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ABSTRACT

Long-read transcriptome sequencing is designed to sequence full-length RNAmolecules and advantageous for identifying
alternative splice isoforms; however, in the absence of a reference genome, it is difficult to accurately locate splice sites
because of the diversity of patterns of alternative splicing (AS). Based on long-read transcriptome data, we developed
a versatile tool, IsoSplitter, to reverse-trace and validate AS gene “split sites” with the following features: (i) IsoSplitter
initially invokes a modified SIM4 program to find transcript split sites; (ii) each split site is then quantified, to reveal tran-
script diversity, and putative isoforms are grouped into gene clusters; (iii) an optional step for aligning short reads is pro-
vided, to validate split sites by identifying unique junction reads, and revealing and quantifying tissue-specific alternative
splice isoforms. We tested IsoSplitter AS prediction using data sets from multiple model and nonmodel plant species and
showed that the IsoSplitter pipeline is efficient to handle different transcriptomes with high accuracy. Furthermore, we
evaluated the IsoSplitter pipeline compared with that of the splice junction identification tools, Program to Assemble
Spliced Alignments (PASA software needs a reference genome for AS identification) and AStrap, using data from themod-
el plant Arabidopsis thaliana. We found that IsoSplitter determined more than twice as many AS events than AStrap anal-
ysis, and 94.13% of the IsoSplitter predicted AS events were also identified by the PASA analysis. Starting from a simple
sequence file, IsoSplitter is an assembly-free tool for identification and characterization of AS. IsoSplitter is developed and
implemented in Python 3.5 using the Linux platform and is freely available at https://github.com/Hengfu-Yin/IsoSplitter.
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INTRODUCTION

Alternative splicing (AS) is an evolutionarily critical charac-
teristic of eukaryotic genes that increases proteome diver-
sity and regulates gene expression (Baralle and Giudice
2017). A large proportion of eukaryotic genes are alterna-
tively spliced; for example, over 95% of human genes
undergo AS (Pan et al. 2008; Nilsen and Graveley
2010). AS events are also widespread in plants and AS is in-
volved in various plant functions, including development,
growth, and stress responses (Barbazuk et al. 2008).
Recently, genome-wide characterizations of various plants
species have shown that a large proportion of genes
undergo AS, with proportions in different species, as fol-
lows: Amborella trichopoda, 70.4%; Vitis vinifera, 64.4%;
Populus trichocarpa, 53.2% (Chamala et al. 2015);
Arabidopsis thaliana, 60% (Marquez et al. 2012; Zhang

et al. 2017); and Oryza sativa, 46.4% (Zhang et al. 2010).
Based on sequence analysis of mRNA molecules and their
corresponding genomic loci, AS isoforms can be catego-
rized into groups, including those with retained introns,
skipped exons, alternative 5′ or 3′ splice sites, or mutually
exclusive exons (Staiger and Brown 2013). Plants and ani-
mals differ in their most common types of AS events; in
plants, retained introns are the most common AS event,
while skipped exons are the most common in animals
(Dong et al. 2018; Slansky and Spellman 2019).

Accurate determination of AS is an important step to in-
vestigate genome characteristics and gene function. The
original basic and fundamental method for discovery of
AS events from sequence data is alignment of expressed
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sequence tag (EST) data to genomic sequences (Mironov
et al. 1999; Modrek and Lee 2002). In recent years, several
new methods and tools to identify AS events have
been developed; however, most of them rely on the avail-
ability of a reference genome and annotation. For exam-
ple, Program to Assemble Spliced Alignments (PASA) is
a tool well-suited to the identification and classification
of AS isoforms (Haas et al. 2008). PASA uses GMAP/
BLAT to align transcripts to the genome and performs
“all-versus-all” comparisons among clustered overlapping
alignment assemblies to identify splicing variations (Haas
et al. 2008).
With advances in sequencing technology, discovery

of extensive AS events is no longer limited to model spe-
cies (Wang et al. 2009). Third-generation sequencing
(TGS) technologies (e.g., Pacific Biosciences and Oxford
Nanopore) feature long-read sequencing. TGS platforms
generate reads of 1–100 kb, which are much longer than
those from second-generation sequencing (SGS) platforms
(50–700 bp) (Rhoads and Au 2015; Weirather et al. 2017).
Long-read transcriptomes generated using TGS have ad-
vantages for identifying gene isoforms compared with
SGS, as there is no need to reconstruct the transcript vari-
ants (Weirather et al. 2017; Dong et al. 2018); however, in
species where there is no high quality reference genome,
accurate identification of AS sites, particularly for sequenc-
es withminor changes, remains difficult using conventional
sequence similarity searches. One alternative approach is
to assemble reads and generate a reference to determine
AS sites by realignment. For example, the IDP-denovo
tool takes both short and long reads to assemble a “pseu-
dogenome” as the reference for AS identification (Fu et al.
2018). The use of reconstructed reference information has
been shown to substantially increase efficiency for non-
model species (Fu et al. 2018). AStrap is another software
program for identifying AS isoforms without using a refer-
ence genome. AStrap first uses CD-HIT software to reduce
redundancy and generate a clustered isoform file (Li and
Godzik 2006; Fu et al. 2012), then performs alignments to
generate an aligned sequence file using GMAP or other
tools; second, Astrap identifies splice isoforms and AS
types using a machine-learning model (Ji et al. 2019).
Given the copious number of isoforms present in a long-

read-based transcriptome data, wewere motivated to fully
explore AS events without reconstructing or assembling
original sequencing reads. To ensure the accuracy of se-
quence alignments, we adopted SIM4 algorithms (Florea
et al. 1998) to identify high similarity regions for initial AS
identification. As a tool designed to align cDNA to geno-
mic DNA sequences, SIM4 determines high similarity seg-
ment pairs (HSPs) by screening 12-mers, followed by
implementing the dynamic programming algorithm, and
is highly accurate and efficient. Here, we implemented a re-
verse-tracing approach to determine AS sites (“split sites”)
using long-read transcriptome data alone, via modified

SIM4 alignments. We grouped potential gene isoforms
and counted the occurrences of split sites to reveal tran-
script diversity. Further, we provide an option to validate
and quantify the occurrence of split sites using short-read
data sets; this feature is useful for functional evaluation of
tissue-specific AS isoforms.

RESULTS

IsoSplitter design principles

IsoSplitter uses a modified SIM4 alignment algorithm
(Floreaet al. 1998) to handle transcriptome sequences con-
taining diverse gene isoforms. Although transcriptomes
assembled from short-read sequencing can be used,
IsoSplitter is designed for usewith long-read transcriptome
data (e.g., the transcripts of isoform sequencing by using
Pacific Biosciences Technology after clustering and remov-
ing redundancy). In a complete transcriptome, alternative
gene splicing can occur in various patterns, such as exon
skipping, mutually exclusive exons, or alternative donor
or acceptor sites (Modrek and Lee 2002); most cases will
generate a gap region at the alternative splice site: a bro-
ken point in a transcript, supported by two consecutive
aligned regions of another transcript (Fig. 1); however,
IsoSplitter is unable to identify AS isoforms with alternative
5′ or 3′ ends, due to the lack of a gap.
There are three major analyses implemented in the soft-

ware package. (i) IsoSplitter first performs all-versus-all
alignments and locates the “breaking points” of tran-
scripts; transcripts supporting the “breaking points” are
further grouped to remove redundant combinations,
which generates gene clusters of transcript isoforms. (ii)
IsoSplitter offers an option of aligning short reads to vali-
date breaking points through extracting and re-indexing
the associated regions. Junction reads that support the
split are identified to validate the detection of AS sites in
a transcript; and the number of junction reads is calculated
to reveal the abundance of AS events. (iii) Furthermore, to
calculate the expression levels of tissue-specific isoforms,
reads that map exclusively to the split sites are counted
and normalized per transcript for downstream analyses.
The preferential input files are complete transcriptome se-
quences that include extensive variation of AS isoforms,
while individual sequencing results of incomplete tissue
collections and high redundancy are not suitable due to
the design of all-versus-all alignment (Fig. 1).

IsoSplittingAnchor efficiently identifies AS sites
based on transcriptome sequences

To evaluate the efficiency of IsoSplitter, we used transcrip-
tome sequences from public and in-house data sources,
including Arabidopsis thaliana, Populus trichocarpa, Zea
mays, and Camellia japonica, for AS identification. We
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show that, without reference genome information,
IsoSplitter can efficiently identify potential AS isoforms
(Fig. 2A). We tested the performance of IsoSplitter predic-
tion using varied data sets fromdifferent plant species (Fig.
2B). For a typical transcriptome containing 40,000–50,000
transcripts, IsoSplitter takes around 20 h to complete AS
prediction, with all-versus-all SIM4 alignments using 30
CPUs on a Ubuntu platform with an Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz processor and 128GB-RAM (Fig.
2C). For transcriptome over 10,000 transcripts, the predic-
tion took a substantial longer period for prediction (Fig.
2A,C). TheC. japonica transcriptome data set was generat-
ed by isoform sequencing (Hu et al. 2020), and we found
the AS discovery rate (55.57%) was higher for this data
set than for those of A. thaliana and P. trichocarpa (Fig.
2D). The Z. mays data set contained the highest number
of transcripts, and IsoSplitter yielded the highest discovery
rate (76.07%; Fig. 2D).

To investigate the accuracy of IsoSplitter, we took
advantage of the AS information based on genome anno-
tation information from A. thaliana and P. trichocarpa.
Based on the gene model information of the reference ge-
nomes, the alternative gene isoforms were located; this in-
formation of AS isoforms was used for the testing of
prediction accuracy. We found that, for both analyses,
the majority of AS events were identified by IsoSplitter;
the accuracy rates for A. thaliana and P. trichocarpa were
75.1% and 73.0%, respectively (Fig. 3A,B). To reveal the
features of missed predictions, we analyzed AS isoforms
that were missed by IsoSplitter in A. thaliana. First, we fil-
tered out isoforms with different 3’UTR and 5’UTR ends,
since IsoSplitter cannot detect AS transcripts without a
gap. The filtered number of transcripts of Arabidopsis
thaliana and Populus trichocarpa are 3682 and 4389, re-
spectively. The remainder transcripts were evaluated for
the performance of IsoSplitter prediction. Our data show

that, for missed AS isoforms with a
gap, gap size was a major factor for
IsoSplitter prediction; small gaps <6
nt were abundant in all missed cases
(Fig. 3C).

Validation and quantification of
AS events using short-read data

To further investigate AS transcripts,
we used high-coverage short-read
data to validate and quantify AS iso-
forms. First, the sequences 135 bp
up- and downstream of the split sites
(for regions <135 bp, remainder se-
quences were used) were extracted
and re-indexed. Next, short reads
from each experiment were mapped
using bowtie2 (Langmead and Salz-
berg 2012).We screened for two types
of read: junction reads and isoform-
specific reads (Fig. 1). The number of
junction reads indicates the frequency
ofdifferential splicingevents,while iso-
form-specific reads can be used to
quantify unique isoforms. In this ver-
sion of IsoSplitter, the identification of
junction reads was based on the bow-
tie2; and default settings were reads
with over 15 bp perfect matches next
to the split site (Fig. 1). The prediction
of AS isoforms is supported by the
junction reads. Inorder to reveal the tis-
sue-specific expression of isoforms, we
provide amethod to determine the ex-
pression levels of isoforms based on
isoform-specific reads: Average counts

FIGURE 1. A schematic diagram of IsoSplitter design. IsoSplittingAnchor determines the split
sites of transcripts through selection using a modified SIM4 algorithm; the default parameters
for HSP selection are shown and can be customized. Transcriptome sequences after removing
redundancy from long-read sequencing are recommended Input files; other transcriptome col-
lections that contain extensive gene alternative splicing isoforms are suitable for the analysis as
well. When short RNA-seq reads are available, ShortReadsAligner maps the short reads and
identifies junction reads and isoform-specific reads that validate and quantify the split sites.
Finally, isoform expression levels are calculated based on sequence reads. Red boxes indicate
output files. The prediction of AS isoforms is supported by the junction reads; and to reveal the
tissue-specific expression of isoforms the isoform-specific reads are calculated into ACM for
quantification. The stars indicate the split sites identified by the SIM4 alignments.
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permillion of total reads (ACM). For an isoformwithmultiple
split sites, the ACM is calculated as an average number of
isoform-specific reads normalized to millions of total used
reads. The ACM is defined by the following: ACM= (total
isoform-specific reads of a transcript/split sites of the
transcript) × (total mapped reads to this transcript/transcript
base number) ×10−6. And the formula is listed below: (ACM
=SUM(ISR)/SUM(SS) ×SUM(TMR)/TL×10−6 ISR, mapped
isoform-specific reads of a transcript; SS, split-sites number;
TMR,mapped reads to this transcript; TL, numberofbases in
the transcript). This functionality is useful for performing
downstreamanalyses to identify differentially expressed iso-
forms and functional interpretation of genes involved in AS
and gene regulation.

Comparisons of the IsoSplitter pipeline with other
software

To investigate the use and efficiency of AS prediction, we
compared the IsoSplitter pipeline with the AStrap and
PASA packages using the A. thaliana transcript data set.
ThePASApipeline requires a referencegenome to support
AS identification,whileAStrapand IsoSplitter use only tran-
scriptomesequences for prediction.Wecompared the run-
time and memory usage between IsoSplitter, AStrap and
PASA (Table 1). For the calculation of runtime andmemory,
AStrap needs at least three types of files: the transcriptome

sequence file (FASTA); isoform cluster
file (TEXT) generated by CD-HIT;
aligned sequence file (GFF3) generat-
ed by GMAP or other sequence align-
ment tools. Therefore, runtime was
the sum time of all three steps; PASA
integrates the MySql database for AS
identification, which greatly reduced
the runtime and memory (Table 1).
PASA predicted the highest number
of AS events (28779), accounting for
53.46% of total transcripts (Fig. 4A).
The AStrap package yielded 7083 AS
events, and 6823 of those events
were also identified by PASA (Fig.
4A). IsoSplitter identified 14911 AS
events, comprising 6666 (44.70%)
events that were identified by all pre-
diction packages (Fig. 4A), and 7370
events that were only shared between
IsoSplitter and PASA (Fig. 4A). Com-
paring to PASA prediction, we found
that there were 14743 missed AS
events (Fig. 4A). Among these missed
events, we found 4779 alternative 3′

ends, 3635 alternative 5′ ends, 4788
retained introns and 1541 others
(Fig. 4B). Since IsoSplitter is not de-

signed to find alternative 3′ and 5′ ends, we evaluated
the 4788 missed events of retained introns, we found that
when the modification of default parameter (in this case:
length≥ 15 bp & identity≥80%), 2641 more AS events
that fit with a2= a1+1 (Fig. 1) were found (not shown).
We also revealed that the typicalmissing events of retained
introns were due to themissing of a consecutive alignment
(Fig. 4C). These results suggest that the IsoSplitter package
is highly efficient for discovering AS events when no refer-
ence genome is available.

DISCUSSION

The identification and quantitation of AS isoforms is a crit-
ical step in understanding the function and regulation of
eukaryotic genes. Bioinformatic tools designated for AS
identification are essentially based on sequence align-
ments, with or without use of a reference genome
(Nilsen and Graveley 2010; Liu et al. 2017; Ji et al. 2019).
The SIM4 package was originally designed to align geno-
mic DNA to mRNA sequences and is optimized for han-
dling exon-intron boundaries (Florea et al. 1998). In the
IsoSplitter pipeline, determination of a gap, or split site,
is the basis for AS identification (Fig. 1), and the SIM4 algo-
rithm is well-suited for this purpose. Using the default set-
tings, we found that SIM4-based AS identification using
complete transcriptomes is efficient (Fig. 2). We used

BA

C D

FIGURE 2. Prediction of Arabidopsis AS transcripts by IsoSplitter. (A) Summary of total used
and predicted numbers of transcripts for Ath, Cja, Ptr, and Zma. (B) The distribution of tran-
script length in different species. The total number of transcripts are displayed. (C )
IsoSplitter processing time on a 30 core cluster. (D) AS event prediction rates for Ath, Cja,
Ptr, and Zma. Ath, Arabidopsis thaliana; Cja, Camellia japonica; Ptr, Populus trichocarpa;
Zma, Zea mays.
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Arabidopsis transcript sequences containing AS informa-
tion to test the accuracy and efficiency of IsoSplitter and
found that >70% of authentic AS events were identified
by IsoSplitter in both tests; however, missing prediction
rates were higher than the false-positive rate (Fig. 3). We
expect that modification of the alignment parameters of
IsoSplittingAnchor could alter the prediction efficiency.
Using the data set of A. thaliana, we modified the param-
eters of SIM4 alignment for the AS prediction; we found
that the less stringent parameters (e.g., length≥15 bp &
identity≥ 90%) enhanced the discovery rate of AS predic-
tion (Table 2). As we have shown in the case of retained
introns (Fig. 4B,C), the prediction rate under the less strin-
gent parameters can be highly accurate. These results indi-
cate that the modification of parameters can be useful to
increase the discovery rate for various data sets. We have
manually evaluated the missed AS events in Arabidopsis
with at least one gap, and showed that a large proportion
(∼60%, Fig. 3C) of missing gaps were <4 bp, possibly due
to the initial SIM4 scanning algorithm. The current design
of IsoSplittingAnchor focuses on screening of eligible split
sites and is not designed to evaluate gaps. For small se-
quence variations, an extra step of gap filtering could be

incorporated to identify specific types
of AS isoform, such as short sequence
repeats, by evaluating the original
alignment output file. We also identi-
fied 448 false AS sites in Arabidopsis
(accounting for 2.8% of the total pre-
diction, Fig. 3A). Evaluation of those
alignments revealed that the sequenc-
es exhibited very high sequence
similarity. Therefore, introduction of
further stringent alignment parameters
will reduce the number of false posi-
tives; however, it may also reduce total
AS discovery.
We have compared the AS predic-

tion results of IsoSplitter to those gen-
erated using PASA and AStrap. We
show that IsoSplitter predicted more
than twice as many AS events than
AStrap analysis, which also predicts
AS without using a reference genome
(Fig. 4A), and that themajority (97.6%)
of AS events predicted by AStrap
were included in the IsoSplitter pre-
diction (Fig. 4A). These results sug-
gest that the IsoSplitter pipeline is
efficient for AS prediction using only
transcriptome data. However, we
showed that the IsoSplitter analysis
took a much longer runtime than
PASA and AStrap (Table 1). One rea-
son for this is because both PASA

and AStrap uses the GMAP as the alignment algorithms
which adopt an efficient indexing process (Zhou et al.
2009; Walenz and Florea 2011). AStrap can efficiently clas-
sify AS events into different types for further revaluation (Ji
et al. 2019), and this functionality is not available with
IsoSplitter. With the support of a reference genome, we
find that the PASA package produces many more AS pre-
dictions than either AStrap or IsoSplitter (Fig. 4A),

TABLE 1. The runtime and memory comparison between
IsoSplitter, AStrap, and PASA

Software CPU number Memory used Runtime

AStrap 30 CD-HIT: 603 M 48 m
GMAP: 347 M 2 m
AStrap in R: 1530 M 5 m

PASA 30 470 M 85 m

IsoSplitter 30 310 M 16.5 h

For the calculation of runtime and memory, AStrap used three steps for
the prediction and the runtime was the total time of all three steps. M,
megabytes; m, minute; h, hour.

BA

C

FIGURE 3. Evaluation of the accuracy of AS prediction using IsoSplitter. (A) Venn diagram plot
of recorded AS events and events predicted by IsoSplitter in Arabidopsis thaliana. (B) Venn di-
agramplot of recorded AS events and events predicted results by IsoSplitter in Populus tricho-
carpa. (C ) Summary of the gap length of missed AS events in Arabidopsis thaliana; in total,
1374 events were identified from alignments containing at least one gap. The percentage
of missed events of each gap length is displayed on top.
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indicating that current IsoSplitter settings still underesti-
mate the ubiquitous distribution of AS events.
The ability to deal with short-read RNA sequencing data

sets is beneficial for AS evaluation and investigation.
IsoSplitter can validate and quantify AS prediction using
short-read data (Fig. 1). The current version of IsoSplitter
borrows an original idea from HISAT; that is, to verify “split
sites” by selecting reads that are explicitly matched to a
junction site (Kim et al. 2015). This feature is improved
by reindexing the split-site-associated sequences for map-
ping efficiency. Simultaneously, reads that mapped across
split sites were extracted to reveal isoform-specific expres-
sion (Fig. 1). Based on this feature, the IsoSplitter pipeline
can provide valuable information for tissue-specific analy-
sis of isoforms. To further exploit the usage of the

IsoSplitter prediction results, we de-
veloped an algorithm (ACM method)
to quantify the expression level of
transcripts by using only the junction
reads; the ACM measure is informa-
tive to reveal the sample-specific
expression of gene isoforms.
Compared to the conventional quan-
tification methods, such as, RSEM (Li
and Dewey, 2011), Salmon (Patro
et al. 2017), or SCUPPA2 (Trincado
et al. 2018), that use different multi-
mapping bias models for isoform
quantification, the ACM methods
can provide valuable information for
relative estimations of sample-specific
isoforms. It should be noted that,
because the ACM measure is exclu-
sively using the partial reads, the
bias can be high for samples with a
low sequencing depth. Further, for
samples with multiple biological repli-
cates, the differential expression of
isoforms is also amenable to further
analyses. In a previous experiment,
we analyzed the expression of iso-
forms using five distinct tissues form
Camellia japonica and found that tis-
sue-specific isoforms were enriched

for functions related to their tissue types (Hu et al. 2020).
We conclude that the IsoSplitter pipeline is a versatile suite
for AS identification and investigation and that IsoSplitter
outputs can be neatly incorporated into further functional
analyses of AS-related processes.

MATERIALS AND METHODS

Data and database acquisition

Transcriptomes of model and nonmodel plant species were ob-
tained from public databases. Long-read and short-read
Camellia japonica RNA sequencing data sets were described pre-
viously (Hu et al. 2020).Arabidopsis thaliana transcripts and anno-
tation information (version 10) were from the Arabidopsis

BA

C

FIGURE 4. The comparisons of prediction results using PASA, AStrap, and IsoSplitter. (A) The
majority of AS events were identified by PASA; IsoSplitter predicted more AS events than
Astrap. (B) Evaluation of missed AS events by IsoSplitter compared to PASA. (C ) An example
of missed AS event of retained intron by IsoSplitter. The two AS isoforms (NM_001340557.1
and NM_001036510.3) are from the gene model AT4G05590 in Arabidopsis thaliana. The
transcripts are not supported by two consecutive aligned regions and hence were missed in
the IsoSplitter prediction.

TABLE 2. The evaluation of IsoSplitter prediction by modifying the alignment parameters

IsoSplitter parameter Common in PASA PASA only IsoSplitter only Code

Length≥ 30 bp & identity≥ 95% 14,036 14,743 875 Default

length≥ 30 bp & identity≥ 90% 14,200 14,579 1055 -L 30bp -i 90
length≥ 15 bp & identity≥ 95% 14,721 14,058 1130 -L 15bp -i 95

length≥ 15 bp & identity≥ 90% 15,144 13,635 1649 -L 15bp -i 90

The alignment parameters were modified using the Arabidopsis thaliana data set. The results are compared to the results of PASA prediction.
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Information Resource (TAIR). Populus trichocarpa genome data
sets (version 3.1) were from Phytozome (Tuskan et al. 2006). The
Zea mays sequence information was obtained from MaizeGDB
(Portwood et al. 2019). All transcript files are in the fasta format
and detailed information of transcripts number and lengths
were displayed in (Fig. 2B).

IsoSplitter supported functions

IsoSplitter was created in Python and tested under the Linux
Ubuntu system. A detailed description for installation and use of
the software is provided (Supplemental Data 1). IsoSplitter con-
sists of two steps of analyses executed by IsoSplittingAnchor.py
and ShortReadsAligner.py. The first script prefers a transcriptome
sequence file generated by single-molecule sequencing technol-
ogies that need no transcript reconstruction. The latter analysis is
optional, and takes short transcriptome sequence reads to evalu-
ate splicing sites predicted by IsoSplittingAnchor, as well as iso-
form-specific expression levels.

Starting from a sequence file of transcripts containing com-
prehensive isoform information, IsoSplittingAnchor invokes
SIM4 alignment algorithms to identify splitting sites derived
from the whole long-read transcriptome. The first output file,
“Breakingpoint_out,” is a tabular text file containing the sequenc-
ing ID and the location of splicing sites. The second output file,
“GeneCluster,” is the results of sequence IDs that are transcript
isoforms; where each cluster is a potential gene locus for alterna-
tive splice isoforms. To visualize theAS isoforms and their relation-
ships, the script ChangeToCytoscape.py is provided to transform
the prediction result to the file formats that can be evaluated and
visualized by the cytoscape package (Shannon et al. 2003).
ShortReadsAligner is used to evaluate and quantify splitting sites
by counting eligible breakingpoints. This stepanalyzes short-read
RNA sequencing data to identify “junction reads” (reads partially
mapped next to break sites and exclusively split at the same loca-
tion), and count the numbers of junction reads for each break site
(output file, “JunctionReadsCount.txt”). The abundance of junc-
tion reads can be further analyzed for tissue-specific AS.
ShortReadsAligner also generates isoform abundance results us-
ing reads that map exclusively to split sites; and these reads are
normalized for each transcript to calculate the ACM values for
isoform-specific expression (output file, “Average_counts_per.
txt”). To track the reads of the predicted splice sites,
ShortReadsMapped.sam and ACMMapped.sam that were gener-
ated by ShortReadsAligner can be directly used by samtools (Li
et al. 2009) to screen split sites of interest.

Example data sets for quick testing of the IsoSplitter
pipeline

We used current Arabidopsis thaliana gene transcript data (avail-
able from the TAIR website, Araport11_genes.201606.cdna.fasta.
gz) to test the identification of AS sites using IsoSplitter.
Further, we aligned short reads from a previous study (Li et al.
2016) to validate the prediction of split sites in the previous
step. The short-reads file is available from the NCBI SRA database
(Accession No: SRR3664433). For testing ShortReadsAligner.py,
SRA data were first converted into fastq format and filtered for
adaptor and low quality sequence reads. The following are exam-

ple scripts for quick reproduction of the test results (see
Supplemental Data 1 for details).

1. To identify split sites:

$ IsoSplittingAnchor Araport11_genes.201606.cdna.fasta
2. To validate and quantify split sites:

$ ShortReadsAligner Araport11_genes.201606.cdna.fasta
SRR3664433.fasta Breakpoint_out.txt

or

$ ShortReadsAligner -q Araport11_genes.201606.cdna.fasta
SRR3664433.fastq Breakpoint_out.txt

where breakpoint_out.txt is one of the output files of the first step,
Araport11_genes.201606.cdna.fasta is the same file used in the
first step, and SRR3664433.fasta/SRR3664433.fastq is sequenc-
ing data.

DATA DEPOSITION

The source code of IsoSplitter and associated test data are avail-
able at https://github.com/Hengfu-Yin/IsoSplitter.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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