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Interacting ventral temporal gradients
of timescales and functional connectivity
and their relationships to visual behavior

Matthew J. Boring,1,2,3 R. Mark Richardson,3,4,5 and Avniel Singh Ghuman1,2,3,6,*
SUMMARY

Cortical gradients in endogenous and stimulus-evoked neurodynamic timescales, and long-range cortical
interactions, provide organizational constraints to the brain and influence neural populations’ roles in
cognition. It is unclear how these functional gradients interrelate and which influence behavior. Here,
intracranial recordings from 4,090 electrode contacts in 35 individuals map gradients of neural timescales
and functional connectivity to assess their interactions along category-selective ventral temporal cortex.
Endogenous and stimulus-evoked information processing timescales were not significantly correlated
with one another suggesting that local neural timescales are context dependent and may arise through
distinct neurophysiological mechanisms. Endogenous neural timescales correlatedwith functional connec-
tivity even after removing the effects of shared anatomical gradients. Neural timescales and functional
connectivity correlated with how strongly a population’s activity predicted behavior in a simple visual
task. These results suggest both interrelated and distinct neurophysiological processes give rise to
different functional connectivity and neural timescale gradients, which together influence behavior.

INTRODUCTION

A neural population’s functional properties, including its dynamics and its functional connectivity to other brain regions, are ultimately linked

to that population’s role in cognition and perception. Several gradients in functional properties have been shown to exist along the cortical

axis spanning from primary sensory/motor areas to association cortices.1–6 These gradients are thought to be related to key organizing prin-

ciples of the cortex, guiding how different regions contribute to cognition and perception.3,4,7,8 For example, there are gradients in the time-

scales over which neural populations accumulate information and endogenously fluctuate along this axis, with longer timescales further along

cortical hierarchies,5–7,9–13 though it remains unclear if stimulus processing and endogenous timescales are related to one another. Gradients

of functional connectivity are also seen along this axis, with decreasing unimodal connectivity and increasing transmodal connectivity along

cortical hierarchies.3,14 These network-level neural properties likely influence local timescales, other computational characteristics of neural

populations, and these populations’ relationship to behavior.2–4,15 However, empirical evidence linking functional gradients in local dynamics

with gradients in the long-range connectivity of neural populations is limited. Additionally, it is uncertain towhat degree these gradients relate

to a neural population’s role in behavior.

One prevalent functional gradient in cortex is the increasing timescales over which neural populations integrate information whenmoving

from primary sensory/motor to association cortices.5,6,9–11,16–18 For example, rapidly varying acoustic inputs represented in low-level auditory

cortex are combined intomore complex representations in higher-order auditory cortex, which operates over longer timescales.12 These neu-

ral timescales, or temporal receptive windows, are related to the rate of decay of neural activity9–11,16 because longer decay rates allow for

more pieces of information to be integrated into a single representation. Stimulus-unrelated, endogenous timescales also lengthen along this

axis, measured through the temporal autocorrelation of neural activity.4,5,7,9,19 Variation in endogenous neural timescales has been shown to

correlate with states of consciousness, self-consciousness, and neurological disorders like autism and schizophrenia.7 It is unclear the extent

to which stimulus-related and endogenous timescales relate to one another.

Another key aspect of neural dynamics, which is less well understood, is information processing dynamics, including the initial rate at which

neural populations discriminate between stimuli (i.e., the duration of the initial rise of discriminant information in neural activity). Most pre-

vious studies have examined timescales of neural activity rather than discriminant information dynamics and have emphasized decay
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durations, rather than rise duration.9–11,16 The information processing dynamics during the initial rise relate to the speed of cortical compu-

tation and thus ultimately limit the speed of decision and action processes.20 Despite the importance of a neural population’s information

processing dynamics in cognition and perception, the functional characteristics that are associated with neural populations that process in-

formation more quickly or slowly remain unclear.10,11,17

In addition to anatomical gradients in local neural dynamics, opposing anatomical gradients in long-distance connectivity to association

versus primary sensory/motor cortices have also been demonstrated in human cortex. Unimodal connectivity, primarily within sensorimotor

regions, decreases when moving up cortical processing hierarchies while transmodal connectivity linking multiple sensory domains in-

creases.1,3 However, it is unclear how gradients in local dynamics interact with gradients in long-range functional connectivity. In silica, circuit

models of cortical processing suggest that inter- and intra-areal connectivity patterns help constrain a neural population’s timescale,2,8,21

which has received some support from low temporal resolution measures of brain activity.15,22

Finally, the functional properties that constrain a neural population’s dynamics and long-range cortical connectivity ultimately constrain

how that population contributes to cognition and perception. However, the specific aspects of a neural population’s anatomical position,

neurodynamics, and functional connectivity that are related to its ability to predict behavior have not been fully elucidated.

In the current study, category-selective neural populations in ventral temporal cortex (VTC) were used as a model to examine the relation-

ship between anatomical gradients in local cortical processing and long-range cortical interactions. Focusing specifically on the ventral visual

system allowed us to examine relationships between neural dynamics, stimulus information processing, and participant behavior more pre-

cisely than if we considered neural populations throughout cortex. This is because neural populations throughout cortex have varied relation-

ships to perception and cognition, which limits our ability to examine information processing and behavior without investigating an exhaus-

tive battery of tasks. Restricting our analysis allowed us to examine the time course of visual category-discriminant neural activity (which is

primarily restricted to VTC) and separately analyze the effects of connectivity between category-discriminant populations and other visually

responsive populations versus populations that were not visually responsive. Furthermore, this restriction allowed us to examine how the ac-

tivity in category-selective populations correlated with participant response times (RTs) during a visual 1-back task. Thus, centering this study

on category-selective neural populations in VTC allows us to ask fine-grained questions about information processing dynamics, functional

connectivity patterns, and behavior. The caveat is that this choice leaves the generalizability of our findings to other sensory-motor and cogni-

tive domains for future studies.

In addition, we explored endogenous timescales (i.e., neural dynamics not directly in response to the exogenous, stimulus-evoked activity)

along VTC. Finally, we examine how thesemetrics of long-range cortical connectivity, neural dynamics, and correlates between neural activity

and behavior interact with each other beyond any shared anatomical gradients.

RESULTS

Activity was recorded from 1,955 VTC electrode contacts (out of a total of 4,090 intracranial electrode contacts distributed throughout the

brain) in 35 patients with pharmacologically intractable epilepsy (Figure S1) as they viewed images of objects (face, body, word, hammer,

house, or phase-scrambled image) during a 1-back task. Multivariate Naive Bayes classifiers were used to predict the category of object par-

ticipants were viewing during individual trials of the task using sliding 100 ms windows of single-trial potentials (stPs) and single-trial high-

frequency broadband (stHFBB) activity recorded from individual electrode contacts. At this stage of the analysis, these signal components

were combined since previous studies have suggested that they contain complementary information,23 though in additional analyses they

were examined separately.

Out of the 1,955 VTC electrode contacts, activity recorded from 390 electrode contacts (mean= 11; SD= 14 electrode contacts per patient)

could reliably predict (p < 0.001, corrected via permutation testing) which category participants were viewing during single trials of the task

(Figure 1). Information processing dynamics were estimated from the activity of the neural populations recorded by these contacts. Specif-

ically, the time course of category-discriminant information processing in these category-discriminant neural populations was calculated by

computing themutual information (in bits) between the classifier outputs and the true category labels. The functional properties of these pop-

ulations were computed to examine the relationship between these variables and anatomical axes of VTC (see STARMethods). We examined

gradients of, and interactions between, nine factors: two stimulus response timescales (initial rise duration and maintenance of category-

discriminant information; factors 1 and 2; see Figure 2A for illustration); category-discriminant information onset time and peak magnitude

(factors 3 and 4, see Figure 2A for illustration); two endogenous (prestimulus) timescales (factors 5 and 6), the timescale of decay, ‘‘tau,’’

for the prestimulus stP and stHFBB autocorrelation functions (see Figure 3A for illustration); functional connectivity to visually responsive pop-

ulations and to populations that were not significantly visually responsive (factors 7 and 8); and the accuracy of a neural population’s activity for

predicting behavioral RT (factor 9). We first examine these gradients individually to compare the results from human intracranial electroen-

cephalography (iEEG) to prior results seen in other modalities7 before examining their relationship to behavior and interactions among the

factors.

Gradients of information processing dynamics

The cortical distance from the occipital pole, which roughly corresponds to the fovea in primary visual cortex, was used to approximate the

position of neural populations along the hierarchical axis of the ventral visual stream.24 Distance along this axis was correlated with several

aspects of information processing in these category-discriminant neural populations (factors 1–4, Figure 2; see Figure S2 for an example from

a single subject). Along this axis, neural populations demonstrated increasing onset latencies and increasing durations between this onset
2 iScience 27, 110003, June 21, 2024



Figure 1. Category-selective VTC electrode contacts

Spatial topography of electrode contacts recording from neural populations that achieved

peak category-discriminant information greater than chance at the p < 0.001 level corrected

formultiple temporal comparisons. Colors represent the electrode contact’s cortical distance

from the occipital pole calculated using subject-specific anatomy. Depth electrode contacts

are plotted below the cortical surface for clarity. Contacts that appeared to be outside of the

Montreal Neurological Institute (MNI) standard brain due to differences in individual brain

sizes were projected to the nearest MNI cortical vertex in this figure solely for illustrative

purposes. The proportion of left versus right hemisphere category-discriminant contacts was

comparable to the proportion of total left versus right hemisphere VTC implants (Figure S1).
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and their peak time of category-discriminant information (see STAR Methods section ‘‘Neural information processing dynamics’’). Addition-

ally, neural populationsmaintained category-discriminant information longer after peaking, despite reaching smaller peakmagnitudes, when

moving along the visual hierarchy. Lengthening of these neural timescales along the visual hierarchy is generally consistent with prior

studies.9–11,16 However, the duration between onset and peak time (rise duration) has not generally been examined and the magnitude of

the lengthening of this factor is greater than expected from visual models that assert that the dynamics should be governed primarily by con-

duction delays.20,25 See Figure S3 for simulations demonstrating the independence of peak magnitude and rise duration metrics.

Gradients in information processing dynamics were present in individual patients (Figure S2), and several generalized across patients

(linear mixed-effects models, Figure 2 caption). Notably, there were differences in these dynamic gradients when examining category-

discriminant versus category-indiscriminant visual responsiveness in the same neural populations (Figure S4). Additionally, there were differ-

ences in these gradients across neural populations selective for different object categories, with face-selective populations generally display-

ing shallower posterior-anterior gradients than other category-selective populations (Figure S5; Table S1).
Gradients of endogenous neural timescales

Next, the endogenous neural timescales of VTC populations were quantified by computing the autocorrelation of prestimulus activity at mul-

tiple temporal lags and modeling the resulting autocorrelation curve with an exponential decay function9,26 (factors 5–6, Figure 3, see STAR

Methods section ‘‘Endogenous neural timescales’’). When moving along the visual hierarchy, neural populations demonstrated increasing

time constants of decay (tau) in the autocorrelation function of their prestimulus stP, indicating that their activity exhibited longer time-

scales/slower dynamics along this axis. This is consistent with previous studies observing slower endogenous timescales when moving up

sensory processing hierarchies.3,4,9,16,17,27

Conversely, contrary to previous work that has only shown longer timescales along sensory processing hierarchies,5–7,12,13 neural

populations demonstrated shorter timescales in their prestimulus stHFBB activity when moving along the ventral visual hierarchy.

Time constants across stP and stHFBB signal components were not significantly correlated with one another across electrode contacts

(r(390) = �0.05, p = 0.33), highlighting the differentiability of these two aspects of the neural signal.28–30 These results show that these

components of the endogenous neural activity demonstrate distinct timescales that have opposite gradients along the ventral visual

hierarchy.

Gradients in endogenous neural timescales were present in individual patients (Figure S2), and several generalized across patients (linear

mixed-effects models, Figure 3 caption). Given the differences in endogenous neural timescales exhibited in stP and stHFBB, we recomputed

gradients in information processing dynamics (factors 1–4) from these signal components separately.With a few notable exceptions, stimulus-

related information processing dynamics demonstrated similar gradients for stP and stHFBB across these components when moving along

the visual hierarchy (Figure S6).
Gradients of functional connectivity

After examining gradients in information processing and endogenous timescales, we examined gradients in functional connectivity along the

ventral visual hierarchy. Specifically, a measure of functional connectedness to the rest of the brain, the average prestimulus phase-locking

value (PLV), was calculated between the 390 category-discriminant VTC electrode contacts and all other electrode contacts implanted within

the samepatient (on average 115 electrode contacts, SD= 41). These ‘‘other’’ electrode contacts were located across the entire brain, not only

in VTC (Figure S1). Here we report the metrics obtained when looking at functional connectivity from�450 to 0 ms before stimulus onset, but
iScience 27, 110003, June 21, 2024 3



Figure 2. Category-discriminant information processing gradients along the ventral visual hierarchy

(A) The time course of category-discriminant information processing was computed for each neural population. The average time course across category-

discriminant VTC populations is illustrated here. From each neural population’s information processing time course, the information onset time (panel B),

processing duration (C), peak magnitude (D), and maintenance duration (E) were computed. Simulations confirmed that decreases in information amplitude

and information processing duration are independent using our methods (Figure S3). (B) The onset of category-discriminant information, defined as the time

point the information reached 10% of the maximum before peaking, was significantly correlated with the position of that neural population along the ventral

visual hierarchy. The black line indicates the least-squares regression fit. Spearman’s r and associated p value shown on top right (n = 390). Spearman

correlation was used because it is both more robust to outliers relative to Pearson’s and is sensitive to non-linear monotonic relationships between variables,

though this also means that the line drawn is not representative of the r. Slope of the least-squares regression line (m) indicated a 13 ms per centimeter

increase in onset latency moving along VTC. Information onset was significantly associated with distance along the visual hierarchy even after correcting for

cross-patient differences in onset latency (T(388) = 7.20, p < 0.001, tied-rank mixed-effects model). (C) The duration of the initial rise in category-discriminant

information, defined as the time between the onset of information and the time it took the population to reach 90% of its peak information, was negatively

correlated with distance along the visual hierarchy. The 90% threshold is used for the peak time because it better captures the initial rise in cases where

there is a shallow peak among an extended plateau in the discriminant information time course. Note: All correlations remain significant across a substantial

range of the heuristic thresholds chosen to define them (Figure S8), thus the selection of 10% and 90% as thresholds for onset and peak time do not drive

these effects. The slope of the least-squares regression line indicated a 6 ms increase in the duration of the initial rise of information per cm of VTC. This

relationship did not reach p < 0.05 when correcting for random cross-patient effects (T(388) = 1.55, p = 0.12, tied-rank mixed-effects model). (D) Peak

category-discriminant information was negatively correlated with distance along the visual hierarchy, with a decrease of �0.0035 bits/cm. This relationship

did not reach p < 0.05 when correcting for random cross-patient effects (T(388) = �1.62, p = 0.11, tied-rank mixed-effects model). There was a significant

interaction between gender and distance along the visual hierarchy on peak category-discriminant information (T(386) = 3.24, p = 0.0013), with females

having a stronger decrease compared to males. (E) Information maintenance duration, defined as the time between when the information first reached 90%

and the time when it first decayed to 50% of the peak, was positively correlated with distance along the visual hierarchy. The slope of the least-squares

regression line indicated a 7 ms increase in the duration of maintenance of information per cm of VTC. This relationship trended to p < 0.05 significance

when correcting for random cross-patient effects (T(388) = 1.87, p = 0.063, tied-rank mixed-effects model).
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none of the reported results changed substantially when looking at post-stimulus (50 to 450 ms) functional connectivity instead, since pres-

timulus and poststimulus connectivity were highly correlated (r(390) = 0.96, p < 0.001). Previous fMRI studies suggest opposite gradients in

functional connectivity to unimodal sensory versus association and transmodal areas when moving along sensory processing streams.1,3

Therefore, we separately computed the functional connectivity of VTC category-selective contacts to visually responsive contacts

(p < 0.001, for visual stimulus response versus baseline, corrected for multiple temporal comparisons) and to those that were not visually

responsive (factors 7–8, see STARMethods section ‘‘Functional connectivity’’ formoremethodological details). Also, given the wide variability

of electrode coverage across patients, pooling connectivity across visually responsive and not-visually responsive contacts allowed us to

partially overcome this cross-patient anatomical heterogeneity.

Connectivity betweenVTC electrode contacts and visually responsive contacts decreasedwhenmoving up the visual hierarchy. In contrast,

the connectivity between VTC contacts and contacts that were not significantly visually responsive increased when moving up the visual hi-

erarchy (Figure 4). Decreasing functional connectivity to visually responsive regions and increasing functional connectivity to regions that do

not demonstrate strong visual responses are generally consistent with previous fMRI studies showing opposing anatomical gradients along

VTC for functional connectivity to unimodal versus transmodal regions.3
4 iScience 27, 110003, June 21, 2024



Figure 3. Prestimulus neural timescales along the ventral visual hierarchy

(A) For each neural population, the autocorrelation function during the �500 to 0 ms prestimulus period was computed for temporal lags ranging from 1 to

250 ms, averaged across trials (black line is the average across category-discriminant neural populations), and fit with a single exponential decay function

(gray line). The timescale (tau) indicates how fast the fitted exponential function decays (dashed line; computed like those in9) and was correlated with other

functional properties of the category-discriminant neural populations’ activity.

(B) The autocorrelation function of single-trial potentials (stP) decayed more slowly when moving up the visual hierarchy, indicating that stP in more anterior VTC

had higher autocorrelations at greater lags (longer timescales) relative to more posterior neural populations. This relationship held when correcting for random

cross-patient effects (T(388) = 8.03, p < 0.001, tied-rank mixed-effects model).

(C) The autocorrelation function of single trial high frequency broadband (stHFBB) decayed more quickly when moving up the visual hierarchy, indicating that

stHFBB in more anterior VTC had lower autocorrelations at greater lags (shorter timescales) relative to more posterior neural populations. This relationship also

held when correcting for random cross-patient effects (T(388) = �5.32, p < 0.001, tied-rank mixed-effects model).
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Gradients of ability to predict behavior

Additionally, we examined whether a neural population’s role in visual perceptual behavior exhibited an anatomical gradient (factor 9). This

was done by predicting the RT of patients, using slidingwindows of neural activity recorded at each category-selective VTC electrode contact,

during trials of the 1-back task where patients correctly responded that an object was presented twice in a row. How predictive the activity in

an electrode contact was of RT was used as a measure of how much the activity from that neural population contributed to perceptual

behavior (see STAR Methods section ‘‘Predicting response time from VTC activity’’). When considering stP and stHFBB together, the ability

of a VTC neural population’s activity to predict RT was not significantly correlated with distance along the visual hierarchy (r(390) = 0.02, p =

0.75). However, when considering them separately, a neural population’s ability to predict RT decreased along the visual hierarchy when look-

ing at stHFBB but increased when looking at stP. These differences again highlight nuances in large-scale neuroanatomical gradients when

considering different aspects of the neural signal.28–30
Relationships between and among neurodynamics, functional connectivity, and behavior

Given corresponding anatomical gradients in local dynamics and long-range cortical interactions, a key question is, to what degree these

gradients interrelate beyond shared anatomical axes. To explore this question, the partial correlations between these functional properties

of category-selective VTC populations were calculated after removing the effects of distance along the visual hierarchy (Figure 5). Spearman’s

partial correlation was used to remove any monotonic relationship to distance along the visual hierarchy; thus our analyses examined both

linear and non-linearmonotonic relationships (see Figure S7 for the non-partialed correlations and STARMethods section ‘‘Quantification and

statistical analysis’’ for further details).

The negative partial correlation between a neural population’s stP timescale and its functional connectivity to visually responsive popu-

lations throughout the brain was significant. This suggests that parts of VTC that communicate strongly with other visually responsive regions

have shorter timescales. Furthermore, the negative partial correlations were significant between themagnitude of a neural population’s peak

category-discriminant information and its connectivity to both visually responsive regions and regions that were not. This shows that neural

populations with stronger connectivity, especially to non-visual areas, have less category-discriminant activity.

None of the measures of endogenous or stimulus-related information processing timescale (prestimulus stP and stHFBB tau, initial rise

duration, and maintenance) were significantly correlated with one another, with or without removing the effects of distance along the visual

hierarchy (Figures 5 and S7). Thus, though there are gradients in neural timescales across VTC using each of these measures, neither these

timescales nor their gradients are significantly correlated to one another even though they weremeasured from the same neural populations.

Notably though, endogenous autocorrelation timescales were correlated with poststimulus autocorrelation timescales calculated from 0 to

500 ms after stimulus onset (stP: r(390) = 0.73, p < 0.001 and stHFBB: r(390) = 0.49, p < 0.001), just not discriminant information processing

dynamics. This suggests that neural timescales are context dependent (prestimulus- versus stimulus-related information processing, initial

rise duration versus maintenance, stP versus stHFBB, etc. are all not significantly correlated) and measuring one type of timescale cannot

be used to infer the general timescale of a neural population.

Partial correlations between nearly all the stimulus response variables (peak information, onset time, initial rise duration, and maintenance

duration), other than the timescales noted in the prior paragraph (e.g., initial rise duration versus maintenance duration), were significantly

correlated with one another. This suggests that there are interactive factors driving these different aspects of the stimulus response.
iScience 27, 110003, June 21, 2024 5



Figure 4. Gradients in long-range cortical interactions along the ventral visual hierarchy

The change in connectivity to visually responsive regions moving along VTC was opposite of the change

in connectivity to populations that were not visually responsive. Connectivity to significantly visually

responsive regions decreased along this axis, even when accounting for random cross-patient effects

(T(388) =�4.42, p< 0.001, tied-rankmixed-effectsmodel). On the other hand, connectivity to regions that

were not significantly visually responsive increased along this axis, even when accounting for random

cross-patient effects (T(388) = 3.98, p < 0.001, tied-rank mixed-effects model). There was a significant

interaction between gender and distance along the visual hierarchy on connectivity to visual cortex

(T(386) =�3.19, p = 0.0016, tied-rank mixed-effects model), with males having a stronger decrease along

this axis.
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The partial correlation between the ability of a neural population to predict RT and that neural population’s connectivity to visually respon-

sive brain regions and the partial correlation between a neural population’s ability to predict RT and that neural population’s prestimulus stP

timescale after removing the effect of distance along the visual hierarchy were both significant (Figure 5). Thus, neural populations which inte-

grate information over visual brain regions with short stP timescales were more predictive of behavior during the 1-back task observed here.

This demonstrates that aspects of both local neural dynamics and long-range cortical interactions are intimately linked to a neural popula-

tion’s role in visual perceptual behavior.

DISCUSSION

Taken together, these results illustrate interrelationships between a neural population’s anatomical location, its local dynamics, and its long-

range functional connectivity, which ultimately influence that population’s role in perception. Progressing along the ventral visual hierarchy

was associated with decreases in peak category-discriminant information, longer information onsets, longer durations of initial information

processing, longer periods of information maintenance, longer prestimulus stP timescales but shorter prestimulus stHFBB timescales, and

opposing changes in connectivity to visual and non-visual brain regions. These results suggest that the anatomical and physiological gradi-

ents that exist along the visual hierarchy influence almost all of the examined aspects of prestimulus and information processing dynamics,

which may constrain how these neural populations process information and their computational role in cognition. Indeed, a subset of these

functional gradients was correlated with the ability of a neural population’s activity to predict the speed of behavioral responses during a

visual 1-back task. Furthermore, many aspects of stimulus response dynamics significantly related to one another beyond any shared relation-

ship with anatomical location. Functional connectivity was correlated with aspects of both the stimulus response and prestimulus timescales,

demonstrating how long-distance interactions can influence local neurodynamics. However, endogenous prestimulus timescales and post-

stimulus information processing timescales were not strongly correlated to one another, nor were the initial rise andmaintenance of the visual

response, suggesting that neural timescales are context dependent and different aspects of neural dynamics arise through different pro-

cesses and mechanisms.

Previous studies have observed that neural populations demonstrate longer timescales whenmoving from primary sensory and motor re-

gions to association cortices.5,6,9–11,16,17 The increasing endogenous timescales of stP activity along the ventral visual hierarchy observed here

further support this organizing principle of cortex. Notably though, the endogenous stHFBB timescales demonstrated the opposite relation-

ship along VTC, with shorter timescales in more anterior parts of VTC. Furthermore, the timescales of the stP and stHFBB were uncorrelated,

demonstrating a dissociation between the dynamics of these two signal components recorded from the same neural population. Prior results

show that different aspects of the iEEG signal arise from different cortical lamina and suggest that they may differentially reflect feedforward,

feedback, and intra-areal communication.29,31–33 The results here provide a hint of differences between the correlation of endogenous stP and

stHFBB with functional connectivity between visually responsive versus non-visually responsive regions, though more so in the non-partial

correlationmatrix (Figure S7) than the partial correlationmatrix (Figure 5). More broadly, these opposite and uncorrelated gradients highlight

a need to better understand the differences in the physiological origins of stP and stHFBB signal components.28–30

The duration that category-discriminant neural populations initially process category-selective information increased along the ventral vi-

sual hierarchy, which may be the result of increased computational demands involved in forming more complex and individuated represen-

tations in more anterior category-selective neural populations.34–37 However, in traditional models of perception, neural units are passive vi-

sual feature detectors that either fire or do not depending on the presence or absence of their preferred features.25 In these models, little

difference should be seen in the speed that neural populations process information further downstream because these passive feature de-

tectors, even if they are sensitive to complex features, should respond rapidly and automatically to the presence of that feature.25 In this study,

the duration of the initial rise in category-discriminant information increased along the hierarchy, which does not fit with these traditional

models, despite the duration of the initial rise visual responses (all visual activity versus baseline) remaining constant along the hierarchy (Fig-

ure S4). These results support a model of ventral visual representations that evolve through time, with information processing dynamics
6 iScience 27, 110003, June 21, 2024



Figure 5. Interactions between local dynamics, long-range cortical interactions, and behavioral correlations

Partial correlation matrix between local dynamic properties and long-range cortical interactions after removing the effect of cortical distance along the visual

hierarchy (see Figure S7 for non-partialed correlations). Colored squares are significant at the p < 0.05 level (uncorrected). The false discovery rate adjusted

critical value corresponds to r = G0.146. Within each square is the partial Spearman correlation coefficient for the variables in the corresponding row and

column. The matrix is symmetric across the diagonal. Several properties of the local information processing dynamics, including information onset, peak

magnitude, duration of the initial rise, and the amount of time the information was maintained, were significantly correlated to one another besides sharing a

common anatomical gradient. The partial correlation between peak information and functional connectivity was also significant after removing the effect of

distance along the visual hierarchy. The partial correlation between neural timescale (stP tau) and connectivity to visually responsive regions (PLVv) was also

significant as was the partial correlation between both connectivity to visual regions and stP timescale and a neural populations ability to predict patient

response time (RT) during the 1-back task.
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governed by interactions between the information being processed locally and globally through long-range connections, which reflect top-

down and recurrent interactions.38–41

Long-range functional connectivity demonstrated a crossover effect along the ventral visual hierarchy, with decreasing connectivity to visu-

ally responsive regions and increasing connectivity to those that were not, consistent with previous fMRI studies.1,3 Some of these gradients in

functional connectivity were also associated with gradients in neural timescales even after controlling for effects of distance along the visual

hierarchy. Specifically, neural populations that were more strongly connected to visually responsive regions demonstrated shorter endoge-

nous stP timescales. One potential explanation for this result is that neural populations which integrate primarily visual inputs have faster time-

scales compared to neural populations that have more diverse inputs so that they are prepared to rapidly process incoming visual informa-

tion.3,11,24 Notably, the partial correlation between connectivity to regions that did not demonstrate strong visual responses and poststimulus

stP timescale was not significant. Previous models have not investigated differential effects of long-range cortical interactions with visual

versus non-visual regions on the timescale of neural populations.8 This may be an important consideration for future models. Given the var-

iable coverage of brain regions across patients in the current study, future studies are necessary to tease apart the impact that connectivity

with specific brain regions has on local cortical dynamics.

Neural populations that demonstrated higher peak category-discriminant neural activity had earlier onsets and shorter durations of initial

rise and maintained that information longer. Our simulations demonstrated that our measures of peak and duration are independent, con-

firming that this correlation is physiological and not an artifact of the analysis (Figure S3). Longer initial rises of category-discriminant infor-

mation in neural populations with smaller peak informationmay reflect evidence accumulation over longer timescales in these populations.11

Partial correlations between local neural dynamics and long-range cortical connectivity demonstrates that, in addition to sharing strong gra-

dients along the primary axis of sensory processing systems, these properties of neural populations are closely linked to each other. These

links between local dynamics and long-range cortical interactions are likely conferred in part by shared biochemical, microstructural, and

macrostructural connectivity gradients that exist along the ventral visual axis beginning early in cortical development.1–3,42,43

Functional gradients in VTCwere also correlatedwith the degree to which a neural population’s activity could predict perceptual behavior.

In the current study, increased functional connectivity to visually responsive regions and shorter prestimulus stP timescales were associated

with a greater ability for a neural population’s activity to predict RT in a 1-back task after removing the effect of distance along VTC. This sug-

gests that these neural populations may play a larger role in the basic visual discrimination task studied here.

The ‘‘endogenous’’ activity studied here was taken from the prestimulus interval, during which participants were still engaged in the visual

1-back task, rather than true ‘‘resting-state’’ data. Therefore, anticipatory or other effects could potentially influence these results (e.g., while

the activity is ‘‘endogenous’’ it may not be ‘‘spontaneous’’). It is notable that these results cannot address relationships between neurodynam-

ics and perception or behavior in other tasks. Behaviors involvingmore complex perceptual representations and/ormore complex behavioral

decisionsmay relymore heavily on neural populationswith longer timescales and on higher-order cortical regions.39,40,44–47 Future studies are

required to determine if finer level visual discrimination involving longer RTs48 reflects contributions from neural populations with different

information processing timescales and functional connectivity patterns compared to those involved in the 1-back task studied here.
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Furthermore, it may be interesting to determine if feedback and/or feedforward interactions differentially contribute to perceptual behaviors

of different tasks.

There were not significant correlations between stimulus response timescales and endogenous timescales, or between onset dynamics

and maintenance dynamics. Different aspects of task-evoked timescales were not closely linked to one another, suggesting the physiological

drivers of initial information processing and maintenance may be independent. Additionally, endogenous neurodynamic timescales did not

generalize to stimulus-related information processing timescales. Notably, this is unlike functional connectivity patterns, which were highly

correlated across the stimulus response and prestimulus periods (r > 0.95). The lack of significant correlation across the different measures

of local neurodynamics highlights that endogenous neural timescales are not necessarily tightly related to stimulus-evoked information pro-

cessing dynamics after removing the effects of their shared gradients along cortical processing hierarchies.13,49–51 Thus, inferences about a

region’s computational role in cognition, including its temporal integration and segregation7 or temporal response windows,16,27 cannot be

inferred from endogenous dynamics alone, as stimulus information processing and endogenous timescales are not necessarily strongly corre-

lated. There is no single principle or process that governs a neural population’s timescales; e.g., timescales are not a static and inherent prop-

erty of a neural population.7,52 Rather, these results suggest that the anatomical differences in these types of timescales are governed by

different combinations of factors that can depend on cognitive and neural context.53 That said, there is increasing evidence that prestimulus

activity can influence poststimulus activity on a trial-by-trial basis,54–56 including a prior study from our group using a subset of the data pre-

sented here.55 The results here do not contradict these prior observations, as this study examines anatomical differences in mean dynamics,

not trial-by-trial relationships.

The current study highlights how large-scale anatomical and functional gradients interact to constrain local neural processing dynamics

and computation. The anatomical gradients of dynamics and connectivity demonstrated here impose important constraints for future neuro-

biological models of visual perception. This architecture may help the brain achieve abstract and conceptual representations seen in more

anterior VTC neural populations.34,36,37 While the present study examined these effects in visual processing, it is likely that similar principles

apply to other hierarchically organized sensory and cognitive systems.3,10,12,52 However, more studies are necessary to confirm the observed

principles in other sensory and cognitive processing hierarchies. Indeed, gradients in physiological, and thus functional, organization are likely

in part conferred by corresponding gradients in growth factors and, in turn, gene expression during and persisting after cortical develop-

ment.3,4,42,43 Interactions among response properties and functional connectivity patterns of neural populations suggest that shared neuro-

physiological mechanisms tie large-scale and local processing dynamics together. Distinctions among and between endogenous and stim-

ulus response timescales suggest that these neurodynamics are caused by distinct neurobiological mechanisms and play different roles in the

brain. These results highlight the mutual interrelationships between a neural population’s position in the processing hierarchy, its functional

connectivity, and its local dynamics, constraining its role in cognition.
Limitations of the study

In this study, functional and anatomical gradients of visual information processing were examined with an emphasis on ventral visual cortex.

Other studies are necessary to determine if the interactions observed here are comparable to those in other sensory ormotor cortical systems.

Additionally, in this study, prestimulus activity was used to approximate intrinsic neural dynamics. Therefore, we cannot rule out effects of

anticipation or working memory in the endogenous neural timescales reported here.
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Materials availability
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Data and code availability

� Anonymized intracranial EEG and structural MRI data will be made available on demand by the lead contact in compliance with restric-

tions imposed by the University of Pittsburgh IRB.

� This study did not report original code.
� Any additional information required to replicate the analyses reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Intracranial electroencephalography patients

Stereotactic depth and surface electrocorticography (ECoG) electrodes were implanted in ventral temporal cortex (VTC) of 41 patients

(15 males, 26 females; 3 Black, 38 White; ages 19-65) for the localization of pharmacologically intractable epileptiform activity. Different as-

pects of these recordings from 38 of these patients were previously reported.30 All patients gave written informed consent under protocols

approved by the University of Pittsburgh’s Institutional Review Board. Electrode contacts that were identified as belonging to the seizure

onset zone were not included in the analysis.

Patients were under the influence of different medications during the recording session depending on the stage of their visit at the ep-

ilepsy monitoring unit and their personal medical history. The medications typically consisted of various pain killers and anti-epileptic drugs.

It is not possible for us to knowwhichmedications each individual was on at the exact time of the experimental sessions, due to insufficiencies

in our notes during experimental sessions and insufficiencies in themedical records. The high level of heterogeneity in thesemedicationsmay

introduce sources of unmodeled cross-subject variance to the analyses (i.e., noise) that reduces statistical power, but are unlikely to introduce

bias given their heterogeneity.

Electrodes were localized via postoperativeCT scans or postoperativemagnetic resonance images (MRI). Postoperative CT scans were co-

registered to preoperative MRIs using Brainstorm.57 Surface electrode contacts were projected to the nearest reconstructed cortical voxel of

the preoperativeMRI scan to correct for brain-shift.58,59 These electrode locations were then registered to theMontreal Neurological Institute

(MNI) common space via patient-specific linear interpolations.60 VTC was defined as grey matter below the inferior temporal gyrus spanning

from the posterior edge of the fusiform gyrus to the anterior temporal lobe in MNI common space. The main difference we observe between

signals recorded from surface versus depth electrodes are small differences in the signal-to-noise ratio and spatial constraint of the signals,

neither of which strongly influence the dynamics of the signals analyzes here.

Cortical distance between each electrode contact and the patient’s occipital pole was computed using the patient’s native neural anat-

omy. The occipital pole was defined as the intersection of the calcarine sulcus, inferior occipital gyrus, and superior occipital gyrus.

The geodesic (cortical) distance between this point and the cortical surface coordinate nearest to each VTC electrode contact was computed

using custom MATLAB scripts.61
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METHOD DETAILS

Experimental paradigm

All patients underwent a category localizer task containing images occupying approximately 6� x 6� of visual angle at the center of a stimulus

display monitor positioned 2 meters from the patient’s eyes. Each stimulus was presented for 900 ms on a black background. Inter-stimulus

intervals were 1500 ms with a random 0-400 ms jitter during which the patient saw a white fixation cross. Patients were instructed to press a

button every time an image was presented twice in a row (1/6 of all trials). Repeat trials were excluded from further analysis. This left 70 trials

per category to train and test the classifiers described inMultivariate temporal pattern analysis. Several patients underwentmore than one run

of this experiment and therefore had 140 or 210 trials per category. All experimental paradigms were presented via custom MATLAB scripts

running the Psychophysics toolbox.62

35 patients underwent a category localizer task consisting of pictures of bodies, faces, hammers, houses, words, and non-objects. Six pa-

tients underwent category localizer tasks with slightly different object categories but with identical stimulus parameters. One of these patients

viewed pictures of bodies, faces, shoes, hammers, houses, and phase-scrambled objects. One viewed pictures of bodies, faces, consonant-

strings, pseudowords, real words, houses and phase-scrambled objects. One patient viewed pictures of faces, bodies, consonant-strings,

words, hammers, and phase-scrambled objects. One viewed pictures of faces, bodies, words, pseudowords, houses, and phase-scrambled

objects. One viewed pictures of faces, bodies, words, tools, animals, houses, and phase-scrambled objects. One viewed pictures of faces,

bodies, words, tools, animals, numbers, houses, and phase-scrambled objects.
Intracranial recordings

Local field potentials were collected from iEEGelectrodes via aGrapeVineNeural Interface (Ripple, LLC) sampling at 1 kHz. Notch filters at 60/

120/180 Hz were applied online. Stimulus presentation was synchronized to the neural recordings via parallel port triggers sent from the stim-

ulus displaying computer to the neural data acquisition computer. The signal was off-line filtered from 0.2-115 Hz using two-pass fourth order

butter-worth filters via the FieldTrip toolbox.63 In addition to analyzing these single trial potentials (stP), we also extracted and analyzed the

single trial high frequency broadband (stHFBB) activity of these electrodes, since these two components of the local field potential have been

shown to contain complimentary information23,30 and may arise from different neurophysiological generators.29

StHFBB activity was extracted viaMorlet wavelet decompositions from 70-150 Hz over 200ms Hanningwindowswith 10ms spacing. These

specific frequency cutoffs were chosen due to their prevalence in human iEEG data analysis and the high cross-correlation of these response

frequencies across different tasks and stimuli.29,64,65 The resulting power spectral densities were then averaged over these frequency com-

ponents and normalized to a baseline period from 500ms to 50ms prior to stimulus onset to yield the stHFBB activity. Data was then epoched

from -500 to 1500 ms around stimulus presentation. Trials during which the stP amplitude changed more than 25 microvolts across a 1 ms

sample, or during which stPs exceeded an absolute value greater than 350 microvolts, or during which either the stHFBB or stPs deviated

more than 3 standard deviations from the mean were all assumed to contain noise and were therefore excluded.
Multivariate temporal pattern analysis

Related to Figures 1, 2, and S4. Sliding, leave-one-out cross-validated, Gaussian Naı̈ve Bayes classifiers were applied to 100 ms time windows

with 10ms stride to determine if stHFBB or stP recorded from individual VTC contacts contained category-discriminant information. The input

to these classifiers was 100 ms (100 samples) of stP and 100 ms (10 samples) of stHFBB from a single electrode contact. The output of the

classifier was the category of object presented during the corresponding trial. This procedure was repeated for all VTC contacts from

time windows beginning at 100 ms prior to stimulus onset to 1000 ms after stimulus onset.

The category-discriminant information content within each neural population was estimated by computing the mutual information (I(S’,S))

between the output of theGaussianNaı̈ve Bayes classifiers (predicted category labels, S’) for a given 100ms timewindowof neural activity and

the actual presented stimulus (S):

IðS0; SÞ = PðSÞ log2

�
PðS0;SÞ
PðS0ÞPðSÞ

�
;

where P(S’,S) is the joint probability of the classifier correctly predicting the stimulus category S when the category was S, P(S’) is the propor-

tion of times the classifier guessed a trial was of stimulus S, and P(S) is the proportion of trials which the stimulus presentedwas S. This allowed

us to estimate the category-discriminant information contained within 100 ms time windows without estimating a joint probability table of

neural responses that was intractable.66,67 It has been shown that this estimate of information, which relies on a P(S’,S) derived by an external

classifier and not the actual neural code, is an underestimate of the neural information content.68 Therefore, our calculated information is a

lower bound for the actual neural information content.

Information content was averaged across all stimulus categories presented to the patient so as not to preclude electrode contacts as being

selective for only one object category.69 A threshold for significant category-discriminant information was determined by randomly shuffling

stimulus labels for a subset of VTC electrode contacts and repeating the same classification analysis 1,000 times for each electrode contact.70

Electrode contacts with the same number of runs of the category-localizer task demonstrated very similar null distributions and therefore we

applied the result of this permutation test to all VTC electrode contacts. The thresholdwas chosen such that none of the randompermutations
iScience 27, 110003, June 21, 2024 13
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for any electrode contacts in the subset reached the threshold, which corresponds to p < 0.001, corrected for multiple temporal comparisons.

Electrode contacts with peak category-discriminant neural information exceeding this threshold were defined as category-discriminant.

We performed a similar decoding analysis to determine the time-course of visual responses in individual electrode contacts (Figure S4).

This was done by classifying single trial baseline periods (100 ms to 0 ms prestimulus presentation) of neural activity from these neural pop-

ulations against sliding 100ms time-windows from -90 to 1000ms poststimulus presentation for all object categories treated as one class. This

yielded a time-course of visual responses in each sampled neural population. By randomly permuting the label of the baseline versus evoked

data and repeating the analysis in a subset of electrode contacts 1,000 times, we defined a threshold of visual information that no random

permutation of the data achieved, corresponding to the p < 0.001, chance level, corrected for multiple temporal comparisons. We used

this threshold to define visually responsive brain regions and those that were not, which were separated to calculate their differential contri-

butions of functional connectivity to VTC electrode contacts with significant category-discriminant information (Figure 4).
Neural information processing dynamics

Related to Figures 2 and S4. To estimate properties of the information processing dynamics of neural populations across VTC, the information

time-courses derived from the Naı̈ve-Bayes classifiers were first smoothed with a running average filter (width 50 ms). Next, onset latency of

category-discriminant information was defined as the last time point that an electrode contact was below 10 % of the maximum information

prior to the peak information. The initial rise in category-discriminant information was defined as the time between the onset and the point

where the information time-course first exceeded 90 % of the peak information. These cutoffs were chosen to ensure that small deviations

from chance-level information and peak information did not affect the estimated quantities. Ourmain findings were robust to specific choices

in threshold (Figure S8). Finally, we estimated the duration of information maintenance as the time between when the neural population first

reached 90% of its peak information to when the neural population’s information first fell below 50% of this maximum after peaking. Similar

dynamic properties were also estimated for visual response time-courses (Figure S4) and information processing time-courses for specific

object categories (Figure S5; Table S1).
Category-selective VTC electrode contacts

Related to Figure S5. To determine if neural populations with sensitivity to different object categories demonstrated differences in the gra-

dients of their local dynamics or long-range functional connectivity, we isolated category-discriminant VTC neural populations that re-

sponded primarily to one object category. To do this we computed the event related potential and event related broadband responses

to each category during the 1-back task. Next, any of the previously defined category-discriminant neural populations that contained

maximum information to the same category that evoked the maximum response across either of these averages was classified as selective

to that object category. We then characterized the information onset latency, slope, and connectivity of these neural populations using the

procedures described above. For these analyses we used the category-specific information processing time-course derived from the Naı̈ve

Bayes classifiers prior to averaging over all categories in the main analysis.
Information processing simulations

Related to Figure S3. Simulations were used to test if increases in information processing duration exhibited along the ventral visual hierarchy

could be explained by differences in peak informationmagnitude. Specifically, information time-courses were approximated as normal prob-

ability density functions (PDFs) parameterized by a mean, standard deviation, and magnitude (constant scaling). Normally distributed noise

with the same standard deviation as prestimulus (-400 to 0 ms) information in category-selective VTC electrode contacts was then added to

these curves. 1000 simulated signals were computed for each different PDF magnitude and standard deviation.

Information processing duration was calculated using the same procedure described for the actual signal, by calculating the time between

when the signal first reached 90 % of its maximum amplitude and the last time it was below 10 % of its maximum before that. We then

calculated the Spearman correlation between information processing duration when varying the PDF’s standard deviation (to mimic

changes in slope of the information processing time-course) and when varying the information’s peak amplitude. Peak amplitude was varied

from theminimum tomaximumpeak information in category-selective VTC electrode contacts. During the simulation investigating the effect

of slope on information processing duration, signal amplitude was fixed at the average peak information in category-selective VTC electrode

contacts.
Endogenous neural timescales

Related to Figure 3. The endogenous timescales of VTC populations were characterized by computing the autocorrelation of prestimulus

(-500 ms to stimulus onset) stPs and prestimulus stHFBB activity from 1-250 ms lags during each clean trial of the 1-back task (i.e., those

that were not excluded due to noise rejection criteria explained at the end of the section ‘‘Intracranial Recordings’’). These prestimulus auto-

correlation functions were then averaged over all trials. The average autocorrelation function for each electrode contact was then fit with a

single exponential decay function:

ACFðtÞ = t0 +N0e
� t=t
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The neural timescale (tau), which measures the rate at which the autocorrelation function decays, was then correlated with several other

functional properties of the neural population. This estimation of neural autocorrelations and computation of tau is similar to the procedure

described in.9
Functional connectivity

Related to Figure 4. To determine the connectedness of VTC neural populations to the rest of the brain, phase-locking values (PLVs) were

calculated between neural populations with above-chance levels of category-discriminant information and all other electrodes within the

samepatient (regardless of category-discriminant information content). Electrode contacts within 1 cmof the category-discriminant electrode

were not included in the analysis to rule out effects caused purely by volume conduction. PLVs measure instantaneous phase-coupling across

different brain regions independent of differences in amplitude, unlike coherence metrics.71 This makes PLVs more sensitive to detecting

weakly coupled oscillators despite differences in amplitude.72 This coupling of oscillations is thought to indicate event-related communica-

tion between electrode contacts.

The instantaneous phase of each electrode contact during all category-localizer trials was computed via convolution of the filtered neural

activity (from 1-115 Hz) withMorlet wavelets of frequencies ranging from 1-60 Hz (width = 5). This convolution allowed the separation of signal

phase from envelope at each frequency.73 Next, the PLV was computed by taking the vector average of the phase difference between two

electrode contacts at each time point. PLVs close to 1 indicate two electrode contacts have similar phase differences at this frequency and

time point across all trials. Conversely, if this number is close to 0, the phase difference between these electrode contacts is random at this

given frequency and time point.

A spectral window of interest was defined to capture the part of the PLV spectrogram that showed increased functional connectivity across

all category-discriminant VTC neural populations. We chose to focus on the time windows from -450 to 0 ms before stimulus onset to capture

prestimulus functional connectivity of the neural populations. Next, we determined which frequency components demonstrated increased

stimulus-evoked functional connectivity across VTC. To do this we averaged the PLVs from 50 to 500ms and performed a paired t-test against

the average PLV from -450ms to 0ms before stimulus presentation between the category-selective VTC electrode contacts and the rest of the

electrode contacts in the same patient. This analysis revealed that frequency components between 1 and 22 Hz all had significantly greater

phase-locking across all category-discriminant VTC electrode contacts relative to baseline on average from 50 to 500 ms after stimulus pre-

sentation (p < 0.001, corrected).

Therefore, we averaged the PLVs across electrode contacts from 2 to 22 Hz (discarding 1 Hz frequency band to increase the temporal pre-

cision of our estimated phase-locking), and -450 to 0 ms before stimulus onset to calculate the functional connectedness of these same re-

gions. We separately averaged the connectivity of category-discriminant VTC neural populations with visually responsive regions (defined

above) and those that were not visually responsive to determine if there were connectivity differences across these neural populations.

Average functional connectivity from -450 to 0 ms prestimulus and 50-500 ms after stimulus presentation were strongly correlated with

one another (r = 0.96, p < 0.001). Thus, results do not substantially change if either the prestimulus or post stimulus PLV is used.
Predicting response time from VTC activity

Related to Figure 5. To test for differences in the correlation between category-selective VTC population activity and behavior, patient RT was

predicted using the neural activity from each category-selective contact. Specifically, a sliding window L2-regularized multiple regression

(100 ms window, 10 ms stride) was used to predict patient RT from stP and stHFBB activity using a leave-one-trial-out cross-validation pro-

cedure. Only trials when the patient correctly reported that an object was repeated twice in a rowwere included in the analysis. Themaximum

Spearman correlation between the patient’s RTs and the sliding-window RT predictions from 0-1000 ms after stimulus presentation was

considered as the neural population’s correlation with behavior. This correlation was then correlated with that population’s dynamics, con-

nectivity, and anatomical location.
QUANTIFICATION AND STATISTICAL ANALYSIS

Spearman rank-order correlations were used to calculate the correlations between anatomical position and aspects of the neural information

time-courses calculated above. Spearman rank-order partial correlations were used to calculate the correlation between variables while cor-

recting for correlations sharedwith other variables. Benjamini-Hochberg FalseDiscovery Rate estimationwhich is valid for dependent hypoth-

esis tests was used where noted.74 Paired T-tests were used to determine if there were differences in the dynamics of processing different

levels of information (visual versus category-discriminant) in the same electrode contacts.

Rank-order mixed-effects models were used to control for random effects of cross-patient variability while examining the main effects of

connectivity and anatomical position on information processing dynamics. We chose to fit these mixed-effects models with equal slopes but

random intercepts across patients to ensure the models converged. Because observations in mixed-effects models are not independent, it is

difficult to determine the appropriate degrees of freedom. This makes estimation of p-values impossible without appropriate approximation.

Therefore, to derivep-values for themain effects of themixed-effectsmodels, we use the Satterthwaite approximation, which has been shown

to produce acceptable Type 1 error rates with relatively few samples.75

To examine differences in information processing dynamics across males and females, a separate set of linear mixed-effects models were

fit to explain information processing as a function of distance along the visual hierarchy with an additional fixed effect of gender and an
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interaction term of distance by gender. Participant identifier was included as a random effect to control for cross-patient variability. Gender

did not have a significant effect (p < 0.01) on most of the neural dynamics studied in this paper.

Linear multiple regression models were used to compare gradients of information processing in VTC neural populations that were se-

lective for different object categories. We only included the categories that most patients saw (bodies, words, faces, hammers, houses, and

phase-scrambled objects). Specifically, linear models were used to predict information onset latency, peak magnitude, processing dura-

tion, maintenance duration, and connectedness as a function of the category-selective neural populations’ distance from the occipital pole

with an added factor indicating which category the neural population was selective for (Figure S5). Linear mixed-effects models were

initially used for this analysis to simultaneously control for random effects across patients. However, these models failed to converge, likely

indicating an insufficient number of data points per category and patient to estimate these random effects. Because face-selective elec-

trode contacts were most prevalent in our population, we used this as our baseline and compared all other categories to face-selective

electrode contacts (Table S1).
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