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Abstract

Comprehensive characterization of a gene’s impact on phenotypes requires knowledge of the context of the gene. To
address this issue we introduce a systematic data integration method Candidate Genes and SNPs (CANGES) that links SNP
and linkage disequilibrium data to pathway- and protein-protein interaction information. It can be used as a knowledge
discovery tool for the search of disease associated causative variants from genome-wide studies as well as to generate new
hypotheses on synergistically functioning genes. We demonstrate the utility of CANGES by integrating pathway and
protein-protein interaction data to identify putative functional variants for (i) the p53 gene and (ii) three glioblastoma
multiforme (GBM) associated risk genes. For the GBM case, we further integrate the CANGES results with clinical and
genome-wide data for 209 GBM patients and identify genes having effects on GBM patient survival. Our results show that
selecting a focused set of genes can result in information beyond the traditional genome-wide association approaches.
Taken together, holistic approach to identify possible interacting genes and SNPs with CANGES provides a means to rapidly
identify networks for any set of genes and generate novel hypotheses. CANGES is available in http://csbi.ltdk.helsinki.fi/
CANGES/
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Introduction

Cellular functions are regulated by complex and multivariate

molecular regulatory networks. Complex diseases, such as cancers,

arise from alterations in these networks and thus contribution of

any single gene to disease risk or progression should be viewed in

the context of molecular networks [1,2]. Indeed, genome-wide

measurement technologies, such as gene and single nucleotide

polymorphism (SNP) microarrays, have provided an opportunity

to identify genes that are mutated or differentially expressed and

drive various diseases. In particular, SNP-arrays have been

powerful in genome-wide association (GWA) studies and have

resulted in several genetic loci or genes that are associated with

disease risk or poor prognosis [3–5]. As such candidate genes typically

affect cellular functions by altering signaling in regulatory

networks, it is crucial to comprehensively characterize these

regulatory networks.

We introduce a data integration workflow CANGES (Candidate

Genes and SNPs) to rapidly identify focal genes, i.e., genes that code

for proteins which interact or belong to the same molecular network

with a protein coded by a candidate gene. Additionally, CANGES is

able to identify central SNPs, i.e., genetic variations that are located in

the focal genes’ coding or regulatory regions, such as splice and 39

UTR sites (Table S1). Thus, central SNPs may affect protein

function and cause gene-gene and SNP-SNP interactions in the

regulatory network leading to increased risk or survival effects.

To identify focal genes, CANGES uses KEGG and Reactome

pathway databases [6,7] together with PINA protein-protein

interaction (PPI) database [8]. The focal genes are further queried

for their SNPs using ENSEMBL [9] and linkage disequilibrium

information from HapMap [10]. The impacts of non-synonymous

coding SNPs to protein functions are then predicted using

PolyPhen [11], PolyPhen-2 [12], SNPs3D [13] and SIFT [14].

Accordingly, CANGES can rapidly identify genes and SNPs

belonging to the same network of any set of genes.

CANGES integrates data from SNP, protein and linkage

disequilibrium databases and thus belongs to the meta-server class

of services [15]. Earlier meta-approaches have focused on

predicting SNP functions and linking them to GWA studies [16–

18], enriching SNPs with pathway- and functional annotations

[16,17], linking SNP annotations with PPI information [19],

collecting functional predictions for SNPs from a number of

sources for one SNP at a time [20] or collect and rank central

SNPs for specified genes and ontologies [21]. A unique feature in

CANGES is that, instead of just annotating genes, it takes an

advantage of the accumulated pathway and PPI information to

provide a comprehensive list of focal genes and central SNPs with

one batch query. For the more conventional use, CANGES

enables focal gene search based on the pathway name and SNP

retrieval for a custom gene list. CANGES also provides a means to

link central SNPs to tag-SNPs, which facilitates search for putative

disease causing alleles and enables integration of data from several
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SNP-arrays that typically use different sets of tag-SNPs. Each

CANGES query produces a downloadable result list, which

enables easy processing and comparison of the output. CANGES

runs on a freely available component-based bioinformatics work-

flow environment Anduril [22], which allows the use of CANGES

as a part of re-usable analysis workflows. Additionally, we have

created a web interface for smaller queries.

Results

CANGES workflow diagram, including modules, resources,

bioinformatics components and interfaces, is shown in Figure 1.

CANGES produces the results as Excel spreadsheets that enable

an easy sorting and filtering of the results. An example of an

CANGES produced result file is given in Table S2. Here, we

demonstrate the utility of CANGES with two case studies. The

first case study illustrates CANGES analysis for a single candidate

gene p53 and the second one focuses on assessing the context for

three genes reported in a recent glioblastoma GWA study.

Comprehensive catalogue of SNPs for the p53 associated
pathways and interactome

The gene p53 is one of the most studied genes in cancer biology.

However, the function and interplay of p53 with the other proteins

is still unclear. We used CANGES to provide the most

comprehensive set of proteins that function within the same

pathways with p53 or have direct PPI with p53 [Swiss-

Prot:P04637, Q9NP68] (Table S2). CANGES analysis produced

1,914 focal genes for p53 that were identified from databases as

illustrated in Figure 2A). Given the importance of p53 mutations in

Figure 1. Workflow of CANGES modules and components, resources and interfaces within each module. The input of the protein
module is a list of protein identifiers or pathway names. The output is a list of corresponding focal genes, i.e., genes that belong to the same
pathways with query protein or query pathway in KEGG or Reactome, or whose protein products interact with the query proteins. The resulted focal
genes are inputs for searching the central SNPs (SNP module) using ENSEMBL and HapMap. The central SNPs are first queried from ENSEMBL and
then the allele frequencies and tag-SNPs are fetched from a local HapMap database. The SNP module returns a list of central SNPs with their
annotations and tag-SNPs. The list of central SNPs is then passed for the evaluation module in which the SNPs are then further evaluated with four
methods that predict the functional effects of SNP to protein function.
doi:10.1371/journal.pone.0018636.g001

Data Integration Workflow
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cancer susceptibility and progression, we further queried central

SNPs for the p53 focal genes. This search resulted in 47,163

central SNPs and 3,465 tag-SNPs that tag 1,720 of the central

SNPs. The threshold for selecting the tag-SNPs was r2
§0:8.

To further identify SNPs that putatively have functional effect at

the protein level, we analyzed the 47,163 central SNPs with four

methods. PolyPhen and PolyPhen-2 predicted 1,479 and 672

SNPs as functional with probable or possible damaging effect on

protein, respectively. SNPs3D predicted 2,000 SNPs being

functional, whereas SIFT resulted in 2,435 functional SNPs.

These prediction methods agreed for 158 SNPs (Table S3). Genes

associated with the set of 158 SNPs with predicted functional

effects at the protein level consists of several genes that are crucial

in pathogenesis, such as ATM, CDKN2A, BRCA1 and BRCA2. To

our knowledge, this catalogue is the most comprehensive list of

SNPs putatively affecting p53 mediated signaling.

Identification of survival associated SNPs in glioblastoma
multiforme

Glioblastoma multiforme (GBM) is grade IV glial originating

tumor type that responds poorly to all available therapeutic

regimens and has a median survival of one year [3]. In a recent

glioma GWA study Shete and colleagues identified low-penetrance

susceptibility loci harboring TERT (Swiss-Prot: O14746,

Q9UNR4, Q8NG38, Q9UBR6, Q9UNS6), CCDC26 (Swiss-Prot:

Q8TAB7), CDKN2A (Swiss-Prot: Q8N726, P42771, Q208B5,

Q5ZEY9, Q9UPB7, A7LNE7, A5X2G7, Q2MJK0), CDKN2B

(Swiss-Prot: P42772, Q5ZEY8, O15125, Q8NIA6, Q9UM95),

RTEL1 (Swiss-Prot: Q9BW37 Q9NZ71) and PHLDB1 (Swiss-Prot:

Q86UU1, B0YJ63, B0YJ65) with elevated risk of glioma [5]. We

queried focal genes using these six glioma-associated genes. TERT,

CDKN2B and CDKN2A were found in KEGG, Reactome or PINA.

These three genes resulted in a total of 1,346 focal genes

(Figure 2B), which were annotated for their central SNPs. This

resulted in 33,428 central SNPs, for which we found 2,657 tag-

SNPs having pair-wise correlation with a central SNP r2
§0:8; 463

SNPs were both central and tag-SNPs totaling to 35,622 SNPs for

further analysis (Table S4).

We used The Cancer Genome Atlas (TCGA) GBM data set of

209 samples subjected to 550k SNP-array experiments to identify

SNPs associated with poor survival using Kaplan-Meier analysis

with log-rank test. We initially considered all 35,622 central and

tag-SNPs for the survival analysis. However, only 1,888 SNPs were

found from the TCGA genome-wide SNP-array for GBM. This

small number is due to the low number of central SNPs in the

SNP-arrays in general; here, 0.02% of the central SNPs were on

the array. We were able to estimate the survival effect for 995

central SNPs directly or through their tag-SNPs. Survival analysis

of the set of 1,888 SNPs resulted in 18 SNPs with a significant

survival effect. From these, eight were central SNPs, and 10 SNPs

further tag 18 central SNPs totaling to 26 central SNPs putatively

having survival impact.

We then mapped the set of 26 central SNPs with putative

survival effect to genes. The SNPs are located in 14 genes:

CAMK2D, CCNB1, CD82, CEP192, CLASP2, FLT3, KIF2B,

LAMA1, MTR, PML, PSMF1, SEC13, SGOL2 and SMAD5. The

lowest p-value (2:44|10{3) was observed for the tag-SNP

rs2275565 in the intronic region of the MTR gene. In addition,

the most significant odds ratio between homozygous genotypes

was calculated for the tag-SNP rs100192 (odds ratio 0.27 with p-

value 8:07|10{3) in the intronic region of the CENPH gene. This

SNP tags rs164390 in 59 UTR region of a gene G2/mitotic-

specific cyclin-B1 (CCNB1). Kaplan-Meier estimates for rs2275565

and rs100192 are illustrated in Figure 3, and the other figures with

CANGES output table are available in Figure S1 and Table S5.

Discussion

A number of individual cancer associated genetic variants have

been found recently, but the signaling-level context for these

variants has been challenging to establish. Finding genetic variants

causing functional effects to a protein network, which also contains

a risk or cancer-driving gene’s protein product, are of particular

interest as these are candidates for SNP-SNP or gene-gene

interactions. In order to obtain a comprehensive network for a set

of genes, there is a need to integrate several databases, such as PPI,

Figure 2. Distribution of the database sources. The database sources of focal genes for a) p53 and b) glioblastoma multiforme case study.
doi:10.1371/journal.pone.0018636.g002

Data Integration Workflow
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genomic and pathway repositories. CANGES is hypothesis

generating tool that provides a significant step forward in

obtaining a comprehensive view for a gene set. Furthermore,

CANGES is implemented to run on Anduril workflow environ-

ment [22], which allows for integration of several protein resources

and analysis approaches as exemplified in the glioblastoma

multiforme case study.

Many genome-wide SNP arrays, such as Illumina HumanHap

arrays, are designed so that the probes query for tag-SNPs instead

of central SNPs [23]. The use of tag-SNPs aims at maximizing the

amount of variation a SNP captures, which is desirable in many

GWA studies. It is, however, challenging to use tag-SNPs to

estimate the functional consequences of the observed variation.

CANGES compensates the tag-SNP designs by using the HapMap

Figure 3. Kaplan-Meier estimates and the number of cases of the genotype groups for the GBM survival analysis. Dashed lines
illustrate 0.95 confidence intervals for each group in the analysis. Panel a) rs2275565 is a tag-SNP to the coding SNP rs1805087 in the MTR gene. The
group of 11 homozygous cases with AA genotypes is combined with the heterozygous group. Panel b) rs100192 is a tag-SNP to a SNP rs164390 in 59
UTR of the CCNB1 gene.
doi:10.1371/journal.pone.0018636.g003

Data Integration Workflow
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database and producing a comprehensive list of SNPs in region

pinpointed by the tag-SNPs. Analysis with functionally designed

SNP-arrays such as Affymetrix Drug Metabolism Analysis

(DMET) array that contains 1,936 drug metabolism markers in

225 genes or Illumina GoldenGate chip, with approximately 1,500

user-chosen SNPs, target effectively genotypes of several central

SNPs that are more amenable to CANGES analysis. Recently

several intragenic SNPs have been associated with diseases. These

SNPs are usually not the causative variations but surrogate

markers indicating the region in which the causative mutation is

harbored [24]. Furthermore, the effect of intragenic SNPs to the

protein function is currently an unresolved problem. Therefore,

CANGES focuses on central SNPs while the intragenic SNPs are

discarded from the result lists to avoid dominance of a huge

number of the intragenic SNPs.

CANGES provides a means to integrate information from

several databases that are accessed through their programming

interfaces when such interface is provided. This allows the use of

the latest releases of the databases. CANGES may produce very

large result sets for queries including genes having a lot of

interactions or activity in signaling pathways. In such cases

CANGES analysis may take several hours to complete when

executed through the CANGES web interface. Therefore,

processing of large queries is more efficient through local

installations of CANGES than with the website. Furthermore, it

is also challenging to estimate the size of the result file because the

amount of data in the databases varies for different genes and

pathways. The p53 gene is a prime example of a well-studied gene

that produces a very large result set. On the other hand, only three

out of six GBM risk genes were found from the pathway- or PPI

databases.

Our case studies demonstrate that SNP-protein function

prediction tools resulted in widely dissimilar results. For example,

in the p53 case study, only PolyPhen-2 was able to predict that

rs1042522 is damaging. Even F-SNP, which uses 16 methods and

datasets to predict functional effects of SNP [20], was not able to

predict rs1042522 to be damaging (results not shown). The

rs1042522 variant causes an amino acid change (R72P) with

demonstrated functional consequences; the R72 variant is a

stronger and faster inducer of apoptosis than the 72P variant

[25,26] while the 72P variant binds more efficiently to iASPP, an

inhibitor of pro-apoptotic function of p53 [27]. The 72P variant

has been found to be more efficient in inducing cell-cycle arrest

[25] and DNA repair [28] than the R72 variant. The 72P variant

also predicts survival of breast cancer patients [29,30].

In our second case study we identified genes belonging to the

same pathway or directly interacting with protein products of

three glioma risk genes and further calculated survival estimates

for 1,888 SNPs in these genes. This analysis resulted in a SNP

(rs2275565) in the gene Methionine synthase (MTR) that encodes

the enzyme 5-methyltetrahydrofolate-homocysteine methyltrans-

ferase, which catalyzes methione biosynthesis. MTR was recently

identified as a cancer susceptibility gene regardless of environ-

mental factors [31]. Furthermore, rs2275565 is a tag-SNP for a

damaging SNP rs1805087, which was also found in the TCGA

dataset showing minor survival effects. Our results therefore

suggest that chromosomal region around rs2275565 and

rs1805087 is a candidate for harboring a causative variant for

the survival effect by MTR.

Our results further indicate that also rs100192, which is a tag-

SNP for rs164390 in 59 UTR region of a gene G2/mitotic-specific

cyclin-B1 (CCNB1), may have an impact on GBM survival. We

note that rs164390 itself was not found from the GBM dataset and

its effect on the survival could not be estimated directly. This is a

common situation in studies integrating data from different

cohorts with varying SNP-array designs; and the CANGES results

provide a means to rapidly integrate such data. Interestingly,

CCNB1 belongs to the same pathways with CDKN2A and CDKN2B

and is regulated by p53. An increase in the copy number in the

chromosomal region of CCNB1 has been shown to be associated

with an increase of the cell growth rate in glioma cell lines [32].

Furthermore, upregulation of CCNB1 along with other cell-cycle

genes indicates poor survival in various cancers [33], and

upregulation of CCNB1 alone is suggested to be a marker for a

poor prognosis in breast cancer [34], making CCNB1 an

interesting target candidate also in GBM. While it is not surprising

to identify to find 18 SNPs with a survival effect from a set of 1,888

SNPs, the two most interesting genes identified here were not be

detected in genome-wide context.

Both MTR and CCNB1 function in the p53 pathway, which is

altered in 87% of GBM cases [3]. MTR interacts with CDKN2A

[35] and CCNB1 is a response gene for p53 [36,37], which leads to

a pathway hypothesis illustrated in Figure 4. Though further

studies are required to validate the suggested roles of MTR and

CCNB1 in glioblastoma multiforme, our results demonstrate that

CANGES is able to produce experimentally testable hypotheses

that offer a solid ground for advanced analyses.

Methods

The CANGES data integration pipeline is divided into three

modules, 1) the protein module, 2) the SNP module and 3) the evaluation

module as illustrated in Figure 1. Each module can be run

individually, which enables four different options for use as

described in Table 1.

CANGES workflow
The protein module searches for focal genes from the pathway

databases KEGG [6] and Reactome [7], and the PPI database

PINA [8], using their programming interfaces. The input for the

protein module is a list of proteins or pathways, and the output is a

list of focal genes that are either on the search pathway or

interacting with at least one of the search proteins through direct

interaction or through the same pathway. In the case of the

protein list, the protein module searches for all the pathways and

PPIs for each protein and creates a list of focal genes from proteins

from the resulted pathways and interactions. In the case of the

pathway name list, the protein module uses proteins in the query

pathways as the list of focal genes.

The SNP module annotates central SNPs for the queried genes

from the ENSEMBL genome database [9]. The SNP module

excludes all SNPs that are annotated as upstream, downstream,

intronic, within non-coding gene or hgmd mutations in EN-

SEMBL (v. 59), resulting in the central SNPs for the each gene.

The SNP module also annotates each SNP with functional,

sequence and transcript information as well as information on

protein domains in the region of the SNP. A complete list of the

annotations in a result file is given in Table S1. We have

implemented two redundant interfaces to the ENSEMBL

database; the first interface uses BioMart [38] and the second

the ENSEMBL Perl. The BioMart interface is much faster than

Perl and is thus prioritized. It is, however, also more unstable and

the Perl interface allows CANGES to function in cases when

BioMart is not responding. The results from the BioMart and Perl

interfaces are essentially the same, except that the BioMart

implementation collects each SNP from all associated alternative

transcripts, while the Perl implementation uses only the first

transcript returned by the ENSEMBL database. To avoid

Data Integration Workflow

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e18636



time-consuming and redundant searches, the surrounding peptide

sequences are fetched only for one alternative transcript if the SNP

is located to the same position. The SNP module searches also

allele frequencies and tag-SNPs for each annotated SNP, using the

HapMap database version 3, draft 1 [10]. The tag-SNPs are

selected according to a minimum pair-wise correlation (r2)

between SNPs in the HapMap database with threshold or as

chosen by the user. The allele frequencies and the pair-wise

correlations are calculated using the Plink software [39]. The input

for the SNP module is a list of protein or gene identifiers, and the

output is a list of SNP annotations for each given identifier.

The evaluation module produces predictions for functional

effects of SNP to protein function for non-synonymous coding

SNPs, using four prediction tools: PolyPhen [11], PolyPhen-2

[12], SNPs3D [13] and SIFT [14]. PolyPhen and PolyPhen-2

produce predictions (benign, possibly damaging, probably damaging)

based on the rules regarding the SNPs effect on protein functional

sites, the protein structure and the presence of the same peptide

substitution in homologous sequences. PolyPhen may produce

several predictions for one SNP and all of the predictions are

included into the results. SNPs3D calculates scores for SNPs

using a protein structure stability model and a feature profile that

captures sequence conservation with a support vector machine

algorithm. Negative scores predict deleterious effects. The

CANGES evaluation module uses the lowest score from the

available SNPs3D scores for each SNP. SIFT’s predictions are

based on the probability of SNP’s peptide in homologous

sequences, and it considers peptide probability lower than 0.05

damaging for the protein function. SIFT gives a prediction for

both SNP’s optional peptide variants and the evaluation module

selects the lower value indicating more deleterious effect for the

prediction. For the predictions, we use local copies of pre-

calculated datasets: PolyPhen (54,574 SNPs) and PolyPhen-2

(32,534 SNPs) are from dbSNP build 126 and 130, respectively,

whereas SNPs3D uses dbSNP build 128 with 77,999 SNPs and

and it uses dbSNP build 129 (178,509 SNPs). The input of the

evaluation module is a list of SNP rs-identifiers and the output is

the predictions.

Survival calculations
The effects of GBM focal genes on patient survival were

calculated using 209 GBM patient blood samples subjected to

550k SNP-array from the TCGA data set [3]. The survival

analyses for all SNPs were conducted with the Kaplan-Meier

estimation method and log-rank test, and odds ratios were

estimated with logistic regression. In survival analysis we imputed

Figure 4. Pathway diagram showing the hypothetical positions
of the GBM survival associated genes MTR and CCNB1 in the
glioblastoma p53 pathway [3]. KEGG annotates CCNB1 to belong to
the p53 pathway together with CCNB2, CCNB3 and CDC2 [6]. In the
KEGG p53 signaling pathway, these are regulated by the genes SFN,
GADD45G, GADD45A and GADD45B, which constitute a subset of the
p53 target genes. In the KEGG glioma pathway, G2 arrest impairment is
annotated as one result of the altered p53 pathway activation [6].
doi:10.1371/journal.pone.0018636.g004

Table 1. Example use cases of CANGES.

CANGES use cases

Goal Input Databases Result

1. Create a set of focal genes or central SNPs
based on previously found interesting genes.

List of proteins KEGG, Reactome, PINA, ENSEMBL,
Hapmap, PolyPhen, SNPs3D, SIFT

A list of focal genes and their central
SNPs with SNP annotations.

2. Create a set of focal genes or SNPs based on
previously found interesting pathways.

List of pathway names KEGG, Reactome, PINA, ENSEMBL,
Hapmap, PolyPhen, SNPs3D, SIFT

A list of focal genes and their central
SNPs with SNP annotations.

3. Get central SNPs for a custom pathway or
a set of interesting genes.

List of genes ENSEMBL, Hapmap, PolyPhen,
SNPs3D, SIFT

A list of central SNPs with annotations.

4. Find predictions for a set of coding SNPs. List of genes PolyPhen, SNPs3D, SIFT A list of functional predictions for
coding SNPs.

The modular structure of CANGES enables selecting inputs, outputs to serve various research goals.
doi:10.1371/journal.pone.0018636.t001

Data Integration Workflow
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missing values to genotypes having confidence value v0:95,

filtered out SNPs with the frequency of missing genotypes w10%

or minor allele frequency v10 % and set signal to noise ratio v5
as suggested by [40]. The Kaplan-Meier estimates may become

unreliable with small sample sizes. Therefore, we combined the

rare homozygous samples with the heterozygous samples when the

frequency of homozygotes fell below 10%. This conservative

criterion should ensure robust Kaplan-Meier estimates. The

combination is optional and the threshold can be assessed by the

user. Kaplan-Meier estimates with nominal p-values v0:01 were

considered as significant.

Availability and Future Directions
The CANGES workflow is available as a web service in http://

csbi.ltdk.helsinki.fi/CANGES/. The Anduril components are also

available at this site. Related databases and the Anduril workflow for

the survival analysis are available upon request. Future work focuses

on integrating SNP-protein function predictors when such become

available. We will also include more variation types from the

ENSEMBL database when their consequences on the gene products

can be estimated. One future direction of CANGES is to select

SNPs for customized high-throughput genotyping experiments.

Supporting Information

Figure S1 The Kaplan–Meier curves from the 16 SNPs
showing survival effect from the glioblastoma multi-
forme case study.

(PDF)

Table S1 The complete description of annotations from
both ENSEMBL Perl and BioMart interfaces.

(XLS)

Table S2 The list of proteins and their SNP annotations
(ENSEMBL Perl interface) of focal genes from the p53
case study.
(XLS)

Table S3 The list p53 focal genes’ coding SNPs that all
prediction methods in CANGES estimate of being
functional.
(XLS)

Table S4 The list of the central SNPs and their
annotations (ENSEMBL Perl interface) from the glio-
blastoma multiforme case study.
(XLS)

Table S5 The central SNPs from the glioblastoma
multiforme case study that show a survival effect either
itself or through tagSNPs. Columns from survival analysis are

the following: SurvivalMarker = the SNP for which survival is

estimated, Hetero OR = the odds ratio between heterozygous and

homozygous genotypes, Homo OR = the odds ratio between

homozygous genotypes, pvalue = the p-value.

(XLS)
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