
505

The aminoindanol core as a key scaffold
in bifunctional organocatalysts
Isaac G. Sonsona, Eugenia Marqués-López* and Raquel P. Herrera*

Review Open Access

Address:
Laboratorio de Organocatálisis Asimétrica, Departamento de Química
Orgánica, Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH) CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12,
50009 Zaragoza, Spain

Email:
Eugenia Marqués-López* - mmaamarq@unizar.es;
Raquel P. Herrera* - raquelph@unizar.es

* Corresponding author

Keywords:
aminocatalysis; 1,2-aminoindanol; bifunctional; organocatalysis;
hydrogen bonding

Beilstein J. Org. Chem. 2016, 12, 505–523.
doi:10.3762/bjoc.12.50

Received: 16 December 2015
Accepted: 16 February 2016
Published: 14 March 2016

This article is part of the Thematic Series "Bifunctional catalysis".

Guest Editor: D. J. Dixon

© 2016 G. Sonsona et al; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocata-

lysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is

easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing

this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition,

Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely

explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the

cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.
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Introduction
The structural and chemical properties of the 1,2-aminoindanol

scaffold 1 have transformed aminoindanol derivatives into

versatile building blocks for the construction of catalysts and

the efficient induction of chirality in asymmetric processes

(Figure 1). Some examples of these properties are rigidity,

disposition of the two stereogenic centers, ability of the hydroxy

and amino groups to coordinate to some metals or to act as

hydrogen-bond donors/acceptors, the different catalytic activity

of these chemical groups and their possible derivatization. Thus,

in the last decade, it has been widely employed in the field of

asymmetric catalysis. Regarding the use of aminoindanol deriv-

atives as ligands in organometallic catalytic complexes, the

results have been outstanding. Examples are found in (a) the

vanadium-catalyzed asymmetric oxidation of disulfides and

sulfides, which are involved in the synthesis of ligands and

pharmaceutical chiral synthetic precursors [1,2] and in (b) the

transfer-hydrogenation reaction catalyzed by bifunctional chiral

ruthenium complexes, employed in the synthesis of peptide

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:mmaamarq@unizar.es
mailto:raquelph@unizar.es
http://dx.doi.org/10.3762%2Fbjoc.12.50


Beilstein J. Org. Chem. 2016, 12, 505–523.

506

Figure 1: Different configurations of 1,2-aminoindanol 1a–d.

mimics with an interesting trifluoroethylamine moiety [3-5].

However, it is in the field of asymmetric organocatalysis [6-8]

where the aminoindanol core has gained more importance,

being a recurrent structural motif in several organocatalytic

species. Some examples are (a) the enantioselective reduction

of ketones through the in situ formation of catalytically active

oxazaborolidines using cis-1,2-aminoindanol derivatives [9,10]

and (b) the synthesis of more active cooperative thiourea-urea-

based organocatalysts, which employ the aminoindanol frame-

work as structural linker between two hydrogen-bond-donor

moieties [11]. The latter ones have exhibited efficient catalytic

activity in the asymmetric Mannich reaction. In fact, the use of

simple trans-(1R,2R)-aminoindanol (1c) as an efficient organo-

catalyst in the enantioselective synthesis of natural products as

the TMC-954 core [12,13], has been recently reported. These

examples show the high catalytic potential that this versatile

motif exhibits [14].

The concept of bifunctionality has been extensively explored in

organocatalysis in the last decade [15,16]. The bifunctional

organocatalyst contains two chemical groups that interact si-

multaneously with the substrates. This mode of activation in-

creases the efficiency of the process, since the interactions favor

a selective approach of the reactants. In the transition state, the

chiral and rigid aminoindanol scaffold can be involved in differ-

ent interactions with the substrates due to its capacity to interact

through the hydroxy and amino groups. Although the aminoin-

danol scaffold appears in the structure of different catalysts

(providing a suitable way to induce chirality), it is not always

directly involved in the bifunctional activation of the substrates

[17]. Herein, we show only those cases where the aminoin-

danol moiety confers bifunctionality to the organocatalysts,

interacting with the reactants through both the hydroxy and

amino groups.

Review
Bifunctional hydrogen-bonding-based
organocatalysts
Most of the examples of bifunctional aminoindanol-containing

organocatalysts present in literature correspond to catalysts

acting through hydrogen bonding, such as thiourea, urea,

squaramide, and thioamide frameworks. These have been effi-

ciently employed in a few organocatalytic processes such as

Friedel–Crafts alkylations, Michael additions, Diels–Alder reac-

tions and aza-Henry reactions, as discussed below.

Friedel–Crafts-type alkylation reaction of indoles
To the best of our knowledge, the first example of an aminoin-

danol-containing bifunctional organocatalyst was reported by

Ricci and co-workers in 2005 [18]. In this pioneering study, the

authors used the easily prepared cis-(1R,2S)-aminoindanol-

based thiourea derivative 4 to develop the first organocatalytic

enantioselective Friedel–Crafts (F–C) alkylation of indoles, em-

ploying nitroalkenes as versatile electrophiles. In the presence

of catalyst 4, the differently functionalized indole derivatives 2

reacted with aryl and alkyl nitroalkenes 3 in dichloromethane at

low temperature. This afforded the optically active 2-indolyl-1-

nitro compounds 5 (up to 88% yield and up to 89% ee,

Scheme 1). These products were found to be valuable synthetic

precursors of biologically active compounds such as trypta-

mines [19,20] and 1,2,3,4-tetrahydro-β-carbolines [21].

In order to explain the sense of the asymmetric induction ob-

served in the reaction, some experiments with structurally

modified catalysts (4' and 4'') were carried out. The results ob-

tained using indole (2a) and β-nitrostyrene (3a) supported the

importance of the hydroxy group, since low yield and selec-

tivity were observed when this group was trimethylsylilated (4')

or was not present (4'') in the catalytic structure (Figure 2).

Moreover, poor selectivity was also observed using N-methylin-

dole, which supported a plausible catalyst–substrate interaction

through the indolic proton.

The authors proposed then a dual role of catalyst 4 in the activa-

tion of the substrates. Thus, in the transition state TS1

(Figure 3a), the substrates and catalyst would form a ternary

complex where the thiourea moiety would activate the nitro

group of the nitroalkene through hydrogen bonds. Simulta-

neously, the oxygen atom of the hydroxy group would interact

with the NH of the indole by a weak hydrogen bond, driving the

attack to the Si face of the nitroalkene in a stereocontrolled

manner.
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Scheme 1: Asymmetric F–C alkylation catalyzed by thiourea 4.

Figure 3: (a) Transition state TS1 originally proposed for the F–C reaction catalyzed by thiourea 4 [18]. (b) Transition state TS1’ proposed later,
based on computational calculations [22].

Figure 2: Results for the F–C reaction carried out with catalyst 4 and
the structurally modified analogues, 4' and 4''.

In a recent study of this F–C alkylation, Herrera’s group has

provided computational evidence of the reaction pathway,

which confirms the proposed bifunctional activation mode

played by the thiourea catalyst 4 [22]. Remarkably, an interest-

ing hydrogen-bonding interaction between the hydrogen atom

of the hydroxy group and the nitro group was detected in this

work (Figure 3b). This could explain the low reactivity (18%

yield) and selectivity (39% ee) that the silyl ether-protected

catalyst 4'' exhibited (Figure 2).

Encouraged by the development of more efficient organocata-

lytic systems, the same research group explored the influence of

external acidic additives in this reaction. The authors envi-

sioned that a cooperative effect between the chiral thiourea

organocatalyst and a Brønsted acid (AH) could provide better

results in terms of reactivity and enantioselectivity. Thus, in

2011, they published an article where it was proved that the

synergic system between the thiourea ent-4 and mandelic acid

led to the final products 5 with a significant increase of conver-

sion and enantiomeric excess (Scheme 2) [23].

Experimental proofs exploring different catalysts and acids sug-

gested that it is the thiourea which provides the sense of the

enantioinduction. Therefore, the authors assumed the bifunc-

tional transition state TS2, similar to the above mentioned TS1,

where the external acid (AH) would only coordinate to the thio-

urea moiety enhancing its acidity and thus forming a more

active catalytic species (Figure 4).
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Scheme 2: Asymmetric F–C alkylation catalyzed by thiourea ent-4 in the presence of D-mandelic acid as a Brønsted acid additive.

Figure 4: Transition state TS2 proposed for the activation of the thio-
urea-based catalyst ent-4 by an external Brønsted acid.

Since the pioneering aminoindanol-containing organocatalyst 4,

reported in 2005 [18], other research groups have studied the

possibility of incorporating this scaffold into diverse organocat-

alysts.

In 2008, Seidel’s group published a new example of an asym-

metric addition of indoles to nitroalkenes, employing a novel

catalyst design [24]. The authors envisioned that a protonated

2-pyridyl substituent could increase the acidity of the thiourea

group through an intramolecular N–H···S hydrogen-bonding

interaction (analogous to the C–H···S that exists with the 3,5-

bis-trifluoromethylphenyl moiety, commonly used in thiourea-

based organocatalysts) [25]. Although this first approach did
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Scheme 3: Friedel–Crafts alkylation of indoles catalyzed by the chiral thioamide 6.

Scheme 4: Scalable tandem C2/C3-annulation of indoles, catalyzed by the thioamide ent-6.

not provide a significant increase of the enantioselectivity,

further modifications of the catalytic structure led to highly

active catalysts. Indeed, the best results were obtained with the

quinolinium thioamide 6, where the NH moiety adjacent to the

pyridine ring of the analogous thiourea was “removed”. Likely,

in this case, the intramolecular hydrogen-bonding interaction

described above would yield a negligible stabilization due to the

distance between N–H and S moieties. In contrast, it is

suspected that both the thioamide N–H as well as the N–H on

the quinolinium moiety are engaged in substrate binding, and

thus, provide higher yields and selectivity in comparison with

the catalyst 4 (up to 96% yield, up to 98% ee) (Scheme 3).

The authors do not comment on whether the catalyst 6 acts in a

bifunctional fashion or not, but it is reasonable to assume that

the OH group is again involved in the transition state by a

possible interaction with the indole derivatives 2. Indeed, as dis-

cussed below, other authors proposed the compound 6 as a

plausible bifunctional catalyst. The Enders’ group used its enan-

tiomer (ent-6) to develop a pioneering scalable one-pot multi-

catalytic method for the C2/C3-annulation of the indoles 2

(Scheme 4) [26]. In this work, an efficient enantioselective and

sequential double Friedel–Crafts alkylation provided direct

access to the tetracyclic seven-membered ring containing

indoles 8. These pharmaceutically intriguing compounds exhib-

it anticancer [27] and antiproliferative activity [28].

In the first catalytic cycle of the authors’ mechanistic hypo-

thesis, the β-nitroalkene derivatives 7 are proposed to react with

the indoles 2 in the presence of the organocatalyst ent-6 to

afford the intermediates 9 with excellent enantioselectivity

(Scheme 5). Furthermore, a bifunctional activation mode

through the transition state TS3 was proposed. Herein, the NH

from the thioamide and the protonated quinoline moiety would

activate and fix the nitroalkene framework through hydrogen-

bonding interactions. Simultaneously, the oxygen atom of the
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Scheme 5: Plausible tandem process mechanism for the sequential, double Friedel–Crafts alkylation, which involves the hydrogen-bonding catalyst
ent-6 and gold catalysis and leads to the tetracyclic indoles 8.

Scheme 6: One-pot multisequence process that allows the synthesis of interesting compounds 14. The pharmacologically active compound 15 can
be obtained from the properly substituted product 14.

hydroxy group would orientate the attack of the indole by the Si

face through the formation of a hydrogen bond with the indolic

proton. In the second catalytic cycle, the intermediates 9 would

react to give an intramolecular Friedel–Crafts alkylation. The

alkyne moiety of 9 would be previously activated by a gold

complex in the presence of p-toluenesulfonic acid hydrate

as the additive. The final tetracyclic indoles 8 are released from

the spirocyclic intermediates 11, following a ring-expansion

and rearomatization/final protodeauration cascade process

(Scheme 5) [26].

In 2012, the same group reported an additional example of a

one-pot multisequence reaction following a similar mode of ac-

tivation. This method provided a route to access the enantiomer-

ically enriched tetrahydrocarbazole scaffold-containing com-

pounds 14 (Scheme 6 and Scheme 7) [29]. One of these valu-
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Scheme 7: Reaction pathway proposed for the preparation of the compounds 14.

Scheme 8: The enantioselective synthesis of cis-vicinal-substituted indane scaffolds 21, catalyzed by ent-6.

able products is a synthetic precursor of the pharmacologically

active compound 15, used to treat Alzheimer and other central

nervous system diseases [30-34].

In the proposed reaction pathway, the nucleophilic addition of

the indole derivatives 2 to the nitroalkene 13 progresses in a

stereocontrolled manner due to the creation of a ternary com-

plex with the chiral bifunctional thioamide ent-6 (TS4,

Scheme 7). Herein, the catalyst activates both substrates simul-

taneously through hydrogen-bonding interactions between

the thioamidic NH and the nitro group, and between the

hydroxy group and the indolic proton. In the presence of

AgSbF6, a soft Lewis acid, the stereogenic center-containing

intermediates 16 are activated. This triggers an SN2-type attack/

Ciamician–Plancher rearrangement [35]/rearomatization

cascade process, affording the final products 14 (Scheme 7).

More recently, the same authors also provided an elegant and

efficient solution to give direct access to cis-vicinal-substituted

indane scaffolds through an organocatalyzed asymmetric

domino-Michael addition/Henry reaction (Scheme 8) [36].

These heterocyclic products are important chiral building
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Scheme 9: Asymmetric domino procedure (Michael addition/Henry cyclization), catalyzed by the thioamide ent-6 which involves a cis-matched transi-
tion state (TS6) that allows a kinetic control of the second reaction.

blocks for the synthesis of organocatalytic frameworks and

ligands for chiral metal complexes, both with the potential

ability to induce chirality. They also belong to a class of privi-

leged pharmaceutical scaffolds and exhibit different biological

activities, as it is the case of Crixivan [37,38], an HIV protease

inhibitor which has been employed for AIDS treatment. The

thermodynamic unfavorable cis conformation of these com-

pounds represents a challenge for the development of suitable

methods for their synthesis. Interestingly, the chiral thioamide

ent-6, which contains a cis-vicinal-substituted indane motif,

provided the best choice to this purpose. Therefore, in the pres-

ence of such a catalyst, the indole derivatives 2 reacted with

2-(2-nitrovinyl)benzaldehyde derivatives 20 to give the highly

functionalized cis-1-hydroxy-2-nitroindane-based indole com-

pounds 21 with excellent yield, high selectivity and good dia-

stereomeric ratios (dr) (Scheme 8).

In the reaction pathway proposed to explain this domino reac-

tion, both substrates are activated by the catalyst ent-6 through

hydrogen-bonding interactions in a bifunctional manner. Thus,

the ternary complex formed in the transition state TS5 leads to

an enantioselective Friedel–Crafts-type Michael addition by the

attack of indole 2 to the electrophilic prochiral center on the

nitroalkene 20 in a stereocontrolled manner (Scheme 9). After-

wards, the hydrogen-bonding interactions are reorganized inside

the complex, producing a bifunctional activation of both the

nitro and the aldehyde groups through a cis-matched transition

state TS6. It allows a kinetic controlled, enantioselective Henry

reaction that leads to the final cis-product 21. The thermody-

namically favorable trans-product 21 can be obtained through a

tetramethylguanidine (TMG)-catalyzed epimerization process.

Other possible electrophiles have been contemplated in the

Friedel–Crafts alkylation of indoles. For instance, Jørgensen’s

group studied the use of α,β-unsaturated acyl phosphonates as

suitable electrophiles for this kind of reaction, using several

bifunctional aminoindanol-based organocatalytic scaffolds as

catalysts (Scheme 10) [39]. Hence, the authors demonstrated

that acyl phosphonates can be used as efficient hydrogen-bond-

ing acceptors in their activation through hydrogen-bonding ca-

talysis. The corresponding final esters or amides are obtained

after proper treatment of the reaction mixture. During the

screening of catalysts, the best enantioselectivity (74% ee) was

obtained using ent-4 in the addition of indole (2a) to the acyl

phosphonate 24a, in dichloromethane at room temperature, with

subsequent addition of 1,8-diazabicyclo[5.4.0]undec-7-ene

(DBU) and methanol to give the corresponding ester derivative

25a (Scheme 10a) [39]. The use of the analog squaramide 23

afforded the product with slightly lower selectivity (60% ee)

and the Seidel’s thioamide 6 provided better activation (93%

yield at −30 °C) of substrates but with an important loss of

selectivity (20% ee). The removal of a hydrogen atom from the

hydroxy group of the aminoindanol structure (such as in TIPS-

ether catalysts ent-4''' and 22') and the loss of cis relationship

between the hydroxy and amino groups (such as in catalyst 22)

led to racemic mixtures (Scheme 10a). Under optimal condi-
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Scheme 10: The enantioselective addition of indoles 2 to α,β-unsaturated acyl phosphonates 24, a) screening of different catalysts and b) optimized
conditions using catalyst ent-4.

tions, the acyl phosphonates 24 reacted with indoles 2 in the

presence of catalyst ent-4 providing the corresponding products

25 with high selectivity (up to 90% ee) (Scheme 10b) [39].

Based on the experimental results, the authors proposed a

bifunctional mode of activation (TS7), where the electrophile is

fixed and activated by the thiourea framework through several

hydrogen bonds. At the same time, the indole is oriented to

attack the Re face of the Michael-type acceptor, by weak hydro-

gen-bonding interaction between the oxygen atom of the

hydroxy group and the indolic proton (Figure 5).

Recently, the conjugated addition of indole derivatives to β,γ-

unsaturated α-ketoesters was explored [40]. To this end, the cat-

alytic activity of several chiral thioureas was studied, revealing

the aminoindanol-based thiourea ent-4 as the most suitable cata-

lyst for this process. The authors studied aliphatic derivatives

because for this reaction these compounds had been much less

explored than the aromatic ones. Thus, the different aliphatic

β,γ-unsaturated α-ketoesters 26a–f reacted with the substituted

indoles 2 in the presence of ent-4 to achieve the corresponding

Figure 5: Proposed transition state TS7 for the Friedel–Crafts reac-
tion of indole and α,β-unsaturated acyl phosphonates catalyzed by
ent-4.

adducts 27 with good yields and enantioselectivities (up to 88%

yield, up to 76% ee) (Scheme 11).

Although the absolute configuration was unknown at that point,

the authors envisioned a plausible reaction pathway based on

previously reported transition states (Figure 6). The catalyst

ent-4 would activate and fix the electrophile through several
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Scheme 11: Study of aliphatic β,γ-unsaturated α-ketoesters 26 as substrates in the F–C alkylation of indoles catalyzed by ent-4.

Figure 6: Possible transition states TS8 and TS9 in the asymmetric addition of indoles 2 to the β,γ-unsaturated α-ketoesters 26 catalyzed by ent-4.

hydrogen-bonding interactions with the NH groups of the thio-

urea. Simultaneously, the hydroxy group would be involved in

the activation of the nucleophile, establishing a hydrogen bond

with the indolic proton. This would conduct its attack over the

Re face of the β,γ-unsaturated α-ketoesters, producing the addi-

tion in a stereocontrolled fashion. Some additional experimen-

tal proofs provided in the article supported this hypothesis [40].

Michael addition to α,β-unsaturated compounds
Fernández, Lassaleta and co-workers provided an elegant,

versatile and mild umpolung strategy, which leads to key syn-

thetic precursors using the thiourea ent-4. In this study, an

organocatalytic enantioselective addition of nucleophilic N,N-

dialkylhydrazones to electron-deficient β,γ-unsaturated

α-ketoesters was reported (Table 1) [41]. In the presence of

catalyst ent-4, 1-methyleneaminopyrrolidine (28) reacted with

the different β,γ-unsaturated α-ketoesters 26 in dichloro-

methane at low temperature to give the corresponding products

29, which are useful masked 1,4-dicarbonyl compounds with

moderate to high yield and high selectivity, after moderate reac-

tion times (Table 1).

The authors proposed the plausible transition state TS10, where

the acidic hydrogen atoms of the thiourea could activate the β,γ-

unsaturated α-ketoesters 26. Simultaneously, the hydrogen atom

of the hydroxy group would coordinate and direct the hydra-

zone 28 to the Re face of the esters 26 in order to afford the

absolute configuration found in the final products 29 of this

process (Figure 7).

Another example of the bifunctional action of the indanol-based

thiourea 4 was reported by Sibi’s group. There, 100 mol % of
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Table 1: Asymmetric addition of 1-methyleneaminopyrrolidine (28) to β,γ-unsaturated α-ketoesters 26, catalyzed by ent-4.

Entry 26 (R) Temp. (ºC) Yield 29 (%) ee 29 (%)

1 Me −60 60 80

2 iPr −45 80 78

3 iBu −45 75 78

4 n-C5H11 −60 61 70

5 (CH3)3CH2 −45 64 58

6 Cy −45 82 72

Table 2: The enantioselective addition of the hydroxylamine derivatives 31 to the enoates 30 promoted by 4.

Entry 30 (R1, R2, R3) 31 (R4) Time (h) Yield 32 (%) ee 32 (%)

1a Me, H, Me PhCH2 24 75 (32a) 71

2a,b Me, H, Me PhCH2 168 63 (32a) 71

3 Me, H, Me PhCH2 72 82 (32a) 87

4a Me, Br, Me PhCH2 24 85 (32b) 61

5a Ph, H, Me PhCH2 14 76 (32c) 45

Figure 7: Transition state TS10 proposed for the asymmetric addition
of dialkylhydrazone 28 to the β,γ-unsaturated α-ketoesters 26 cata-
lyzed by ent-4.

this compound was employed in the enantioselective conjugate

addition of the hydroxylamine derivatives 31 to the enoates 30,

affording the final products 32 with good yield (up to 98%) and

high enantiomeric excess (up to 98% ee). This provided an effi-

cient method that allows the preparation of biologically interest-

ing β-amino acid derivatives (Table 2) [42].

In this work, the authors compared the results achieved by

means of 4 with other urea- and thiourea-based organocatalysts

in order to understand the effect of the acidity, the structural

rigidity, and the bifunctionality of the promoter. These reac-

tions were performed in trifluorotoluene at room temperature
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Table 2: The enantioselective addition of the hydroxylamine derivatives 31 to the enoates 30 promoted by 4. (continued)

6a Ph, Br, Me PhCH2 12 72 (32d) 31

7 Me, H, Me Ph2CH 96 86 (32e) 89

8 Me, H, CO2Et Ph2CH 96 50 (32f) 94

9 Me, H, CO2Et TBDMS 96 42 (32g) 90

10 Me, H, Et Ph2CH 168 92 (32h) 91

11 Me, H, n-Pr Ph2CH 138 84 (32i) 88

12 Me, H, iPr Ph2CH 216 68 (32j) 90

13 Me, H, c-C6H11 Ph2CH 288 59 (32k) 89

14b Me, H, CH2OPMP Ph2CH 24 98 (32l) 98

15a Me, H, Ph PhCH2 72 19 (32m) 67

16 Me, H, Me TBDMS 120 82 (32n) 94
aReaction carried out at room temperature. b30 mol % of catalyst 4.

Scheme 12: Different β-hydroxylamino-based catalysts tested in a Michael addition, and the transition state TS11 proposed for this reaction cata-
lyzed by 4.

with the Michael acceptor 30 (R1, R2, R3 = Me, H, Me) and

O-benzylhydroxylamine (31, R4 = PhCH2), using a stoichio-

metric amount of the chiral activator and MS 4 Å as an additive.

Some of the reported experiments supported the ability of the

cis-2-aminoindanol structure to provide an adequate scaffold to

induce chirality. In contrast, the catalysts ent-22 (with the trans-

2-aminoindanol) or 4'' (with the aminoindane motif) and the

flexible analogues 33–35, provided lower enantioselectivities or

led to nearly racemic mixtures (Scheme 12). In the proposed

transition state TS11, the α,β-unsaturated substrate is activated

by an acidic thiourea template. Moreover, the hydroxylamine

derivative is simultaneously oriented to attack the Si face of the

Michel acceptor, through its interaction with the hydroxy group

of the aminoindanol framework. In this case, a pyrazole moiety

presents additional H-bond acceptor sites. These could play an

important role in fixing the substrate to the catalyst and favoring
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Scheme 13: Enantioselective addition of acetylacetone (36a) to nitroalkenes 3, catalyzed by 37 and the proposed transition state TS12.

a more rigid transition state (TS11) and thus leading to better

selectivity (Scheme 12). The absolute configuration is only

given for the compounds 32a–d, being S.

Later, He and co-workers reported the use of several chiral

multiple hydrogen-bond donating tertiary amine-based organo-

catalysts in the asymmetric addition of acetylacetone (36a) to

the β-nitroalkenes 3. They found the thiourea 37 as a highly

suitable catalytic structure to induce chirality in this process

(Scheme 13) [43]. Under optimal conditions, this method provi-

ded highly enantioenriched γ-nitrocarbonyl compounds 38,

which are versatile synthetic intermediates for the preparation

of diverse chiral scaffolds.

Once again, a bifunctional activation mode as the origin of the

asymmetric induction was proposed. In the plausible transition

state TS12, acidic hydrogen atoms from both hydroxy and thio-

urea moieties would activate and fix the nitroalkene. Simulta-

neously, the tertiary amine of the cinchona framework would

deprotonate the acidic proton of acetylacetone (36a), driving the

attack of the nucleophile. The chiral environment present in the

resulting ternary complex would confer the proper facial selec-

tivity to afford the observed absolute configuration in the final

products 38.

At the same time, Yuan and co-workers developed an interest-

ing example of a scalable asymmetric Michael addition of

3-substituted oxindoles 39 to the protected 2-amino-1-

nitroethenes 40, using the bifunctional tertiary amine aminoin-

danol-based organocatalyst 41 (Scheme 14) [44]. This catalytic

study provides a straightforward synthetic route of the highly

functionalized α,β-diamino-3,3’-disubstituted-oxindoles

42. These are key intermediates for the preparation of biologi-

cally and pharmacologically attractive compounds, such as

(+)-alantrypinone [45], (−)-serantrypinone [46] and (−)-lapatin

[47]. In the presence of the catalyst 41 (10 mol %), a

broad scope of the oxindoles 39 reacted to give the

quaternary stereocenters-containing products 42 with high

diastereoselectivity (up to > 99:1 dr) and enantioselectivity (up

to 90% ee).

A bifunctional role played by the catalyst was again envisioned

by the authors. In the transition state TS13 the tertiary amine

group of the catalyst would activate the resulting enolized oxin-

dole reagent 39 via deprotonation. Thus, 39 would be disposed

to attack by its Re face to the Si face of the nitroethene deriva-

tive 40. Simultaneously, the latter would be fixed and activated

by a hydrogen-bonding interaction with the hydroxy moiety of

the catalyst, in its Z form, which is stabilized due to an intramo-

lecular hydrogen bond (Scheme 14).

In 2012, Dong and co-workers studied the catalytic activity of

several β-amino alcohol-based squaramide organocatalysts

involved in the Michael addition of acetylacetone (36a) to

β-nitrostyrene (3a) in dichloromethane at 15 °C (Scheme 15)

[48]. Although high yields were obtained in all cases, the best

enantioselectivity was provided by the bifunctional cis-aminoin-

danol-based squaramide 43. Under these conditions, several
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Scheme 14: Addition of 3-oxindoles 39 to 2-amino-1-nitroethenes 40, catalyzed by 41.

Scheme 15: Michael addition of 1,3-dicarbonyl compounds 36 to the nitroalkenes 3 catalyzed by the squaramide 43.

1,3-dicarbonyl compounds 36 reacted with many different nitro-

styrene derivatives 3 with very low catalytic charge (1 mol %),

affording a broad scope of the enantiomerically enriched

β-nitroalkyl products 38. A possible drawback of the method

would be the low diastereoselectivity generally achieved for the

nonsymmetrical 1,3-dicarbonyl compounds 36.
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Scheme 16: Asymmetric aza-Henry reaction catalyzed by the aminoindanol-derived sulfinyl urea 50.

In order to understand the role of the catalyst, the hydroxy

group of the squaramide 43 was methylated (43'). Its catalytic

activity was tested in the reaction of acetylacetone (36a) and

β-nitrostyrene (3a), leading to very low enantiomeric excess

(24% ee). This fact suggested the important role played by the

hydroxy group in the activation and in the chiral induction of

the process. The authors proposed the transition state TS14,

where the NH groups and the OH group of the squaramide

would coordinate to the nitroalkene 3 through hydrogen-bond-

ing interactions with the nitro group. Simultaneously, the amine

in the cinchona alkaloid would activate the 1,3-dicarbonyl com-

pound 36 (Scheme 15). We would like to remark that although

the authors indicated that the S enantiomer is obtained in their

final products, they depicted the R configuration, as is drawn in

the Scheme 15.

Aza-Henry reaction
Ellman’s group designed a set of pioneering (thio)urea scaffold-

containing hydrogen-bonding organocatalysts with an

N-sulfinyl moiety. As previously demonstrated, this chemical

group increased the acidity of the catalyst and also served as a

chiral controller [49-54]. Hence, in the presence of the catalyst

50 and diisopropylethylamine, a wide scope of the N-Boc-pro-

tected imines 48, including aliphatic ones, reacted with an

excess of the nitroalkanes 49 at low temperature. This afforded

the corresponding products 51 with high yield, diastereomeric

ratio and excellent enantioselectivity (Scheme 16) [55].

Some experimental results using the differently substituted

aminoindane-derived sulfinyl ureas 50–50'' showed the impor-

tant effect of the indanol framework in the diastereo- and

enantio-selectivity of the process. The catalysts 50' (with the

TBS-protected hydroxy group (TBS, tert-butyldimethylsilyl))

and 50'' (without the hydroxy group) exhibited poor enantiose-

lectivity. These effects may suggest and support the bifunc-

tional role played by the catalyst (Figure 8).

Figure 8: Results for the aza-Henry reaction carried out with the struc-
turally modified catalysts 50–50''.
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Scheme 17: Diels–Alder reaction catalyzed by the aminoindanol derivative ent-41.

Scheme 18: Asymmetric Michael addition of 3-pentanone (55a) to the nitroalkenes 3 through aminocatalysis.

Diels–Alder reaction
An important contribution in the construction of highly substi-

tuted carbocyclic compounds was disclosed by Tan’s group in

2009. In this work, the asymmetric Diels–Alder (D–A) reaction

between the N-sulfonamide-3-hydroxy-2-pyridone-based dienes

52 and different dienophile substrates was developed using the

bifunctional cis-2-trialkylaminoindanol organocatalyst ent-41

[56]. We show herein the reactivity of this family of dienes with

several substituted maleimides 53, which in the presence of the

above mentioned catalyst, afforded the highly substituted endo-

adducts 54  with high yield and enantiomeric excess

(Scheme 17). In this approach, the cis orientation of the

hydroxy and cyclopentylamine groups of the catalyst was

crucial to achieve high enantioselectivity.

Aminocatalysis
Although aminoindanol-derived catalysts have been scarcely

used in aminocatalysis, some relevant examples have been

found in the literature, especially in the enantioselective addi-

tion of ketones to nitroalkene compounds. In this context,

Alonso, Nájera and co-workers designed different alcohol-

amino-derived prolinamide organocatalysts and in 2006

published an organocatalyzed direct asymmetric Michael addi-

tion of 3-pentanone (55a) to the nitrostyrenes 3 [57]. The corre-

sponding syn-adducts 57 were obtained with excellent conver-

sion, diastereomeric ratio and high enantiomeric excess when

the cis-aminoindanol-based prolinamide 56, acting as bifunc-

tional recyclable catalyst, was used (Scheme 18).

Later, based on this previous work, the same research group ex-

tended the methodology to different ketones 55, rendering the

syn-products 57 with excellent yield and high selectivity

(Scheme 19) [58].

In this case, the hydroxy group seems again to play an impor-

tant role in the activation of the substrates, as well as in the

selectivity of the process. The rigidity of the hydroxylamino

moiety represents another important factor, where aminoin-

danol was the most appropriate scaffold for this asymmetric

methodology among the catalysts tested. Based on the experi-



Beilstein J. Org. Chem. 2016, 12, 505–523.

521

Scheme 19: Substrate scope extension for the asymmetric Michael addition between the ketones 55 and the nitroalkenes 3 through aminocatalysis.

Scheme 20: A possible reaction pathway in the presence of the catalyst 56 and the plausible transition state TS15 proposed for this reaction.

mental results and computational calculations (DFT and

B3LYP76-31G*), the authors proposed a reaction mechanism in

which the catalyst 56 acts in a bifunctional way following the

route depicted in Scheme 20. Thus, Michael addition of the en-

amine 58, formed from 3-pentanone (55a) and the catalyst 56,

to the nitroalkene 3a takes place leading to the intermediate 59.

The last step of the catalytic cycle involves the regeneration of

the catalyst by hydrolysis, enabled by the small amount of water

present in the solvent.

The transition state TS15 based upon Seebach’s model [59] was

envisioned as a plausible activation mode to explain the high

asymmetric induction observed and the syn-diastereoselectivity

exhibited by the catalyst 56. First, the activation of the ketone

via enamine formation is produced. Furthermore, the acidic

hydrogen atoms of the amide and the hydroxy groups present in

the catalyst would activate and orientate the nitroalkene by

hydrogen-bond formation. Thus, the attack of the formed en-

amine to the Re face of the nitroalkene is favored (Scheme 20).

In this way, this example shows an efficient combination of

covalent and non-covalent interactions in an interesting bifunc-

tional activation mode.

Conclusion
The design, synthesis and application of catalysts acting in a

bifunctional manner is a hot topic in the field of organocatal-
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ysis and thus widely investigated. Generally, this particular

mode of activation allows the enhancement of both the reactivi-

ty and the selectivity of the processes, due to the generation of a

more rigid transition state. Among the different ways of confer-

ring this bifunctional character to the catalysts, the incorpora-

tion of the aminoindanol core into their structure has shown to

be a very suitable method. In most of the examples gathered

herein, this can be explained due to the presence of a hydroxy

group in the catalyst that normally is able to interact with at

least one of the substrates of the reaction, hence facilitating the

approach of the reactants in a selective fashion. In many cases,

this bifuntional role of the catalyst has been supported with ex-

perimental results and sometimes with computational calcula-

tions. This smart strategy has allowed the preparation of highly

efficient organocatalysts, ranging from very simple structures to

more complex ones. These are mainly hydrogen-bonding cata-

lysts, but there is also an example of an aminoindanol-contain-

ing aminocatalyst. A broad variety of reactivities has been suc-

cessfully covered, such as Friedel–Crafts alkylation, Michael

addition, Diels–Alder and aza-Henry reactions. However,

further exploration into the development of new bifunctional

organocatalysts using aminoindanol or another appropriate scaf-

fold and their application in different chemical processes still

needs to be performed.
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