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Abstract

Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety 

and depression after pain chronification reportedly are caused by brain remodeling/recruitment 

of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has 

caused opioid overprescribing and continued overuse of opioids leading to the current opioid 

epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of 

underlying pathologies contributing to pain chronification is needed to address these chronic pain 

related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was 

studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical 

pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI 

signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction 

trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased 

compared to controls in supraspinal regions of the anxiety and aversion circuitry, including 

anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial 

periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal 

intensity as the neuronal activity measure, was not significantly different in thalamus and 

decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This 

is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with 

longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease 

in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION 
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animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. 

Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of 

reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte 

activation. These findings support use of MEMRI and chronic rodent models for preclinical 

studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has 

persisted in timeframes relevant to clinical pain and to observe treatment effects not possible 

in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement 

is predicted in the success rate of preclinical drug trials in future studies with this model.
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1. Introduction

Chronic head and/or neck pains account for over 23% of complaints among Americans, 

and of these less than 30% can be effectively treated by current therapies (Nahin, 2017). 

Trauma to the head damaging the trigeminal nerve caused by blunt force, sports and 

vehicular accidents, or exposure to explosions, can lead to chronic orofacial neuropathic 

pain. Decades of study indicate that complex, multifactorial mechanisms are responsible for 

generating and maintaining neuropathic pain, a process referred to as the “chronification” 

of pain (Ossipov et al., 2014; McCarberg and Peppin, 2019). This process is thought to 

involve molecular, physiological, neuroplastic, and even anatomical alterations, resulting 

in brain remodeling that includes recruitment of limbic and aversion circuitries (Lu et al., 

2016; Danaher et al., 2018; Lapaglia et al., 2018; Ong et al., 2019). Functional magnetic 

resonance imaging (fMRI) scans of patients with chronic back pain identified altered brain 

circuitry in amygdala, medial prefrontal cortex/anterior cingulate gyrus (mPFC/ACC), and 

hippocampus within 3–12 months that correlated with pain level and duration (Baliki et 

al., 2012; Hashmi et al., 2013). Chronic pain can cause functional reorganization of the 

brain as well as reduction of gray matter volume in distinct cortical regions due to central 

plasticity that can recover once pain is alleviated (May, 2008; Mansour et al., 2013; Mutso 

et al., 2014). Chronic pain causing concurrent activation of emotional brain circuits can 

produce secondary dysfunctional affective/emotional symptoms such as anxiety, depression, 

and altered cognitive function (Seminowicz et al., 2009; Hashmi et al., 2013; Borsook et 

al., 2016). Similarly, following the trigeminal infraorbital nerve chronic constriction injury 

model (CCI-ION) in rats through ten weeks has provided the data presented here for both 

mechanical hypersensitivity and anxiety-related behaviors. Further, the model has provided 

manganese enhanced magnetic resonance imaging (MEMRI) data indicating brain activation 

in emotional brain circuitry.

MEMRI has been widely used for high contrast imaging in anesthetized rodents since the 

1990s. Due to the biochemical similarity of Mn2+ and Ca2+ ions, Mn2+ can enter neurons 

and other excitable cells through several types of Ca2+ channels, including voltage-gated 

Ca2+ channels and the Na+/Ca2+ exchanger (Lin and Koretsky, 1997; Takeda, 2003; Bedenk 
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et al., 2018). Manganese ions are paramagnetic and, upon uptake, shorten tissue longitudinal 

or spin-lattice relaxation times (T1), and improve MRI signal contrast thus enhancing brain 

cytoarchitecture for anatomical studies (Masaad and Paulter, 2011). Increased MEMRI T1 

signal is indicative of brain regions with higher neuronal activity (Alshelh et al., 2018). 

This activity dependent uptake of Mn2+ and resulting MEMRI tissue contrast are more 

directly related to neural activity than fMRI BOLD signal (Paulter, 2004; Soria et al., 2008). 

MEMRI has been used in several animal models of acute, persistent, and chronic somatic 

pain. Increased T1 signals have been identified after acute noxious stimulation in primary 

sensory and insular cortices (Cha et al., 2016). After chronic neuropathic pain, T1 signal 

has identified volume shrinkage in several cortical areas including primary sensory, anterior 

cingulate, and insular cortices (Seminowicz et al., 2009). In contrast, increased transverse or 

spin-spin relaxation times (T2 signal) can indicate higher water content due to edema and 

decreases can be caused by Mn2+ uptake and/or reactive astrogliosis (Kawai et al., 2010; 

Malheiros et al., 2014; Alshelh et al., 2018). Analyses of both T1 and T2 signal intensity in 

the present study provided data relevant to these prior findings.

The current study in anesthetized male rats with chronic neuropathic orofacial pain induced 

by the CCI-ION model with concurrent anxiety-related behavioral changes, investigated 

brain activity increases in limbic and aversion related brain regions measurable by MEMRI 

with comparisons to matched naïve controls.

2. Materials and methods

2.1. Animals

All animal experiments were approved by the New Mexico Veteran’s Administration Health 

Care System Animal Component of Research Protocol (ACORP 16-A214) and performed in 

accordance with the National Institute of Health Guide for the Care and Use of Laboratory 

Animals (NIH Publications No. 80–23) revised 1996. MEMRI imaging procedures were 

additionally approved by the Institutional Animal Care and Use Committee of the University 

of New Mexico (IACUC #17–200,613-HSC). Adult male Sprague-Dawley rats (125–150 

g, Envigo, Indianapolis, IN, USA) were housed on 12/12 h reverse light cycle and fed ad 

libitum with a soy protein-free diet (Teklad #2920x, Envigo). All experimental procedures 

took place during the dark cycle after animals were acclimated for 2 weeks to the changed 

diurnal rhythm and prior to baseline testing.

2.2. Surgery

A modification of the chronic CCI-ION model first developed by Vos et al. (1994) was used. 

Briefly, rats were anesthetized using isoflurane (induction at 5.0 vol%, maintenance at 2.0 - 

4.0 vol% in oxygen, 1.0 L/min; (Clipper Distributing, St. Joseph, MO, USA), the head above 

the left eye was shaved and then cleaned with povidone-iodine and 70% ethanol. Using 

aseptic procedures, the left ION was dissected free unilaterally within the orbital cavity. Two 

chromic gut sutures (5–0, Ethicon 634 G, Ethicon, Somerville, NJ, USA) were loosely tied 

around the left ION (2 mm apart) in the injured group (N = 6). In sham operated animals (N 
= 6) the ION was exposed but not ligated, while the naïve group (N = 6) did not undergo 

surgery nor anesthesia (Ma et al., 2012). The incision was closed using 5–0 nylon suture 
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(Cat. # MV-661, Med-Vet International, Mettawa, IL, USA). Animals were fully recovered 

from anesthesia within 15 min following surgery. Wound condition, body weights, and 

general activity were closely monitored post-surgery. No excessive body weight loss (>20% 

weight loss) was noted post-surgery and all animals thrived during the 11-week study.

3. Behavioral tests

All behavioral tests occurred after a 30 min acclimatization period in the testing room.

3.1. Assessment of mechanical hypersensitivity using reflexive tests

Weekly bilateral whisker pad measurements of the mechanical withdrawal thresholds were 

performed throughout the 11-week time course by a person blinded to experimental groups 

as described previously (Kaushal et al., 2016). Animals were acclimated to being held, 

gently wrapped in a towel, for 10 min prior to testing to minimize stress-induced effects 

(Aloisi et al., 1994). A series of 8 von Frey filaments exerting 0.4, 0.6, 1.0, 2.0, 4.0, 6.0, 

8.0, 15.0 g force (Stoelting, Wood Dale, IL, USA) was used to determine the mechanical 

sensitivity of the vibrissal whisker pad using the up-down method (Ma et al., 2012). Testing 

always started with the 4.0 g force exerting filament. Each filament was applied 5 times 

perpendicular to the whisker pad at several second intervals while avoiding direct vibrissal 

stimulation. If a positive response (head withdrawal in 3 of 5 stimulations) was observed, 

then the next weaker filament was applied. In case of a negative response the next stronger 

von Frey filament was applied. After a positive response, testing continued in this manner 

until a further 4 fibers were applied, allowing the calculation of the mechanical withdrawal 

threshold using a curve fitting algorithm (Chaplan et al., 1994). A withdrawal threshold 

decrease indicated mechanical allodynia.

3.2. Assessment of anxiety-like behaviors with the light-dark place preference test

Rats were placed into a two-chambered plastic box (total size 27 x 27 cm) with free access 

between chambers through an open portal (6.5 x 6.5 cm) as previously described (Kline 

et al., 2015). One chamber was completely dark and the other brightly illuminated with 

a fluorescent bulb lamp (700 lumen). Animals were initially placed in the bright chamber 

and their behaviors recorded for 600 s (10 min) without investigators present. Post hoc 

analysis of video recorded behaviors quantified the number of entries into the light chamber. 

Entries were defined as the animal placing all 4 paws into the light chamber. Other measures 

analyzed included time spent in the illuminated chamber (sec), number of rearing events, 

and time spent rearing in the light chamber (sec).

3.3. Assessment of anxiety-like behaviors with the elevated plus maze

The elevated plus maze consists of two open and two closed arms elevated 60 cm from the 

floor. The open corridors are 110 cm long, the closed arms are each 50 cm long, and the 

widths are 10 cm. The closed arm’s height is 40 cm. The rat is placed into the open 10 x 

10 cm center square. Movements are video recorded for 5 min for off-line post hoc analysis, 

and then the rat is returned to its home cage. The numbers of center, open and closed arm 

entries; number of peeks into the open arms; total occupancy time in the center, open and 

closed arms; and number of exploratory rearing events in the closed arm are determined.
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4. MEMRI

Only naïve and CCI-ION animal groups were scanned. Animals were injected 

intraperitoneally with 62 mg/kg manganese (II) chloride tetrahydrate (31 mg/ml MnCl2 

in 0.9% saline, pH 7.0, [Sigma-Aldrich, St. Louis, MO, USA]) 24 hrs prior to MRI scan 

to allow for even distribution throughout the brain (Aoki et al., 2004). Anesthesia was 

induced with 5% and maintained with 2–2.5% isoflurane (Clipper Distributing, St. Joseph, 

MO, USA) by mechanical ventilation. The animal was placed in a dedicated holder and 

positioned in the isocenter of a 7-Tesla MRI scanner equipped with a 30-cm bore, a 

11.4 cm (inner diameter) 660 mT/m gradient, and an active shim system (Bruker Biospin, 

Billerica, MA, USA). A small bore quadrature radiofrequency (RF) coil (inner diameter 

= 86 mm) and a phased array surface coil were used for signal excitation and detection, 

respectively. Throughout the MRI scan time, respiration and heart rate were monitored, and 

body temperature was maintained at 37.0 ± 0.5 °C.

4.1. Fast low angle shot (FLASH)

The preclinical MRI software ParaVision 7 was used to determine T1 and T2 signal 

relaxation times in msec for the ROIs. The T1-weighted images were acquired using a fast 

sequence producing signals called gradient echo with low flip angles sequence (FLASH). 

The scan parameters were TR / TE = 500 ms / 3 ms, FOV = 3.5 cm x 3.5 cm, slice thickness 

= 0.5 mm, inter-slice distance = 0.5 mm, number of slices = 4, matrix = 256 × 256, number 

of average = 21. An in-house computer program in MATLAB (Mathworks), was used to 

determine signal intensities for the Region of Interest (ROI) listed below.

4.2. Rapid acquisition with relaxation enhancement (RARE)

The T2-weighted images were acquired using a fast spin-echo sequence with repetition time 

(TR) / echo time (TE) = 5, 500 ms / 33 ms, field of view (FOV) = 3.5 cm × 3.5 cm, slice 

thickness = 0.5 mm, inter-slice distance = 0.5 mm, number of slices = 4, matrix = 256 × 256, 

number of average = 3.

4.3. MEMRI data analysis

Brain ROIs were chosen a priori based on the literature on the pain neuraxis and 

brain regions activated by pain, anxiety and aversion in clinical patients and animal 

models (Ossipov et al., 2014; McCarberg and Peppin, 2019; Meda et al., 2019). They 

were identified according to Paxinos & Watson (1996). The ROIs included: left and 

right anterior cingulate cortex (ACC), amygdala (AMYG), caudate nucleus, dorsomedial 

periaqueductal gray (DMPAG), dentate gyrus (DEN), habenula (HAB), pyriform cortex 

(PYRC), primary sensory cortex barrel field (S1BF), thalamus (THAL), subthalamic regions 

medial dorsal nucleus (MD), thalamic reticular nucleus (TRN), and ventral posteromedial 

nucleus (VPM), ventrolateral periaqueductal gray (VLPAG), dorsal raphe nucleus (DRN), 

and ventral tegmental area (VTA). The MEMRI image data were exported to the VivoQuant 

2.00 software (inviCRO, LLC, Boston, MA, USA) for image reconstruction, display, and 

analysis. Identical regional ROIs were used in all animals and T1 and T2 signal intensities 

collected. For each animal, data from each ROI were normalized to whole brain values 

McIlwrath et al. Page 5

Neuroimage. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



within each animal to eliminate coil artifacts and cohort differences (Chao et al., 2018). Data 

were then averaged for each experimental group.

5. Statistical analysis

Statistical analyses of the behavioral studies were performed with GraphPad Prism 6 

software using one-way analyses of variance (ANOVA) with post hoc tests. Statistical 

analyses of MEMRI data were performed using MS Excel. Data outliers were identified 

by determining the median value for each ROI and then calculating the interquartile range. 

An outlier was defined as a data point 1.5 times above or below the third or first quartile. 

Two animals, a naïve control and a CCI animal, had more than 5 outlier data points and 

were removed from the analysis. The mean and SEM were then recalculated and Student’s 

t-tests were used to determine significance. All brain regions were analyzed independently. 

Corrections for multiple t-tests were not performed to avoid a Type II error, loss of power to 

detect real differences (Saville, 1990). In all cases a p≤ 0.05 was considered significant.

6. Results

6.1. Mechanical threshold

The chromic gut suture used to induce the CCI-ION neuropathic pain model not only causes 

mechanical irritation of the peripheral nerve but also chemically induced inflammation 

(Maves et al., 1993). Animals with unilateral chronic constriction injury of the infraorbital 

nerve (CCI-ION) developed mechanical hypersensitivity on the ipsilateral whisker pad, the 

innervation territory. Within 3 weeks after the surgery, the decrease of the head withdrawal 

response thresholds to mechanical stimuli was maximal. Mechanical withdrawal thresholds 

on the ipsilateral side significantly decreased from 18.6 ± 0.1 g at baseline to 1.3 ± 0.2 g 

force in the CCI-ION group (p < 0.05, one-way ANOVA with Tukey’s post hoc test, Fig. 

1) while thresholds on the contralateral side did not change and remained between 18.5 ± 

0.1 to 18.7 ± 0.0 g force. From week 3 until experiment end in week 10, head withdrawal 

thresholds on the ipsilateral side in CCI-ION animals were significantly lower (between 0.9 

± 0.1 and 1.3 ± 0.2 g force) compared to those of sham (between 16.3 ± 2.4 and 18.7 ± 0.0 

g force) and naïve control animals (between 18.4 ± 0.2 and 18.7 ± 0.0 g force, p < 0.05, 

one-way ANOVA with Tukey’s post hoc test, Fig. 1).

7. Anxiety-like behavior

In weeks 8 and 9, when hypersensitivity was chronic, anxiety-like behaviors were assessed 

using two different assays.

Light-dark place preference test.

In the light-dark place preference test, animals with CCI-ION injury entered the light side 

significantly less often (CCI-ION: 2.5 ± 1.1; naïve: 6.8 ± 1.7; sham: 6.5 ± 1.1; p < 0.05, 

one-way ANOVA on ranks) (Fig. 2A). Animals with CCI-ION spent significantly less time 

in the light chamber compared to naïve and sham control groups (CCI-ION: 39.8 ± 11.2 s; 

naïve: 112.0 ± 19.1 s; sham: 129.2 ± 19.8; p < 0.001, one-way ANOVA with Tukey’s post 

hoc test) (Fig. 2B). The number of exploratory rearing events was significantly reduced in 
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the CCI-ION group (CCI-ION: 3.3 ± 1.4; naïve: 16.8 ± 2.2; sham: 14.7 ± 2.6; p < 0.001, 

one-way ANOVA with Tukey’s post hoc test) (Fig. 2C). Also significantly reduced in the 

CCI-ION group was time spent rearing (CCI-ION: 17.5 ± 9.0 s; naïve: 41.2 ± 6.8 s; sham: 

49.3 ± 8.4 s; p < 0.05, one-way ANOVA with Tukey’s post hoc test) were (Fig. 2D).

Elevated plus maze.

In the elevated plus maze, animals with CCI-ION spent significantly less time in the maze 

center (CCI-ION: 2.0 ± 1.5; naïve: 5.8 ± 0.7; sham: 4.6 ± 2.5; p < 0.05, t-test) (Fig. 3A). 

They peeked less often into the open arm compared to naïve control animals, but not sham 

controls (CCI-ION: 14.6 ± 1.5; naïve: 31.0 ± 4.6; sham: 6.2 ± 3.6; p < 0.05, t-test) (Fig. 3B). 

Similarly, the number of entries into the closed arm of the CCI-ION group was significantly 

reduced compared to naïve controls, but not sham controls (CCI-ION: 1.6 ± 0.4; naïve: 6.2 

± 1.1; sham: 1.8 ± 0.5; p < 0.05, t-test) (Fig. 3C). No difference was determined for the 

number of rearing events (Fig. 3D) which all happened in the closed arm irrespective of 

experimental group (CCI-ION: 7.8 ± 0.5; naïve: 12.8 ± 1.3; sham: 10.0 ± 0.6; p > 0.05, 

t-test).

8. MEMRI scans

In week 10 post CCI-ION model induction when pain behaviors were chronic, anesthetized 

rats received MEMRI scans conducted 24 hrs after intraperitoneal administration of 

MnCl2. Images were taken at approximate bregmas 1.00, −1.30, −3.60, and −6.80 mm 

for comparison between CCI-ION and naïve control animals (Fig. 4A & B, 5A & B). The 

investigated regions of interest are schematically depicted in the top row of Fig. 4A and 5A.

The MEMRI T1 signal intensity (Fig. 4C), an indicator of neural activity, was significantly 

different in several ROIs along the pain neuraxis and emotional brain circuitry. Significantly 

increased T1 signal intensity in the CCI-ION group compared to naïve controls was 

found for ACC (bilateral), amygdala (ipsilateral / left), dentate gyrus (bilateral), and 

habenula (bilateral). Significantly decreased T1 signal intensity was recorded for the primary 

somatosensory cortex barrel field (contralateral / right) and dorsal raphe nucleus (naïve 

control n = 3, CCI-ION n = 4, p < 0.05, t-test). No differences were noted in the 

thalamic medial dorsal nucleus (MD), reticular nucleus (TRN), and central posteromedial 

nucleus (VPM) (Supplemental Table 1). Differences between CCI-ION and naïve control 

group MEMRI T2 signal intensity, which when increased is an indicator of edema or 

astrogliosis, were also determined for the same ROIs (Fig. 5C). In the CCI-ION group, 

T2 signal intensity was significantly increased in the ACC (bilateral), habenula (bilateral), 

and thalamus (bilateral) consisting of VPM and ventral posterolateral nucleus. However, 

no differences were noted in the thalamic MD, TRN, and VPM (Supplemental Table 2). 

Significantly reduced T2 signal intensity was recorded in the ventrolateral periaqueductal 

gray (ipsilateral / left), primary somatosensory cortex barrel field (S1BF) (contralateral / 

right), and dorsal raphe nucleus when compared to naïve controls indicating increased 

activation (naïve control n = 3, CCI-ION n = 4, p < 0.05, t-test) (Supplemental Table 2).

Based on the behavioral outcomes indicating anxiety-like behavior accompanies chronic 

pain related behavior in our CCI-ION rat neuropathic pain model, the pain-related aversion 
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brain circuitry was of particular interest. MEMRI T1 signals in the ipsilateral (left) caudate 

nucleus of CCI-ION animals were significantly increased compared to naïve controls (CCI-

ION ipsilateral = 129.0 ± 0.6, contralateral = 115.6 ± 0.4; naïve ipsilateral = 116.1 ± 

1.5, contralateral = 115.4 ± 1.5). Likewise, T2 signals were significantly increased (CCI-

ION ipsilateral = 26.8 ± 0.4, contralateral = 22.3 ± 1.1; naïve ipsilateral = 20.5 ± 0.4, 

contralateral = 20.3 ± 0.6; naïve control n = 3, CCI-ION n = 4, p < 0.05, t-test) (Fig. 6A-C). 

Measurements from the contralateral (right) caudate nucleus were not different among 

groups. Bilaterally, the dorsomedial PAG (DMPAG) had significantly higher MEMRI T1 

signals in the CCI-ION group compared to the naïve group (CCI-ION ipsilateral = 159.4 ± 

0.4, contralateral = 153.5 ± 0.8; naïve ipsilateral = 145.9 ± 1.9, contralateral = 145.8 ± 1.6). 

The T2 signals were similar (CCI-ION ipsilateral = 28.3 ± 0.4, contralateral = 22.9 ± 0.3; 

naïve ipsilateral = 18.8 ± 0.3, contralateral = 19.5 ± 0.3) (naïve control n = 3, CCI-ION n = 

4, p < 0.05, t-test) (Fig. 6D-F).

9. Discussion

The aim of this study was to demonstrate MEMRI changes in the brain’s pain neuraxis and 

emotional brain circuitry in a chronic pain model 10 weeks post induction. The changes 

were evident with the concurrent anxiety-like behavior induced at chronic time points in 

the rat trigeminal neuropathic pain CCI-ION model. As in our previous reports, mechanical 

hypersensitivity of the whisker pad is maximal 3 weeks post-surgery and remains maximal 

through the experiment end after week 10 (Ma et al., 2012; Kaushal et al., 2016). The 

persisting decrease in the head withdrawal threshold is attributable in other models in the 

literature to central sensitization secondary to primary afferent sensitization. The striking 

findings of the present study were the anxiety-like behavioral changes and concurrent long-

term brain activity changes evident with MEMRI signal intensity. This MEMRI study has 

identified brain structures active in the long-term “central sensitization” induced by chronic 

neuropathic pain. The resulting long-term hypersensitivity and anxiety mimics the clinical 

presentation of chronic pain. The MEMRI signal intensity changes parallel clinical imaging 

in patients with chronic pain. The results of the study indicate the suitability of this model 

for further studies of chronic pain and preclinical therapeutic drug testing.

9.1. Chronic pain induced anxiety behaviors

Anxiety-like behaviors reported here at 8 weeks post CCI-ION model induction are 

equivalent to 4 years of chronic pain in clinical patients (Quinn, 2005; Sengupta, 2013; 

Dutta and Sengupta, 2016). Long-term hypersensitivity and anxiety-like behavior induced 

with the CCI-ION model is in contrast to most sciatic nerve tie models. In the light-dark 

place preference test, CCI-ION animals spent significantly more time in the dark chamber 

and displayed less exploratory behavior in the light. Similarly, they preferentially stayed in 

the closed arm and avoided exploring the center of the elevated plus maze assay, measures 

of anxiety-like behaviors (van Gaalen and Steckler, 2000; File et al., 2004). The incidence 

of mood disorders such as anxiety and depression is prevalent in patients with chronic pain. 

Patients with chronic pain are 2.5 to 10 times more likely to suffer also from general anxiety 

(von Korff et al., 1988; Means-Christensen et al., 2008).
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An important feature unique to trigeminal circuitry includes close proximity to brain 

structures (Xu et al., 2008; Rodriguez et al., 2017). Information from the face pain travels 

via trigeminal primary afferents through the trigeminal ganglia to synapse in the brainstem 

medullary dorsal horn as well as to directly innervate the parabrachial complex (Rodriguez 

et al., 2017). Thus, the trigeminal innervation of the lateral parabrachial nucleus has more 

direct connectivity, via one synapse, with the limbic system. Spinal input crosses 2 synaptic 

connections. Optogenetic activation of the trigeminal monosynaptic connectivity was shown 

to induce escape and avoidance behavior (Rodriguez et al., 2017). Human subjects report 

increased fear after noxious facial stimulation as compared to similar noxious stimulation 

of the hand (Schmidt et al., 2016). Secondary axons ascend via the trigeminothalamic and 

parabrachio-amygdaloid tracts to thalamus and amygdala respectively, then relay to several 

cortical and subcortical regions including primary and secondary somatosensory cortices, 

basal ganglia, ACC, and limbic circuitry. Nociceptive information relayed via the basal 

ganglia is transmitted to the prefrontal cortex and back to the amygdala (Borsook et al., 

2010; Tracey and Dickenson, 2012; Bushnell et al., 2013).

9.2. MEMRI activation in supraspinal circuitry

In the present study, we replicated previously used methodology that produced the highest 

MRI contrast 24 hrs after a single injection of 0.8 mmol/kg MnCl2 (Aoki et al., 2004). 

Other studies have allowed animals to freely behave for as long as 1-week post MnCl2 

injection to better enhance spontaneous pain induced changes in the brain, however, group 

differences weren’t always visible with this method (Devonshire et al., 2017). A downside 

to the MEMRI method is that Mn2+ is a metabolic toxin and competitive Ca2+ inhibitor and 

can be cytotoxic (Lin and Koretsky, 1997; Takeda, 2003). In in vivo electrophysiological 

experiments systemic administration of 0.5 mmol/kg MnCl2 was able to decrease neuronal 

excitability in the hippocampus (Eschenko et al., 2010). We noticed reduced physiological 

functions, decreased body temperature and repressed respiration, in some of the studied 

animals which is why MEMRI scans were performed only once at experiment’s end. 

Quantified MEMRI T1 and T2 signal intensity measurements from chronic CCI-ION 

and naïve control animals in brain regions involved in the pain circuitry, ascending and 

descending pain modulation, as well as in regions associated with affective behaviors are 

compared. A coil artifact was noted in all T1 and T2 scans irrespective of experimental 

group. To eliminate its influence on the data, we normalized MEMRI T1 and T2 signal 

intensity measurements to those measured in whole brain for each section prior to taking the 

mean (Fig. 4 & 5) (Chao et al., 2018).

9.3. Pain circuitry

In the present study, despite continuing hypersensitivity, the MEMRI T1 signal intensity, a 

measure of neuronal activity (Malheiros et al., 2014), was not significantly different in the 

thalamus and decreased in S1BF of CCI-ION animals. This is consistent with decreased 

fMRI BOLD signal in thalamus and cortex of clinical patients with longstanding trigeminal 

neuropathic pain reportedly associated with gray matter volume decrease in these regions 

(Gustin et al., 2012; Henderson et al., 2013; Obermann et al., 2013). Youssef et al. (2014) 

reported decreased regional cerebral blood flow in patients with chronic posttraumatic 

neuropathy compared to healthy subjects using the more accurate arterial spin labeling MRI 
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technique, suggesting that dysfunctional central changes and loss of descending inhibition 

may be essential for maintenance of chronic pain (Henderson et al., 2013). This is in 

contrast to a study using an acute CCI-ION mouse model that found increased neuronal 

activity at rest in S1BF using the immunohistochemical neuronal activity biomarkers cFOS 

and pERK (Thibault et al., 2016). This is suggestive of differential brain activation patterns 

in acute versus chronic pain.

At the same time, we observed a significant increase of the MEMRI T2 signal intensity, 

an indicator of tissue water content and possible cellular damage and dysfunction, in the 

thalamus of CCI-ION animals compared to naïve controls. It is possible that this was due 

to changes in aquaporin ion channel expression and local edema as was detected after 

pilocarpine-induced epilepsy in rodents (Malheiros et al., 2014). In contrast, decreased 

T2 signal intensity in S1BF of CCI-ION animals was similar to reduced T2 relaxometry 

measured in clinical patients with chronic orofacial pain along the ascending pain pathway 

(Alshelh et al., 2018). Changes in MEMRI T2 signal intensity are complex and are 

influenced by Mn2+ uptake, changes in water distribution in the tissue. Decreased T2 signal 

intensity can reflect increased glial activation/astrogliosis as seen after stroke (Justicia et 

al., 2008). Further histological analyses would be needed to determine anatomical changes 

contributing to T2 signal intensity changes in CCI-ION animals compared to naïve controls.

Many of the supraspinal brain structures activated in our model at 10 weeks and evident 

with MEMRI are also reported to be activated by pathological pain in patients. Most 

of the regions significantly activated in the CCI-ION rats compared to controls are 

components of the anxiety and aversion circuitry. This is not surprising as even acute 

noxious stimuli activate not only primary and secondary somatosensory cortices but also 

elicit neuronal activity in prefrontal and limbic brain regions including ACC, amygdala, and 

VTA, responsible for affective and contextual associations of pain and pain-related aversion 

(Tracey and Dickenson, 2012; Ossipov et al., 2014; Boadas-Vaello et al., 2017; Zhao et al., 

2018; Meda et al., 2019).

9.4. Amygdala

Significantly increased MEMRI T1 signal intensity was observed in the amygdala of 

CCI-ION animals compared to controls. This brain region has often been described 

as contributing to the maintenance of chronic neuropathic pain and anxiety. During 

acute pain, activation of the amygdala causes the release of the stress-induced hormone 

corticotropin releasing factor (CRF) and acts as an analgesic. However, during chronic pain 

when continuous overactivation of the amygdala has caused persistent CRF release, this 

descending pain modulation no longer functions and its effect may possibly be reversed 

(Ossipov et al., 2014; Andreoli et al., 2017). Administration of antioxidants or TRPA1 

antagonists in the central amygdala nucleus has been shown to inhibit CCI-SN induced 

hypersensitivity while glial inhibitors had no effect (Sagalajev et al., 2018). Activation of 

enkephalinergic projection neurons within the central amygdala that synapse in the VLPAG 

has been shown to not only provide analgesia but to also have anxiolytic effects in mice with 

somatic neuropathic pain (Paretkar and Dimitrov, 2019).
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9.5. ACC

In healthy subjects the ACC is activated by acute pain stimuli (Casey, 1999) and subjects 

are able to control experimental pain sensation by reducing the neuronal activity within 

the ACC. This has been demonstrated using fMRI (Bushnell et al., 2013). While healthy 

subjects do not seek out pain, chronic pain causes pain-related aversion not only in clinical 

patients but also in animal models during which the ACC plays a critical role. In persistent 

pain animal models and in clinical patients with pathological pain, neuronal hyperactivity 

has been measured in the ACC using electrophysiology and imaging studies (Mills et al., 

2018; Zhao et al., 2018).

As part of the emotional brain, the ACC encodes the aversive, unpleasant aspects of painful 

stimuli. Patients with ACC lesions have decreased affective responses to pain (Rainville et 

al., 1997). The ACC not only contributes to pain sensation and descending pain modulation, 

but together with the habenula it is involved in negative outcome learning, and as such, 

contributes to chronic pain associated anxiety (Kawai et al., 2015; Zhao et al., 2018; Meda 

et al., 2019). The observed increased neuronal activity in the ACC in anesthetized CCI-ION 

animals demonstrated here with MEMRI is consistent with contribution of the ACC to the 

maintenance of chronic pain and resulting anxiety-like behaviors.

9.6. Habenula and dorsal raphe nucleus

The habenula, a brain region with axonal connections to the ACC, also had significantly 

increased T1 signal intensity in CCI-ION animals. This bilateral brain structure is part of 

the central aversion network involved in a wide range of behaviors including behavioral 

responses to aversive stimuli such as pain and anxiety (Hikosaka, 2010). The habenula 

receives direct and indirect afferent pain input from the spinal cord, nucleus accumbens 

(NAc), frontal cortex, and hypothalamus (Dafny et al., 1996; Craig, 2003; Hikosaka, 

2010). Projections from the medial habenula to the interpeduncular nucleus in the midbrain 

have been shown to be essential for aversive memory formation/retention and fear 

conditioning (Soria-Gomez et al., 2015; Hsu et al., 2016). Overactivation of the habenular-

interpeduncular connectivity during chronic pain could contribute to the development of 

the anxiety-like behavior in our CCI-ION pain model. The lateral habenula connections 

to the ACC, medial habenula, and anterior insula form an aversive processing circuit that 

is central for avoidance learning (Shelton et al., 2012; Vadovicova and Gasparotti, 2013). 

Increased neuronal excitability in the lateral habenula due to ablation of the KCNQ3 m-type 

potassium channel subunit increased hyperalgesia caused by alcohol withdrawal in a rat 

model. Conversely, KCNQ3 overexpression in the lateral habenula decreased hyperalgesia 

(Kang et al., 2019). In human subjects, chronic stimulation of the lateral habenula disinhibits 

the ACC, anterior insula, and the pain pathway output, as well as increases learned anxiety 

and depression (Wang and Aghajanian, 1977; Shabel et al., 2012). The lateral habenula also 

directly and indirectly regulates monoaminergic neurons within the dorsal raphe nucleus 

(DRN) where we saw both decreased T1 and T2 relaxation times in CCI-ION animals 

compared to naïve controls, which suggests regional activation. This lateral habenula-DRN 

connection, as well as the habenular connection to the locus coeruleus is involved in 

chronic pain maintenance and anxiety (Herkenham and Nauta, 1979). In healthy animals 

the activation of dorsomedial neurons within the DRN was reported to be anxiogenic, was 
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interpreted as suggesting direct involvement of the DRN in regulating anxiety disorders 

(Spiacci et al., 2016). Further investigation is necessary to confirm that the habenula-DRN 

connection is a potential limbic drive involved in pain facilitation. The role of serotonin can 

be both anti- and pro-nociceptive, depending on the receptor subunits it binds to, making 

the observed decreased T1 and T2 signals from the DRN difficult to interpret. It is possible 

that the serotonin receptors on which these neurons synapse have changed, interrupting 

descending pain inhibition and switching to facilitation (D’Mello and Dickenson, 2008; 

Ossipov et al., 2014). We have previously reported dysfunctional switch from noradrenergic 

alpha 2 receptor (NAα2R) mediated inhibition to facilitation mediated by NAα1R. We 

and others have proposed this switch as a responsible factor in chronic hypersensitivity in 

long-term models after intracerebroventricular or intrathecal injection of specific blockers 

(Rahman et al., 2008; Kaushal et al., 2016).

9.7. Caudate nucleus and dorsomedial PAG

Other activated supraspinal areas contribute to pain-related aversion behavior. These include 

the caudate nucleus and DMPAG, regions in which we saw elevated MEMRI T1 signal 

indicating activation as well as increased T2 signal indicating edema or cell dysfunction. 

The caudate nucleus is connected to ACC and thalamus and is involved in many different 

processes ranging from learning and memory formation to pain control (Barker, 1988; 

Chudler and Dong, 1995). An fMRI study in patients with fibromyalgia demonstrated 

that cognitive behavioral therapy changes brain activity in response to experimental pain, 

including an increase in the ipsilateral caudate nucleus (Diers et al., 2012). It is possible that 

neuronal activation in the caudate of CCI-ION animals reflects descending pain inhibition 

that in chronic pain states is either ineffective at pain control or has reversed its function to 

facilitate pain sensation.

The DMPAG also contributes to the emotional aspect of pain, escape behaviors, and 

descending pain inhibition (Bandler and Shipley 1994; Silva and McNaughton, 2019). 

Among other brain regions, the DMPAG is closely connected by afferent input from the 

central amygdala, mPFC, raphe magnus, and A5 noradrenergic cells. In the present study, 

the T1 MEMRI signal in the VLPAG of CCI-ION animals was not different from controls. 

In patients with chronic back pain an fMRI study reported that this connectivity is reduced 

in pain-related fear (Meier et al., 2017). Reduced resting state PAG connectivity with 

amygdala and insula cortex was also measured in patients with chronic lower back pain and 

correlated with the severity of the pain, indicating that these connections are essential for 

descending pain modulation (Yu et al., 2014).

All of the findings presented here support the hypothesis that continued activation of 

pro-nociceptive pathways results in neural plasticity and activation of supraspinal anxiety 

and aversion brain circuitry responsible for enhancement and perpetuation of the pain and 

anxiety related behaviors in our chronic model (Pertovaara et al., 1996; Ossipov et al., 

2014).
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10. Conclusion

The present study identified both anxiety- and pain-related behaviors in the rat trigeminal 

chronic constriction injury model of neuropathic pain through week 10 post model 

induction. At the same 10 week post induction time point, MEMRI identified decreased 

activity in brain regions involved in descending pain modulation, while neuronal activity 

increased in aversion and anxiogenic brain regions. These findings parallel the evidence 

provided by clinical MRI reports that central sensitization during pathological pain involves 

supraspinal structures of the anxiety and aversion circuitry, while the pain circuitry itself 

is providing reliable transmission of nociceptive information contralaterally. Thus, study 

of animal models long-term provides adequate interpretable data for comparison to human 

studies and is well suited for performing preclinical therapeutic trials.
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Abbreviations:

ACC anterior cingulate cortex

AMYG amygdala

BOLD blood oxygen-level dependent

CCI chronic constriction injury

CRF corticotropin releasing factor

DEN dentate gyrus

DMPAG dorsomedial periaqueductal gray

DRN dorsal raphe nucleus

FLASH fast low angle sequence

fMRI functional magnetic resonance imaging

FOV field of view

HAB habenula

ION infraorbital nerve
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MD medial dorsal nucleus

MEMRI manganese-enhanced magnetic resonance imaging

mPFC medial prefrontal cortex

NAα2R noradrenergic alpha 2 receptor

NAc nucleus accumbens

PYRC pyriform cortex

RARE rapid acquisition with relaxation enhancement

RF radiofrequency

ROI region of interest

S1BF primary sensory cortex barrel field

SN sciatic nerve

TE echo time

THAL thalamus

TR repetition time

TRN thalamic reticular nucleus

VLPAG ventrolateral periaqueductal gray

VPM ventral posteromedial nucleus

VTA ventral tegmental area
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Fig. 1. 
Mechanical withdrawal thresholds on the ipsilateral/left whisker pad were significantly 

reduced within 2 weeks in rats with CCI-ION injury. This hypersensitivity was maximal by 

week 3 and persisted until experiment’s end in week 10. Repeated mechanical testing alone 

did not change the mechanical withdrawal thresholds of naïve and sham surgery control 

animals. n = 6 per group; * p < 0.05, one-way ANOVA. .
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Fig. 2. 
Eight weeks after CCI-ION trigeminal nerve injury, animals displayed anxiety-like behavior 

in the light-dark place preference test. (A) CCI-ION animals entered the brightly illuminated 

chamber significantly less often and (B) spent significantly less time there. (C) Exploratory 

rearing events of CCI-ION animals and (D) time spent rearing in the light chamber were also 

significantly less compared to naïve and sham control animals. n = 6 per group; * p < 0.05, 

one-way ANOVA.
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Fig. 3. 
In week 9 post trigeminal nerve injury, CCI-ION animals displayed anxiety-like behavior 

in the elevated plus maze. CCI-ION animals spent significantly less time (A) in the center, 

(B) peeking into the open arm, and (C) entered the closed arm less often compared to naïve 

controls, though analysis indicated no difference from sham controls. (D) The number of 

rearing events was not different between groups. n = 6 per group; * p < 0.05, one-way 

ANOVA.
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Fig. 4. 
The MEMRI T1 signal intensity, indicators of neural activity, in CCI-ION animals were 

significantly different from naïves with regional specificity, with some brain regions having 

significant increased and others decreased signals. (A) Location of analyzed ROIs drawn 

into images from the Paxinos & Watson rat brain atlas (1996). (B) Representative T1 

MEMRI images of a sample naïve control and CCI-ION animal at bregma 1.00, −1.30, 

−3.60, and −6.80 mm with superimposed cytoarchitecture from the Paxinos & Watson rat 

brain atlas (1996). Excessive dorsal image brightness is due to a coil artifact. (C) The 

MEMRI T1 signal intensity, normalized to whole brain signal intensity in CCI-ION rats, is 

plotted for regions of interest (ROIs) within the pain neuraxis and emotional brain circuitry. 

The normalized T1 signal intensity in CCI-ION rats was significantly greater in ACC 

(bilateral), amygdala (ipsilateral / left), dentate gyrus (bilateral), and habenula (bilateral) and 

was significantly reduced in the primary somatosensory cortex barrel field (contralateral / 

right) and dorsal raphe nucleus. Bregma locations (in mm) are written after each ROI 

abbreviation. Naïve control n = 3, CCI-ION n = 4, * p < 0.05, t-test. ACC, anterior 

cingulate cortex; AMYG, amygdala; DEN, dentate gyrus; DRN, dorsal raphe nucleus; 
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HAB, habenula; PYRC, pyriform cortex; S1BF, primary sensory cortex barrel field; THAL, 

thalamus; VLPAG, ventrolateral periaqueductal gray; VTA, ventral tegmental area.
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Fig. 5. 
The MEMRI T2 signal intensity measured in CCI-ION animals differed significantly from 

naïve controls in several ROIs along the pain neuraxis and emotional brain circuitry. (A) 

Location of analyzed ROIs drawn into images from the Paxinos & Watson rat brain atlas 

(1996). (B) Representative T2 MEMRI images of a sample naïve control and CCI-ION 

animal are shown at bregma 1.00, −1.30, −3.60, and −6.80 mm with superimposed images 

from the Paxinos & Watson rat brain atlas (1996). Excessive dorsal image brightness 

is due to a coil artifact. (C) The T2 signal intensity was normalized to whole brain in 

CCI-ION rats and plotted for ROIs within the pain neuraxis and emotional brain circuitry. 

The normalized T2 signal intensity in CCI-ION rats was significantly greater in ACC 

(bilateral), habenula (bilateral) and thalamus (bilateral), but was significantly reduced in 

primary ventrolateral periaqueductal gray (ipsilateral / left), somatosensory cortex barrel 

field (contralateral / right) and dorsal raphe nucleus. Bregma location (in mm) are written 

behind ROI abbreviation. Naïve control n = 3, CCI-ION n = 4, * p < 0.05, t-test. ACC, 

anterior cingulate cortex; AMYG, amygdala; DEN, dentate gyrus; DRN, dorsal raphe 

McIlwrath et al. Page 25

Neuroimage. Author manuscript; available in PMC 2022 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleus; HAB, habenula; PYRC, pyriform cortex; S1BF, primary sensory cortex barrel field; 

THAL, thalamus; VLPAG, ventrolateral periaqueductal gray; VTA, ventral tegmental area.
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Fig. 6. 
In animals with chronic CCI-ION injury, MEMRI T1 and T2 signals were increased in 

pain-related aversion brain centers, the caudate nucleus and DMPAG. (A) Schematic of 

the caudate nucleus ROIs are at bregma −0.92 mm (from Paxinos and Watson, 1996). 

In CCI-ION animals (B) the T1 signal and (C) T2 signal are significantly increased in 

the ipsilateral / left caudate nucleus compared to naïve controls, but not different on the 

contralateral / right side. (D) Schematic of ROIs of the DMPAG ROIs located at bregma 

−6.80 mm (from Paxinos and Watson, 1996). (E) The MEMRI T1 and (F) T2 signals were 

bilaterally increased in the CCI-ION animals compared to naïve controls. Naïve control n = 

3, CCI-ION n = 4, * p < 0.05, t-test.
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