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Abstract

Dynamic combinatorial chemistry (DCC) is an attractive method to efficiently generate libraries of molecules from simpler build-
ing blocks by reversible reactions under thermodynamic control. Here we focus on the chemical modification of DNA oligonucleo-
tides with acyclic diol linkers and demonstrate their potential for the deoxyribonucleic acid functionalization and generation of
libraries of reversibly interconverting building blocks. The syntheses of phosphoramidite building blocks derived from D-threo-
ninol are presented in two variants with protected amino or thiol groups. The threoninol building blocks were successfully incorpo-
rated via automated solid-phase synthesis into 13mer oligonucleotides. The amino group containing phosphoramidite was used
together with complementary single-strand DNA templates that influenced the Watson—Crick base-pairing equilibrium in the mix-
ture with a set of aldehyde modified nucleobases. A significant fraction of all possible base-pair mismatches was obtained, whereas,
the highest selectivity (over 80%) was found for the guanine aldehyde templated by the complementary cytosine containing DNA.
The elevated occurrence of mismatches can be explained by increased backbone plasticity derived from the linear threoninol build-
ing block as a cyclic deoxyribose analogue.

Introduction

The well-defined duplex structure, self-assembling by base-pair
recognition, and the accessibility by solid-phase synthesis make
DNA oligonucleotides an ideal supramolecular scaffold in a
wide field of applications [1,2]. In recent years oligonucleo-
tides especially were applied to self-assembly into artificial

nanostructures [3-9]. Preparation of oligonucleotides for new

applications requires the introduction of additional functional
groups into its native structure [10,11]. Such chemically modi-
fied oligonucleotides are useful intermediates for their subse-
quent functionalization through post-synthetic protocols [11-
13]. Within a post-synthetic strategy, a nucleotide analog is

modified with a reactive functional group, incorporated into
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oligonucleotides by standard solid—phase synthesis and reacted
with the desired molecules on the oligonucleotide level. As
amines and thiols are among the widely used groups introduced
for the post-synthetic modifications, the acyclic threoninol
linker (2-amino-1,3-butanediol) [14-21] constitutes an attrac-
tive choice for oligonucleotide functionalization. Threoninol
can be introduced in oligonucleotides via the corresponding
phosphoramidite generating a ribose-free abasic site on the
backbone that provides the amine group for later functionaliza-
tion [22-28]. Similarly, a thiol functionality can be introduced
by substitution of the amine group of threoninol and incorporat-
ed into the oligonucleotide backbone. The amine and thiol
groups can be used for further oligonucleotide functionalization
reacting these sites with functional molecules like metal ligands
or fluorophores. Functional molecules of interest can be teth-
ered post-synthetically in an irreversible manner as amide or re-

versibly as imine or thioester.

Recent advances in dynamic combinatorial chemistry [29-40]
have enabled the utilization of presynthesized oligomers with
abasic sites on the backbone for the addition of individual
monomeric nucleobases and consider the synthesis of new
oligonucleotide analogues possessing different backbone
topologies [41]. Ghadiri et al. employed this approach for an en-
zyme-free synthesis of an oligonucleotide analogue with a
peptide backbone carrying nucleobases on its amino acid side
chains [42] while Bradley et al. used the backbone of a peptide
nucleic acid (PNA) with abasic sites which gives a reactive sec-
ondary amine for reversible attachment of aldehyde modified
nucleobases [43]. Moreover, the DNA template-directed selec-
tion of one nucleobase from the reaction mixture with the amine

or thiol functional group was investigated [44-47].

In our studies, dynamic chemistry is applied for post-synthetic
functionalization of the threoninol based modified oligonucleo-
tides in a reversible manner. Here we synthesized the phosphor-
amidite building blocks derived from D-threoninol which
contain protected amine or thiol groups. These building blocks
are used for later incorporation into oligonucleotides via solid-
phase synthesis. Using these modified oligonucleotides and
single strand DNA templates, we generated the libraries of re-
versibly interconverting building blocks — dynamic combinato-
rial libraries (DCL) (Figure 1). The abasic strand and its com-
plementary template strand are spontaneously assembled into a
double helix through Watson—Crick base-pairing and the in-
coming nucleobase monomer benefits from the hydrogen bond-
ing recognition by the respective nucleobase in the template
strand. The reversible attachment generates a dynamic system
that enables the combinatorial screening of the best bound
nucleobase by allowing a rapid and continuous exchange be-

tween the threoninol site and the set of nucleobase monomers.
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In case of an amine group on the backbone, a reversible imine
exchange reaction with aldehyde modified nucleobases was per-
formed (Figure 1a). In the presence of a thiol group on the
backbone, a thioester exchange reaction with thioester modi-
fied nucleobases was expected (Figure 1b).

Results and Discussion
D-Threoninol-based building blocks: design

and synthesis

Two D-threoninol-based phosphoramidite building blocks con-
taining orthogonally protected amine 4 or thiol 11 moieties
were successfully synthesized. As presented in Scheme 1 phos-
phoramidite 4 was obtained according to the procedures previ-
ously described in literature [14,23].

In order to obtain phosphoramidite 11 we have developed a syn-
thesis (Scheme 2) based on L-threonine as a starting material.
L-Threonine was converted to bromo-derivative 6 by a diazoti-
zation reaction using sodium nitrite followed by potassium bro-
mide substitution under overall retention of configuration due to
double inversion. Next, the subsequent reduction of carboxylic
acid 6 to alcohol 7 was achieved by borane dimethyl sulfide
(BMS) under dry conditions. The reaction between alcohol 7
and 3-mercaptopropanenitrile (8) resulted in substitution of
bromine to the thiol group and finally the introduction of the
thiol functional group. The 3-mercaptopropanenitrile (8) was
synthesized separately in two steps from acrylonitrile or the
3-chloropropanenitrile according to the previously described
procedure [48-50]. Next, the obtained compound 9 containing
two hydroxy groups and the cyanoethyl protected thiol group
was converted into the phosphoramidite being compatible with
conditions of solid-phase oligonucleotide synthesis. The DMTr
protecting group was incorporated and the conversion of the
secondary alcohol 10 to phosphoramidite 11 was performed.
The base-labile cyanoethyl group [51,52] is known to be resis-
tant under synthesis conditions for the preparation of the phos-
phoramidite building block and for solid-phase oligonucleotide
synthesis [49,53].

Building blocks compatibility with solid-phase

synthesis of DNA single strands

Phosphoramidites 4 and 11 were introduced at position seven
of 13mer oligonucleotides ON1 and ON2 applying automated
solid-phase synthesis (Table 1 and Supporting Information
File 1, Table S1). The last step in the oligonucleotide
synthesis involved the deprotection of the amine group
using ammonium hydroxide at 55 °C. The Fmoc protecting
group of oligonucleotide ON1 was removed, however, the
cyanoethyl group as a base-labile protecting group of the thiol
was not removed quantitatively from the oligonucleotide
ON2 [54-58].
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Figure 1: Template-directed dynamic chemistry assay for the attachment of modified nucleobase monomers to an abasic backbone. a) Reversible
imine exchange reaction. b) Reversible thioester exchange reaction.
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Scheme 1: Synthesis of the phosphoramidite building block 4 [23]. DMTr: dimethoxytrityl group, Fmoc: 9-fluorenylmethylcarbonyl, DMAP: 4-dimethyl-
aminopyridine, DIEA: N,N-diisopropylethylamine.
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Scheme 2: Synthesis of the phosphoramidite building block 11.

Table 1: Sequences of modified oligonucleotide and templates used in
this work.

Strand Sequence (5-3")

ON1 CGCTATXTATCGC?

ON2 GCGATAYATAGCG?

TcP GCGATACATAGCGGTT®
TP GCGATAGATAGCGGTT
T° GCGATATATAGCGGTT
Tab GCGATAAATAGCGGTT

aX and Y represent the abasic site with amino or thiol group, respec-
tively. PHere, the capital letter index of T stands for the cytosine,
guanine, thymine or adenine nucleobase positioning opposite to the
amine on ON1. °Nucleobases that are opposite to the abasic site of
the modified strand are shown in bold letters. The GTT sequence at
the 3’-terminus was added to facilitate separation by HPLC.

Dynamic template-driven assembly of double

strand libraries

Oligonucleotide ON1 was used for further investigations
towards dynamic libraries of double strand DNA constructs.
Oligonucleotide ON1 was used with the deprotected amine
group in the reaction of forming the imine bond between ON1
and four nucleobase aldehydes (Gcyo, CcHO> AcHOs TCHO)
in the presence of complementary template strands T¢, Tg, Tt
or T, (Table 1). The respective template strand should control
the incorporation of the corresponding nucleobase reversibly
linked as imine (Figure 2). The structures of four nucleobase
aldehydes were shown in Figure 3. These compounds were
synthesized according to the procedures described previously
[59-61].

A~ o
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At the beginning we determined the conversion of ON1 with
the respective nucleobase aldehydes in presence of the comple-
mentary DNA template strand (Table 1). The ON1 oligonucleo-
tide was allowed to react with only one nucleobase in order to
produce the individual product (Supporting Information File 1,
Figure S1, Table S2). A reaction between Gcgo and ON1 in
the presence of T¢ was accomplished with complete conver-
sion of ON1 into the guanine incorporated product (ON1+G).
The reactions with cytosine (Ccgg) as well as adenine (Acgo)
aldehydes gave similar yields, however, with lower conversion
level of ON1 compared to the previous case. Finally, lowest
conversion was observed for the reaction of ON1 with the Ty
template and the thymine aldehyde (T cpo) (Supporting Infor-
mation File 1, Table S3).

The composition of libraries: base-pairing

selectivity

To determine the influence of the DNA template on nucleobase
incorporation into the strands at abasic site through imine
attachment to the amine group, four reactions were carried out
under identical conditions (pH 6, 20 mM phosphate buffer), but
differing in the applied template strand. The 13mer oligonucleo-
tide ON1 was mixed with one of the four complementary tem-
plate strands (T¢, Tg, Tt or Ty, Table 1) in a 1:1 molar ratio.
All four nucleobase aldehydes (Gcro, Ccro> AcHo> TcHO)
were added in excess amount and in equimolar concentrations.

Sodium cyanoborohydride (NaBH3CN) was used for irre-

versible conversion of the imine products obtained in equilib-

rium into respective amines (Figure 2), thereby enabling the

2139



Beilstein J. Org. Chem. 2016, 12, 2136-2144.

(@] (@] (@] (@]
@ @ @ @
9] O O O
= = = =
3 3 7 T
H H
© N © N © .ouN © N
T G T G
8 Q Q Q Q
3 = = = =
e < < < <
N = = = =
= O O O 0
| ® 0] 0] 0}
o GcHo o o o o
—uiNH c ON1+T ON1+G
2 CHO template ‘L ‘L NaBH3CN
* Tcho
Q A 20 mm o o) o) o)
=z CHO  phosphate @ @ @ @
5 buffer,pH6 O Q a @
3 7 7 7 7
(@]
07 N O N 07 ..N Ol
Q Q Q Q
= = = =
< < < <
= [ = [
O O O O
Q O] O O]
O (@] O (@]
ON1+C ON1+A

building blocks

library of imine products

library of amine products

Figure 2: Initial building blocks of a dynamic combinatorial library, a library of all possible imine products and a library of amine products after

reduction.
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Figure 3: Set of aldehyde-modified nucleobases used in dynamic chemistry assay.

isolation and analysis of the library derived from oligonucleo-
tide ON1. Anion exchange high-performance chromatography
was used for the analysis of the final reaction mixture. The reac-
tion mixtures were composed of six oligonucleotides: the unre-
acted initial strand ON1, one of its complementary strands Tc,
Tg, Tt or T and the four possible product strands ON1+G,
ON1+C, ON1+A, ON1+T (Figure 4). HPLC separation of the
four possible products in the same reaction mixture was chal-
lenging because the lengths of the starting sequence
CGCTATXTATCGC (ON1) and the product sequences
(ON1+G, ON1+C, ON1+A, ON1+T) were identical differing
only by one nucleobase in the central position X. As shown in

Figure 4 all possible products were eluted as a mixture separat-
ed by anion exchange HPLC at 80 °C; under these conditions
dissociation of obtained oligonucleotide double strands is provi-
ded. Well separated signals correspond to the temple strands
and starting oligonucleotide ON1. The obtained four new
strands (ON1+C, ON1+G, ON1+T, ON1+A) were eluted with
similar retention time and broad elution profiles. Therefore, the
product containing fractions were subjected to a second HPLC
purification step applying basic conditions (pH 12) to separate
these compounds (Figure 5). At high pH deprotonation of
guanine and thymine allow better separation. As indicated by
the elution profiles in Figure 5, the template strands significant-
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Figure 4: Representative HPLC chromatograms for the mixture containing ON1 and four nucleobases in the presence of a DNA-template: a) Tg;
b) Tg; c) Tt; d) Ta. The chromatograms were performed after reductive amination of the samples (for more details see Supporting Information File 1).

ly affect the composition of the dynamic library. The control
experiment lacking the template provided a nearly equal distri-
bution of oligonucleotides (results are not given here).

The highest selectivity of more than 80% was obtained for the
incorporation of Geggo (Figure 5a) with the complementary
template strand (T¢). The Watson—Crick base-pairing with
three hydrogen bonds together with a high-stacking contribu-
tion of purine nucleobases seems to be beneficial. The selec-
tivity for the incorporation of the other aldehydes is significant-
ly lower (20-40%). Especially for Ccgo with the complemen-
tary guanine (Tq) template nucleobase incorporation was not
supported by Watson—Crick G+C base-pairing (Figure 5b). The
templating reactions were repeated four times applying differ-

ent HPLC conditions. In all cases, incorporation of Gcgg in the
presence of template T was obtained with clear preference.

In case of incorporation of the thymine aldehyde the T con-
taining template was not effective by supporting the expected
ON1+T product as it would have been supported by the A:T
base pair formation (Figure 5d). Moreover, this dynamic library
is even dominated by the two A-C and A-G mismatches indicat-
ing a highly flexible arrangement of the incoming nucleobases.
In general, the low template directed selectivity for incorpora-
tion of individual nucleobases is likely due to the higher flexi-
bility in the backbone derived from threoninol units. The canon-
ical Watson—Crick AT and C-G base pairs are most energeti-

cally favorable, while other purine—purine (like A-A, G-G)
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Figure 5: Representative HPLC chromatograms obtained using elevated pH, for samples collected from first purification step (in Figure 4 marked with
dashed line). The samples were collected from the reaction of ON1 and four nucleobases in the presence of a DNA-template: a) T¢; b) Tg; ¢) TT;
d) Ta. The chromatograms were obtained after reductive amination of the samples (for more details see Supporting Information File 1).

mismatches are less frequent than T-G and C-A ones. These
results indicate that the selectivity of base pairing is not only
driven by the number and strength of hydrogen bonds formed
between two bases, but also by the backbone plasticity provid-
ing the frame for this interaction.

Conclusion

The efficient synthesis and DNA incorporation of two D-threo-
ninol based phosphoramidite building blocks with orthogonally
protected amine or thiol functional groups was described.
Therefore, DNA analogues were presented that can be cova-
lently functionalized by imine or thioester formation. In prin-
ciple this concept allows dynamic DNA functionalization with

all kind of functional or recognition units at positions that were

modified with the threoninol deoxyribose analogous by solid
phase synthesis. As proof of principle the 13mer oligonucleo-
tide containing a threoninol derived amine functionality was
submitted to dynamic combinatorial library (DCL) studies for
DNA template directed nucleobase incorporation. Whereas a
significant preference for the incorporation of the guanine unit
directed by a complementary cytosine was found, linkage of the
other nucleobases was not at all selective and it seems likely
that the high flexibility of the threoninol as a deoxyribose ana-
logue does not allow better selection. Due to difficulties in
deprotection of the thiol group, oligonucleotides with threo-
ninol derived thiol functionality are still under investigation as
well as the simultaneous functionalization of DNA oligonucleo-

tides at various positions with different kind of functional units.
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