patients. As a result, an 
immune- associated miRNA prognostic signature (IAMIPS) consisting 
of three miRNAs was established and further validated in an exter-
nal public data set and qRT- PCR data from 40 samples. We also in-
vestigated the immune landscape, immune checkpoint profiles and 
tumour mutation burden (TMB) of the signature. Initial construction 
of an IAMIPS for patients with CRC will facilitate the complex under-
lying mechanisms between immune- associated miRNAs and progno-
sis of CRC and may advance optimize immunotherapies for patients 
with CRC.

2  | MATERIAL S AND METHODS

2.1 | Public data set collection

The overall workflow of our study is displayed in Figure 1A. The CRC 
data (n = 689) were enrolled from The Cancer Genome Atlas (TCGA) 
cohorts TCGA- COAD (colon adenocarcinoma) and TCGA- READ (rec-
tum adenocarcinoma). ‘Level 3’ transcriptome profile (RNA- Seq raw 
read count) and clinical information were retrieved from TCGA data 
portal (https://portal.gdc.cancer.gov/). Patients from TCGA were 
defined as TCGA- CRC cohort. Human microRNA array GSE29622 
including 65 CRC patients was extracted from Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). The normalized 
matrix file including miRNA expression profile and clinical informa-
tion was directly downloaded. Patients were excluded if they 1) 
lacked mRNA or miRNA sequencing data; 2) did not have prognostic 
information; and 3) received neo- adjuvant therapy. Detailed baseline 
data of CRC patients are displayed in Table S1.

2.2 | Collection of immune- associated genes

Human immune- associated genes were retrieved from the ImmPort 
database (https://www.immpo rt.org/). These gene sets were 
broadly used in immune- associated studies.12- 14 In aggregate, we 
summarized 1811 genes of 17 immune- associated pathways for sub-
sequent analyses.

2.3 | Genome- wide mRNA and miRNA expression 
in TCGA

The mRNA and miRNA raw read count from TCGA database was 
converted to transcripts per kilobase million (TPM) and reads per ki-
lobase million (RPM), respectively. A further log2 transformation was 
performed because RNA- seq data are often heavily right- skewed in 
the linear scale. The GENCODE (https://www.genco degen es.org/) 
and miRBase (http://www.mirba se.org/) were utilized to mRNA and 
miRNA annotations, respectively. The mRNAs and miRNAs with zero 
reads >50% of the samples were further excluded. In total, 16 985 
mRNAs and 674 miRNAs were encompassed.

2.4 | ImmuMiRNA: identification of immune- 
associated miRNAs in CRC

To identify the latent miRNA modulators of immune- associated 
pathways, we introduced an integrated algorithm that combines 
miRNA and gene expression data similar to ImmLnc.15 In short, all 
mRNAs were ranked by their correlation with a specific miRNA. The 
ranked gene list was further subjected to each immune- associated 
pathway to explore whether the immune genes were enriched in the 
top or bottom of the list. The miRES score was calculated for each 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
http://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/
https://www.gencodegenes.org/
http://www.mirbase.org/
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F I G U R E  1   The overall study design and ImmuMiRNA pipeline. (A) Flow chart of our experimental design. (B) The ImmuMiRNA pipeline 
for identification of immune- associated miRNAs in CRC
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miRNA- pathway pair. This process was repeated for all combinations 
of miRNAs and immune- associated pathways. Based on a permuta-
tion test, all miRNA- pathway pairs with significantly higher miRES 
scores were identified in CRC.

For each specific miRNA, we first ranked all mRNAs based on the 
correlation of their expression with this miRNA. The expression of 
miRNA i and gene j across n patients was labelled as M(i) = (m1, m2, 
…, mn) and G(j) = (g1, g2, …, gn), respectively. The tumour purity scores 
across n patients were labelled as P = (p1, p2, …, pn). We first calculated 
the partial correlation coefficient (PCC) between the expression of 
miRNA i and gene j by controlling the tumour purity as a covariable,

where RMG, RMP and RGP are the correlation coefficients between the 
expression of miRNA i and protein- coding gene j, the expression of 
miRNA i and tumour purity, and the expression of gene j and tumour 
purity, respectively. Moreover, we obtained the P- value of the PCC, 
labelled as P(ij), for each miRNA- gene pair, and the rank score (RS) was 
calculated as follows:

RS(ij) = − log10(P(ij)) × sign(PCC(ij))

All genes were ranked based on RS indexes and further sub-
jected to gene set enrichment analysis (GSEA). We mapped the 
genes of each immune- associated pathway to the ranked gene list. 
For miRNA i and pathway k, we obtained the enrichment score (ES) 
and P- value (adjusted by false discovery rate (FDR)) based on GSEA. 
Furthermore, following a previous study,16 the P- value and the ES 
were combined to a miRES score, that is

where ES(ik) is the ES score between miRNA i and immune pathway 
k. Thus, the miRES score ranged from −1 to 1. We considered the 
miRNA- pathway pairs with the absolute miRES >0.995 and FDR <0.05 
as significant ones. To implement the pipeline described above, we de-
veloped a R package termed ‘ImmuMiRNA’ (https://github.com/Zaoqu 
- Liu/ImmuM iRNA).

2.5 | Construction and validation of the IAMIPS in 
public data sets

Before building the IAMIPS model, we transformed miRNA expres-
sion into z- score in both TCGA- CRC and GSE29622 data sets, which 
enhanced the comparability between different data sets. The TCGA- 
CRC cohort served as the modelling set, and the GSE29622 served 
as the external validation set.

According to the immune- associated miRNAs extracted above, 
we first performed univariate Cox regression analysis to select 

miRNAs that were significantly related to OS in TCGA- CRC cohort. 
Given the aim to screen candidate miRNAs that were highly associ-
ated with OS and that the strictness of multiple testing correction 
might filter out some of these potential miRNAs, we included miR-
NAs with unadjusted P- value <0.05 in the development of IAMIPS. 
A LASSO Cox regression approach was employed to determine 
candidates for the IAMIPS using ‘glmnet’ R package. The LASSO 
algorithm is a prevalent machine- learning method, which is widely 
applied to the Cox proportional hazard regression models for prog-
nostic analysis.17,18 To determine the optimal values of lambda, we 
used 10- fold cross- validations with the 1- standard error (SE) crite-
ria,18 and the optimal lambda is the largest value for which the partial 
likelihood deviance is within one SE of the smallest value of partial 
likelihood deviance. Subsequently, based on this lambda value, the 
miRNAs with non- zero coefficients were selected to construct the 
prediction model. The risk score for each patient was calculated with 
the LASSO model weighting coefficient as follows:

where n is the number of key miRNAs, Expi is the expression of miRNA 
i, and Coefi is the LASSO coefficient of miRNA i. The optimal risk score 
cut- off value was determined by ‘survminer’ R package in the TCGA- 
CRC cohort. Using this cut- off value, the patients were divided into 
high- risk and low- risk groups. Human microRNA array GSE29622 
served as external validation.

2.6 | Human CRC specimens

This study was approved by the First Affiliated Hospital of Zhengzhou 
University. A total of 40 paired CRC tissues and matched adjacent 
non- tumour tissues were obtained from patients after receiving 
surgical resection at The First Affiliated Hospital of Zhengzhou 
University. None of the patients received any preoperative chemo-
therapy or radiotherapy. Written informed consent was obtained 
from all patients. The inclusion criteria were as follows: no preopera-
tive chemotherapy, radiotherapy or targeted therapy; no other types 
of tumours; and no autoimmune diseases. The specimens obtained 
during surgery were immediately snap- frozen in liquid nitrogen and 
stored at −80℃ until RNA extraction. Clinical staging of the speci-
mens was based on NCCN (2019) guidelines. Detailed baseline data 
of CRC patients are displayed in Table S1.

2.7 | Validated the IAMIPS in vitro experiment

Total RNA was isolated from CRC tissues and paired adjacent non- 
tumour tissues with RNAiso Plus reagent (Takara, Dalian, China) 
according to the manufacturer's instructions. RNA quality was 
evaluated using a NanoDrop One C, and RNA integrity was as-
sessed using agarose gel electrophoresis. An aliquot of 1 µg of total 

PCC(ij) =
RMG − RMP × RGP√
1 − R2

MP
×

√
1 − R2

GP

miRES(ij) =

⎧
⎪⎪⎨⎪⎪⎩

1−2p;ES(ik)>0

2p−1;ES(ik)<0

Risk score =

n∑
i=1

Expi × Coefi

https://github.com/Zaoqu-Liu/ImmuMiRNA
https://github.com/Zaoqu-Liu/ImmuMiRNA
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
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RNA was reverse- transcribed into complementary DNA (cDNA) 
according to the manufacturer's protocol using the miRNA reverse 
transcription Kit (TaKaRa BIO). Quantitative real- time PCR (qRT- 
PCR) was performed using SYBR Assay I Low ROX (Eurogentec) 
and SYBR® Green PCR Master Mix (Yeasen) to detect the ex-
pression. The data were normalized to the expression of U6. The 
sequences of the primers were as follows: miR- 194- 3p, forward 
5’- ACACTCCCAGUGGGGCUG- 3’ and reverse 5’- CAGAUAACA 
GTTGAGAGTACAT- 3’; miR- 216a- 5p, forward 5’- GGGTAATCT 
CAGCTGGCAA- 3’ and reverse 5’- CAGTGCGTGTCGTGGAGT- 3’; 
miR- 3677- 3p, forward 5’- CAGTGGCCAGAGCCCTGCA- 3’ and  
reverse 5’- GAACATGTCTGCGTATCTC- 3’; and U6, forward  
5’- CTCGCTTCGGCAGCACA- 3’ and reverse 5’- AACGCTTCAC 
GAATTTGCGT- 3’. Based on the miRNA expression from qRT- PCR, 
we further validated the IAMIPS in our CRC cohort.

2.8 | Gene set enrichment analysis

To explore the potential molecular mechanisms underlying the 
IAMIPS, GSEA was performed to identify enriched terms related to 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and 
biological process of gene ontology (GO) between high- risk and low- 
risk groups. Gene set permutations were performed 1000 times for 
each analysis. Gene sets with FDR <0.01 were considered to be sig-
nificantly enriched.

Single sample gene set enrichment analysis (ssGSEA) was ap-
plied to quantify the relative abundance of 28 immune cells in the 
tumour microenvironment of CRC. The gene set for marking each 
cell was obtained from the research of Charoentong, which stored 
various human immune cell subtypes including activated CD8+ T 
cell, activated dendritic cell, natural killer T cell, and macrophage 
(Table S2).19

2.9 | Prediction the clinical 
chemotherapeutic response

To assess the drug response in TCGA- CRC cohort, we downloaded 
the imputed tumour response to 138 anticancer drugs in CRC pa-
tients from a previous study.20 Drug sensitivity was quantified by 
half- maximal inhibitory concentration (IC50); the lower the IC50, the 
more sensitive the drug. We identified tumour drugs with specific 
sensitivity in high- risk and low- risk groups using the following crite-
ria: 1) a Pearson correlation was calculated for each drug's IC50 and 
risk score. Drugs with absolute correlation coefficient >0.3 and FDR 
<0.05 were retained; 2) t test was performed to compare the sensi-
tivity difference between high- risk and low- risk groups. Drugs with 
absolute log2 fold change value >0.5 and FDR <0.05 were included; 
and 3) IAMIPS- related drugs were determined by the intersection of 
the above two results.

2.10 | Evaluation of the immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was 
employed to predict the immunotherapy response of each patient.21 
TIDE algorithm was a computational method to model two primary 
mechanisms of tumour immune evasion: the induction of T cell dys-
function in tumours with high infiltration of cytotoxic T lymphocytes 
(CTL) and the prevention of T cell infiltration in tumours with low 
CTL level. Next, the Subclass Mapping (SubMap) method was uti-
lized to evaluate the similarity between the risk groups and the pa-
tients on immunotherapy.22 The SubMap employs GSEA algorithm 
to deduce the extent of commonality of the two groups. Adjusted 
P- values were used to assess the similarity, and the lower adjusted 
P- values suggested the higher similarity.

2.11 | Statistical analysis

Independent sample t test and paired t test were utilized to compare 
the miRNA expression difference in public data sets and 40 paired 
tissues, respectively. The Kaplan- Meier method and the log- rank 
test were used to estimate the different OS between high- risk and 
low- risk groups. Univariate Cox regression analysis was used to cal-
culate the hazard ratios (HRs). The receiver operating characteristic 
(ROC) curves were plotted by ‘timeROC’ R package. Area under the 
ROC curve (AUC) and Harrell's concordance index (C- index) were 
employed to evaluate the performance of the IAMIPS in predict-
ing OS. ROC curves of different indicators were compared using 
the compare() function in ‘timeROC’ R package. The optimal cut- off 
value of risk score was determined by ‘survminer’ R package. All 
P- values were two- sided, with P < 0.05 as statistically significant. 
Adjusted P- value was obtained by Benjamini- Hochberg (BH) multiple 
test correction. All data processing, statistical analysis and plotting 
were conducted in R 4.0.2 software.

3  | RESULTS

3.1 | Identification of immune- associated miRNAs 
in CRC

To identify miRNAs that were related to immune- associated path-
ways, we developed a three- step integrated algorithm framework 
termed ImmuMiRNA (Figure 1B). ImmuMiRNA systematically de-
duces candidate miRNA regulators of immune- associated pathway 
activity from miRNA and gene expression profiles. One hypothesis 
is that if a specific miRNA plays critical roles in immune regulation, 
then its related genes should be enriched in the top or bottom of 
immune- associated pathways. In short, ImmuMiRNA identifies the 
miRNA regulators by three steps (Figure 1B). First, we extracted the 
miRNA and mRNA expression profiles of the same CRC patients. 
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Second, the tumour purity of each sample was evaluated and all 
genes were ranked according to the rank score (RS) for each can-
didate miRNA. Third, we calculated the enrichment score of each 
miRNA in the immune pathway (miRES) based on GSEA. The P- value 
of GSEA was transformed to a miRES score and the miRNA- pathway 
pairs with miRES >0.995 and FDR <0.05 were screened (Figure 1B).

By virtue of the ImmuMiRNA pipeline, we identified a total of 97 
immune- associated miRNAs, which accounted for 10% of all miR-
NAs in the TCGA- CRC cohort (Table S2). A higher number of miRNAs 
were correlated with the ‘T cell receptor signalling’, ‘natural killer cell 
cytotoxicity’, ‘cytokine receptors’ and ‘antigen processing and pre-
sentation’ pathways (Figure 2A). Currently, restoring or enhancing 
the activity of T cells and natural killer cells is considered to be the 
mainstay of immunotherapy.23 These miRNA regulators will be a 
resource for dissecting the immune regulation in CRC. Univariate 
Cox regression analysis between each of the 97 miRNAs and OS 

is shown in Table S3. A total of 11 miRNAs significantly correlated 
with OS were identified, of which 8 were protective factors and 3 
were risk factors (P < 0.05; Figure 2B). These OS- associated miR-
NAs demonstrated correlations with a variety of immune- associated 
pathways, which suggested that activation and inhibition of various 
immune pathways were significantly correlated with OS in patients 
(Figure 2C).

3.2 | Construction and evaluation of the IAMIPS

The 11 OS- associated miRNAs were selected to construct an IAMIPS. 
We employed a LASSO Cox regression model and identified three 
miRNAs that were strongly predictive of OS, including miR- 216a- 5p, 
miR- 194- 3p and miR- 3677- 3p (Figure 3A,B). The three miRNAs also 
demonstrated significant differences between tumours and normal 

F I G U R E  2   Identification of immune- 
associated miRNAs in TCGA- CRC cohort. 
(A) The number of miRNAs significantly 
associated with immune- related 
pathways. (B) Univariate Cox regression 
revealed 11 miRNAs with significant 
prognostic significance. (C) Various 
immune- related pathways that these 11 
prognostically relevant miRNAs may be 
involved in

F I G U R E  3   Construction and evaluation of the IAMIPS. (A) Ten- time cross- validations to tune the parameter selection in the LASSO 
model. The two dotted vertical lines are drawn at the optimal values by minimum criteria (left) and 1−SE criteria (right). (B) LASSO coefficient 
profiles of the candidate miRNAs for IAMIPS construction. (C- D) Kaplan- Meier curves for OS according to the IAMIPS in TCGA- CRC (C) 
and GSE29622 (D) cohorts. (E- F) Time- dependent ROC analysis of the IAMIPS for 1- , 3-  and 5- year OS in TCGA- CRC (E) and GSE29622 (F) 
cohorts

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
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tissues (P < 0.05; Figure S1A). Next, a risk score for IAMIPS was cal-
culated using a formula that including the three miRNAs weighted 
by their regression coefficients in a penalized Cox model as follows: 
Risk score =0.015 × the expression of miR- 216a- 5p -  0.035 × the 
expression of miR- 194- 3p -  0.124 × the expression of miR- 3677- 3p.

Using the optimal cut- off value (0.05) for the IAMIPS, we di-
vided 635 patients in the TCGA- CRC cohort and 65 patients in the 
GSE29622 into high- risk and low- risk groups, respectively. Patients 
in the high- risk group had a shorter OS than the low- risk group (log- 
rank test, both P < 0.05; Figure 3C,D). We questioned the general-
ity of IAMIPS for various clinicopathological characteristics in CRC; 
thus, the stratified survival analysis was further performed. After 
stratification for age, gender, clinical stage and microsatellite insta-
bility, the signature remained a powerful independent predictor for 
OS and was suitable to the vast majority of CRC patients (log- rank 
test, P < 0.05; Figure S1B).

The time- dependent ROC and C- index were applied to evaluate 
the performance of the signature. The AUCs of 1, 3 and 5 years were 
0.720, 0.755 and 0.782 in the TCGA- CRC cohort; and 0.877, 0.741 
and 0.787 in the GSE29622 cohort (Figure 3E,F). The C- index was 
0.725 [95% CI: 0.700 ~ 0.754] and 0.747 [95% CI: 0.643 ~ 0.851] in 
the TCGA- CRC cohort and the GSE29622 cohort, respectively. To 
further evaluate the predictive performance of the IAMIPS for OS, 
we first determined whether the IAMIPS outperformed each miRNA. 
The ROC results demonstrated the IAMIPS displayed better perfor-
mance than each miRNA at predicting 1- , 3-  and 5- year OS in two 
cohorts (P < 0.05; Figure S2A,B). Traditional clinical stage is currently 
the main method to assess the prognosis of CRC patients. Therefore, 
we next evaluated the prognostic performance of AJCC stage versus 
that of the IAMIPS. The IAMIPS also displayed better accuracy than 
traditional AJCC stage in two cohorts (both P < 0.05; Figure S2A,B).

3.3 | Validation of the IAMIPS in our cohort

We enrolled 40 CRC tissues and 40 paired non- tumour tissues from 
the First Affiliated Hospital of Zhengzhou University. Follow- up was 
concluded three years after surgery. Table S1 shows their clinical 
characteristics. qRT- PCR assay was performed in 40 pairs of CRC 
tissues and matched adjacent non- tumour tissues. In line with above 
results, the three miRNAs displayed significantly expression dif-
ference in tumour relative to normal tissues (P < 0.05; Figure 4A). 
Patients with low expression miR- 194- 3p and miR- 3677- 3p or high 
expression of miR- 216a- 5p tended to indicate an adverse OS (log- 
rank test, P < 0.05; Figure 4B).

We determined another optimal cut- off value (0.008) for qRT- 
PCR assay and further divided 40 patients into high- risk and low- risk 
groups. Kaplan- Meier survival analysis demonstrated patients in the 
high- risk group showed worse OS than the low- risk group (log- rank 
test, P < 0.05; Figure 4C). The AUCs of 1, 2 and 3 years was 0.776, 
0.776 and 0.738, respectively (Figure 4D). The C- index was 0.759 
[95% CI: 0.679 ~ 0.839]. These results suggested the IAMIPS model 
possessed a robust and reliable predictive performance for OS.

3.4 | Inflammatory profiles and immune checkpoint 
landscape of IAMIPS

GSEA was performed to better understand the potential molecular 
mechanisms underlying the IAMIPS. As shown in Figure 5A,B, the 
high- risk group was mainly associated with tumour proliferation 
such as cell cycle, spliceosome and mRNA processing. The low- risk 
group was mainly associated with immunology such as antigen pro-
cessing and presentation, cytokine- cytokine receptor interaction 
and adaptive immune response. These results explained the worse 
prognosis of patients in the high- risk group. Intriguingly, a large num-
ber of immune- associated pathways were enriched in the low- risk 
group, which indicated patients in the low- risk group had favour-
able immune infiltration status. Therefore, we further adopted the 
ssGSEA algorithm to assess the relative infiltration abundance of 
28 immune cell types. Consistent with the above results, the abun-
dance of immune cell infiltration in the low- risk group was signifi-
cantly higher than the high- risk group, such as B cells, activated 
CD4+/CD8+ T cells, dendritic cells and natural killer cells (P < 0.05; 
Figure 5C, Figure S3). Overall, the high- risk group was significantly 
correlated with tumour proliferation and presented inferior immune 
cell infiltration, suggesting an ‘immune- cold’ phenotype, while the 
low- risk group enriched plenty of immune- associated pathways and 
displayed abundant immune cell infiltration, suggesting an ‘immune- 
hot’ phenotype. These findings have latent implications for the 
rational design of combination immunotherapy strategies. For pa-
tients in the low- risk group, ICIs might be applied to enhance the 
pre- existing antitumour immunity of these patients and further pro-
long their survival. Conversely, for patients in the high- risk group, 
the response of ICIs alone might be unsatisfied due to unfavourable 
immune activation. In addition, we compared the differences in pop-
ular indicators of immunotherapy such as PD- 1, PD- L1, CTLA- 4 and 
TMB between the two groups. As expected, the low- risk groups all 
displayed higher expression level of these indicators compared with 
the high- risk groups (P < 0.05; Figure 5D), which suggested that pa-
tients in the low- risk group was more likely to benefit from available 
immunotherapeutic drugs such as atezolizumab, pembrolizumab and 
ipilimumab.5

3.5 | Implications of IAMIPS on CRC chemotherapy

We further identify several IAMIPS- related antineoplastic drugs. 
As shown in Figure 6A, we observed that patients in the low- risk 
group were more sensitive to BMS- 536924, bortezomib, dasatinib, 
GW843682X, paclitaxel, PD- 0325901 and WH- 4- 023 and patients 
in the high- risk group were more sensitive to PAC- 1 (P < 0.05). These 
drugs provided a resource for precision chemotherapy in two groups.

Since we identified ‘immune- hot’ and ‘immune- cold’ phenotypes 
in two groups, further immunotherapy evaluations were performed. 
Using the TIDE tool at Harvard University, we observed patients 
in the low- risk group had more immunotherapy response rate than 
the high- risk group (38% vs. 17%; P < 0.05; Figure 6B). In addition, 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29622
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SubMap analysis indicated the low- risk group displayed high simi-
larity with patients who responded to anti- PD- 1 therapy (P < 0.05; 
Figure 6C). These results further proved patients in the low- risk 
group could benefit more from immunotherapy, particularly anti- 
PD- 1 therapy.

4  | DISCUSSION

Accumulating evidence suggests that miRNAs are critical for im-
mune regulation. Nevertheless, only a few examples have been 
identified so far. In the present study, we reported the use of the 

F I G U R E  4   Validation of the IAMIPS in our cohort. (A) qRT- PCR displayed the expression level of miR- 194- 3P, miR- 216a- 5p and miR- 3677- 
3p between CRC tissues and their corresponding adjacent non- tumour tissues. (B) Kaplan- Meier curves for OS according to the expression 
of miR- 194- 3P, miR- 216a- 5p and miR- 3677- 3p. (C) Kaplan- Meier curves for OS according to the IAMIPS. (D) Time- dependent ROC analysis 
of the IAMIPS for 1- , 2-  and 3- year OS
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F I G U R E  5   Functional and immune cell infiltration assessment. (A) GSEA results demonstrated the KEGG pathways enriched in the 
high- risk and low- risk groups, respectively. (B) GSEA results demonstrated the GO terms enriched in the high- risk and low- risk groups, 
respectively. (C) Heatmap of 28 immune cell infiltration abundance in two groups. (D) The distribution difference of PD- L1, PD- 1, CTLA- 4 
expression and TMB between the high- risk and low- risk groups
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ImmuMiRNA algorithm to systematically identify the miRNA regu-
lators that latently regulate immune- associated pathways. Based 
on three immune- associated miRNAs that strongly predicted OS, 
we developed and externally validated a novel prognostic tool 

that improved the ability to predict OS of patients with CRC. Our 
results displayed that IAMIPS could successfully divide patients 
into high- risk and low- risk groups with significant differences in 
OS. The IAMIPS was proved to be an independent prognostic 

F I G U R E  6   Implications of IAMIPS on CRC treatment. (A) The estimated IC50 level of IAMIPS- related antineoplastic drugs between the 
high- risk and low- risk groups. (B) Distribution of the immunotherapy response results predicted by TIDE algorithm between the high- risk 
and low- risk groups. (C) SubMap analysis manifested that the low- risk group could be more sensitive to the anti- PD- 1 therapy (Bonferroni- 
corrected P =.023)
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factor as well as performed better than single miRNA and clinical 
stage. Furthermore, patients in the high- risk group were dramati-
cally correlated with tumour proliferation and presented inferior 
immune cell infiltration, suggesting an ‘immune- cold’ phenotype, 
while patients in the low- risk group enriched plenty of immune- 
associated pathways and displayed abundant immune cell infil-
tration, suggesting an ‘immune- hot’ phenotype. These results 
indicated that patients in the low- risk group might benefit more 
from immunotherapy.

MiRNAs are emerging as critical regulators of gene expression in 
the immune system and play essential roles in the development and 
progression of CRC.24 Exploring the miRNAs in immunomodulatory 
network as well as their translational value is necessary for under-
standing the molecular mechanisms of CRC carcinogenesis and im-
proving the clinical management of CRC. In this study, a three- step 
framework termed ImmuMiRNA was proposed for systematically 
deducing candidate miRNA regulators of immune- associated path-
ways. An R package was further developed, ImmuMiRNA (https://
github.com/Zaoqu - Liu/ImmuM iRNA), to nimbly implement the al-
gorithm pipeline. A total of 97 immune- associated miRNAs were 
identified, and a higher number of miRNAs were correlated with ‘T 
cell receptor signalling’, ‘natural killer cytotoxicity’, ‘cytokine recep-
tor’ and ‘antigen processing and presentation’ pathways. Restoring 
or enhancing the activity of T cells and natural killer cells is cur-
rently the mainstay of immunotherapy,23 and these miRNA regula-
tors will be a resource for dissecting the immune regulation in CRC. 
Immune- associated miRNAs also displayed significant impacts on 
the prognosis of patients with CRC. In our study, eleven miRNAs that 
dramatically related to OS were further identified.

An ideal machine- learning model should have fewer variables 
and achieve better efficacy.25 Hence, we applied the LASSO algo-
rithm, which was known to select key variables to avoid overfit of 
model.17,18 Ultimately, three key miRNAs including miR- 216a- 5p, 
miR- 194- 3p and miR- 3677- 3p were determined. In vitro experi-
ments further demonstrated their abnormal expression and prog-
nosis significance in CRC. Based on these three miRNAs, a simple 
model, IAMIPS, was further developed and validated in TCGA- CRC 
and GSE29622 cohorts. The IAMIPS performed better than single 
miRNAs and traditional clinical stage. The excellent performance 
in evaluating OS of patients with CRC in two independent cohorts 
demonstrated IAMIPS was robust biomarker. Moreover, to enhance 
the clinical transformation of IAMIPS, we used qRT- PCR method to 
quantify the three miRNAs in 40 CRC samples from our hospital. 
Consequently, the results were consistent and showed good perfor-
mance, which suggested IAMIPS was a promising and convenient 
tool for evaluating OS of patients with CRC. In clinical practice, qRT- 
PCR quantification of only three miRNAs in CRC tissues can assess 
the prognostic risk of patients.

In addition, we found the high- risk group was significantly cor-
related with tumour proliferation and presented inferior immune 
cell infiltration, suggesting an ‘immune- cold’ phenotype, while the 
low- risk group enriched plenty of immune- associated pathways and 

displayed abundant immune cell infiltration, suggesting an ‘immune- 
hot’ phenotype. The above suggested that IAMIPS can well stratify 
CRC patients based on their immune status, which had implications 
for immunotherapy in CRC. Solid tumours in ‘immune- hot’ status tend 
to have better immunotherapy response.26 Hence, patients in the low- 
risk group might benefit more from immunotherapy. Bioinformatics 
algorithms including TIDE and SubMap methods further validated 
this conclusion. However, the limitation of our study is evaluating the 
immunotherapy response using bioinformatics algorithms rather than 
conducting large- scale immunotherapy clinical trials. In spite of this, 
the above results were highly consistent in terms of functional analysis 
and predictive results, which indicates that our results are relatively 
reliable. Moreover, we identified latent antitumour drugs significantly 
associated with IAMIPS, hoping to provide additional reference for an-
titumour therapies of patients with different IAMIPS risk.

In summary, we proposed a novel algorithm, ImmuMiRNA, which 
can systematically identify the miRNA regulators that latently regu-
late immune- associated pathways in CRC. The IAMIPS will facilitate 
the complex underlying mechanisms between immune- associated 
miRNAs and prognosis of CRC and may advance optimize immuno-
therapies for patients with CRC.
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