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Abstract: Dengue virus type 2 (DENV-2) is, traditionally, the most studied serotype due to its
association with explosive outbreaks and severe cases. In Brazil, almost 20 years after the first
introduction in the 1990s, a new lineage (Lineage II) of the DENV-2 Asian/American genotype
emerged and caused an epidemic with severe cases and hospitalizations. Severe dengue includes
multiple organ failure, and renal involvement can be potentially related to increased mortality. In
order to better understand the role of DENV infection in renal injury, here we aimed to investigate the
outcomes of infection with two distinct lineages of DENV-2 Asian/American genotype in the kidney
of a murine model. BALB/c mice were infected with Lineages I and II and tissues were submitted to
histopathology, immunohistochemistry, histomorphometry and ultrastructural analysis. Blood urea
nitrogen (BUN) was detected in blood sample accessed by cardiac puncture. A tendency in kidney
weight increase was observed in mice infected with both lineages, but urea levels, on average, were
increased only in mice infected with Lineage II. The DENV antigen was detected in the tissue of
mice infected with Lineage II and morphological changes were similar to those observed in human
dengue cases. Furthermore, the parameters such as organ weight, urea levels and morphometric
analysis, showed significant differences between the two lineages in the infected BALB/c, which was
demonstrated to be a suitable experimental model for dengue pathophysiology studies in kidneys.

Keywords: dengue 2; Asian/American lineages; BALB/c mice; kidney; histopathology and
transmission electron microscopy

1. Introduction

Dengue virus serotypes 1 to 4 (DENV-1–4) are arboviruses belonging to the genus
Flavivirus of the family Flaviviridae [1]. Transmission occurs in over 125 countries and
around 4 billion people are at risk of infection annually [2]. Dengue poses a major threat
to urban populations in Asia and Latin America, mainly due to its increased incidence
in the last 50 years [3–5]. In Brazil, Lineage I of DENV-2 Asian/American genotype has
been circulating since the 1990’s [6], when the first cases of dengue haemorrhagic fever and
dengue shock syndrome (DHF/DSS) were reported [7]. After 17 years, the emergence of
Lineage II of DENV-2 Asian/American genotype was associated with increased disease
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severity and a high mortality rate, especially in children [6,8–10]. However, despite be-
longing to the same lineage from the 2007–2008 epidemic, DENV-2 strains circulating in
2019 are phylogenetically distant from any Brazilian strain, probably originating in Puerto
Rico [11].

Dengue symptoms range from a mild flu-like syndrome to a severe and, sometimes,
fatal disease, classified by the World Health Organization (WHO) as severe dengue (SD)
which may affect multiple organ systems [12]. The DENV has been detected in a number
of organs [13–16] and, although the liver is the most commonly affected one [17,18],
gastrointestinal, hepatic, respiratory, cardiac, neurological and renal manifestations during
DENV infection have already been reported [19–26].

The presence of DENV in the kidney has already been demonstrated through the
detection of the viral antigen in the tissue cells and in macrophages and monocytes circulat-
ing in kidney blood vessels [13,15,17,26,27]. Furthermore, the observation of microtubule
reticular structures and dilatation of endoplasmic reticulum in necrotic cells and dense
virus-like particles in glomeruli in a transmission electron microscope (TEM), suggested
viral infection [17,28,29].

Kidney damage induced by DENV infection can result from a direct viral cytopathic
effect, inflammatory mediators released in response to the infection, hemodynamic insta-
bility, rhabdomyolysis, hemolysis or acute glomerular injury [17,30,31]. Increased levels
of urea, creatinine, proteinuria, hematuria, glomerulonephritis and acute DENV infection
have been related to dengue [32–35].

Acute kidney injury (AKI) and acute renal failure (ARF) are significant complications
of dengue, and patients presenting SD are more likely to develop them [25,34,36–40]. Rates
of mortality due to AKI are 1% for classic dengue, 12–40% for DHF and 60% for DSS [41].

Analysis of kidney samples from DENV-infected human cases revealed parenchyma
and circulatory damage [17,27]. Tubular necrosis, evidenced by the presence of pyknotic
nuclei of epithelial cells, thickening of the glomerular basement membrane, mesangial
proliferation, glomerular congestion and hyalinosis, interstitial area with focal fibrosis,
diffuse mononuclear infiltrate and hemorrhage foci in the cortical and medullary regions
and the increase in populations of CD68+ and CD4+ cells have been reported [27,42–44].

The pathophysiological basis for SD is yet to be fully understood and likely to be
multifactorial [45], involving the host’s genetic background and immunological status,
sequence of serotypes in secondary infections, serotype and virulence of infectious viral
strains [46,47]. In fact, DENV infecting strain can contribute to detrimental progression of
severe disease and death [48,49].

An ideal experimental model for studying dengue should recapitulate the disease
progression as it occurs in humans [50]. To date, there are no experimental models that
fulfill this requirement [51,52], which hinders the thorough comprehension of DENV
pathogenesis mechanisms as well as drug and vaccine development [53]. It is believed that
immunocompetent mice are less susceptible to DENV infection [52]. However, studies have
shown that BALB/c mice present thrombocytopenia, increased levels of hepatic enzimes
alanine aminotrasferase (ASL) and aspartate aminotransferase (ALT), anorexia, weight loss,
anemia and even develop severe disease and paralysis, when infected with neuroadapted
strains [54–57]. Viral replication and dissemination have been observed in this experimental
model infected with DENV-1, -2 and -4 and viral genome or antigen have been detected in
heart, lungs spleen, brain, liver, kidneys and saliva samples [53–55,58–63]. In kidney tissue
of DENV infected BALB/c mice, increased glomerular volume and mesangial cellularity
have been reported [58].

Since the DENV infection outcome can be affected by the virulence of different
strains [47], and dengue related histopathological data on kidney is still scarce, here we
aimed to investigate the renal involvement of BALB/c mice after infection with two distinct
DENV-2 Asian/American lineages. Moreover, as this report is a part of a project whose
goal is to present BALB/c mice as a suitable non-severe dengue experimental model for
studies on the pathogenesis of dengue in different organs, we have recently demonstrated
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the susceptibility of the aforementioned murine model to both lineages and showed that
the changes induced by those strains in the liver were similar to those observed in human
cases, but it was observed that some parameters were manifested at different times of
infection [63].

2. Results
2.1. Evaluation of Kidney Weight

A slight increase in the mean weight of the kidney of infected mice was observed
when those were infected by both Lineages of DENV-2 Asian/American genotype, when
compared to the uninfected mice (mean = 0.423 g/standard deviation (±) = 0.06). The
mean weight of kidneys of mice infected by Lineage I presented its highest value at 72 hpi
and subsequent weight loss at 7 dpi and 14 dpi (from 0.45 ± 0.05 g to 0.426 ± 0.05 g and
0.428 ± 0.05 g, respectively). In individuals infected by Lineage II, there was an increase in
the mean organ weight at all times of infection: at 72 hpi, the mean weight was 0.43 ± 0.06 g,
at 7 dpi, 0.468 ± 0.04 g and at 14 dpi, 0.477 ± 0.04 g. The difference between the means
of individuals infected with Lineage I and Lineage II was statistically significant at 7
and 14 dpi (p = 0.03 and 0.048, respectively) and, the difference between Lineage II and
uninfected mice was statistically significant at 7 and 14 dpi (p = 0.035 and 0.034, respectively)
(Figure 1A–C). Likewise, the means of the ratio of the kidney weight to the total body
weight of infected mice by both Lineages of DENV-2 Asian/American genotype, increased,
on a small scale, when compared to the uninfected controls (mean = 1.496 ± 0.17%) at all
times of infection. In Lineage I infected mice, the average percentage (1.621 ± 0.01%) was
significantly higher than the observed for the uninfected control group at 72 hpi (p = 0.013),
decreasing after the 7 dpi (1.522 ± 0.11%) and rising again, on the 14 dpi (1.576 ± 0.09%).
In Lineage II infected mice, the highest ratio between the kidney and the body weight
(mean = 1.663 ± 0.19%), was also statistically significant (p = 0.005) when compared to the
uninfected control group, but it was observed at 7 dpi. Mice infected with this Lineage,
and euthanized at 72 h and 14 dpi, also had higher means than those for the uninfected
mice (1.624 ± 0.17% and 1.593 ± 0.12%, respectively) (Figure 1D–F). In addition, there was
a statistically significant difference between the uninfected control group and the groups
infected by Lineages I at 72 hpi (p = 0.013) and II at 72 hpi (p = 0.005) and at 7 dpi (p = 0.005);
and between the infected groups at 7 dpi (p = 0.005) (Figure 1D–F).
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with DENV-2 Strains 72 hpi, 7 and 14 dpi. CN: (n = 19); LinI: 72 hpi (n = 22), 7 dpi (n = 15), 14 dpi (n = 15); LinII: 72 hpi (n 
= 22), 7 dpi (n = 15), 14 dpi (n = 15). NC: negative control, n: number of mice, hpi: hours post-infection, dpi: days post-
infection, Lin: Lineage, *: p < 0.05, **: p < 0.01. 

2.2. Evaluation of Urea (BUN) Levels 
The concentration of BUN in serum of uninfected mice control group was 47.6 mg/dL 

and interquartile range (IR) = 41.9–44.8). The medians presented for Lineage I were 48.5 
mg/dL (IR = 40.1–49.7) at 24 hpi; 41.8 mg/dL (IR = 37.4–48.3) at 48 hpi and 43.4 mg/dL (IR 
= 39–49) at 72 hpi. In Lineage II infected mice, the level of the organic compound present 
in the serum, rose on the first day of infection (median = 54.1 mg/dL, IR = 52.5–54.9) and 
peaked at 48 hpi (median = 58.6 mg/dL, IR = 51.9–67.7). At 72 hpi, BUN concentration 
(median = 43.4 mg/dL, IR = 41.1–46.4) was lower than that of the uninfected mice control 
group. The differences between the medians were statistically significant between nega-
tive control and Lineage II at 48 hpi (p = 0.028) and between the two DENV-2 Lineages at 
24 and 48 hpi (p = 0.009 and 0.011, respectively) (Figure 2). 

Figure 1. Mean kidney weight (A–C) and weight/body weight ratio (%) (D–F) of BALB/c mice uninfected and infected
with DENV-2 Strains 72 hpi, 7 and 14 dpi. CN: (n = 19); LinI: 72 hpi (n = 22), 7 dpi (n = 15), 14 dpi (n = 15); LinII: 72 hpi
(n = 22), 7 dpi (n = 15), 14 dpi (n = 15). NC: negative control, n: number of mice, hpi: hours post-infection, dpi: days
post-infection, Lin: Lineage, *: p < 0.05, **: p < 0.01.

2.2. Evaluation of Urea (BUN) Levels

The concentration of BUN in serum of uninfected mice control group was 47.6 mg/dL
and interquartile range (IR) = 41.9–44.8). The medians presented for Lineage I were
48.5 mg/dL (IR = 40.1–49.7) at 24 hpi; 41.8 mg/dL (IR = 37.4–48.3) at 48 hpi and 43.4 mg/dL
(IR = 39–49) at 72 hpi. In Lineage II infected mice, the level of the organic compound present
in the serum, rose on the first day of infection (median = 54.1 mg/dL, IR = 52.5–54.9) and
peaked at 48 hpi (median = 58.6 mg/dL, IR = 51.9–67.7). At 72 hpi, BUN concentration
(median = 43.4 mg/dL, IR = 41.1–46.4) was lower than that of the uninfected mice control
group. The differences between the medians were statistically significant between negative
control and Lineage II at 48 hpi (p = 0.028) and between the two DENV-2 Lineages at 24 and
48 hpi (p = 0.009 and 0.011, respectively) (Figure 2).
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and collecting tubules showed no signs of exudate, inflammatory infiltrates or hemor-
rhage (Figure 3A). The images displayed herein are representative of alterations observed 
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(Figure 3C–E) were the most common histopathological changes observed among sam-
ples. In addition to desquamation of necrotic cells and loss of microvilli of cubic epithe-
lium that constitutes the convoluted tubules (Figure 3C), high chromatin (Figure 3E) and 
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Figure 2. Urea levels (mg/dL) of BALB/c mice uninfected and infected with DENV-2 Lineages
24 hpi, 48 hpi and 72 hpi. CN: (n = 5); LinI: 24 hpi (n = 5), 48 hpi (n = 5); 72 hpi (n = 5); LinII: 72 hpi
(n = 5); 7 dpi (n = 5); 14 dpi (n = 5). N: number of mice, hpi: hours post-infection. NC: negative
control, Lin: Lineage, *: p < 0.05, **: p < 0.01.

2.3. Evaluation of Histopathological Alterations, Histomorphometry and Antigen Detection

Kidney tissues of uninfected mice presented well preserved Malpighian corpuscles
(Mc), composed by Bowman capsule and glomeruli. There were no signs of atrophy,
glomerulitis or bleeding. In addition, the interstice, proximal and distal contorted tubules
and collecting tubules showed no signs of exudate, inflammatory infiltrates or hemorrhage
(Figure 3A). The images displayed herein are representative of alterations observed in
tissues of BALB/c mice infected with either Lineage I or II and euthanized at 72 hpi.

The morphological changes observed in kidney tissue of BALB/c mice infected by
the two DENV-2 Lineages were focal and did not differ qualitatively. Mononuclear inflam-
matory cells infiltrate (Figure 3B), peritubular congestion (Figure 4C) and tubular necrosis
(Figure 3C–E) were the most common histopathological changes observed among samples.
In addition to desquamation of necrotic cells and loss of microvilli of cubic epithelium that
constitutes the convoluted tubules (Figure 3C), high chromatin (Figure 3E) and cytoplas-
mic (Figure 3D) loss was observed. Those apparently vacuolated cells, when present in
increased amount and clustered, gave the cortical parenchyma, a translucid appearance.
Moreover, a number of tubular cells presented regular cytoplasmic inclusions (Figure 4A).

The commonest alteration observed in renal corpuscle was glomerular atrophy
(Figure 4B), presented as an apparent reduction in the number of cells that constitute
the glomerulus (Figure 4B’) or with the glomerulus forming a compact and reduced cell
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mass (Figure 4B”). In the latter, it was possible to notice the loss of integrity of the parietal
layer of Bowman’s capsule, and in both cases, an increase in Bowman’s space was noted.
Furthermore, in some renal cortex regions, it was not possible to distinguish the Bowman’s
space from the renal corpuscle due to enlargement of glomerular area caused by apparent
cellularity increase (Figure 4D). Finally, focal hemorrhage (Figure 4E), a common DENV
infection feature, was observed tissues from infected BALB/c with both DENV-2 lineages.
Table 1 shows the number of mice in which each alteration was observed.
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Figure 3. Histopathological alterations of renal cortex of BALB/c mice. H and E staining. Euthanasia;
72 hpi. (A) non-infected mice. (B–D) mice infected with DENV-2 Lineages. (B) mononuclear cell
infiltrate, (C) tubular necrosis (tn), desquamation of necrotic cells (arrow). (D) areas of cytoplasmic
loss (*) (E) chromatin loss [arrows]. Mc: Malpighian corpuscle, G: glomerulus, dct: distal convoluted
tubules pct: proximal convoluted tubules. Bs: Bowman’s space, Bc: Bowman capsule. Experimental
infection: (C,E) Lineage I, (B,D) Lineage II.
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Figure 4. Histopathological alterations of renal cortex of BALB/c mice. H and E staining. Euthanasia;
72 hpi. (A) cytoplasmic inclusions (arrows). (B) glomerular atrophy (circled/insets). (C) congestion
(C), (D) enlargement of glomerular volume (circled area/inset), (E) focal hemorrhage (h). Experimen-
tal infection: (A,B,B’,B”) Lineage I, (C–E) Lineage II.
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Table 1. Histopathological alterations observed in kidney samples of BALB/c infected with DENV-2
Lineages I or II and euthanized at 72 hpi. Number of mice whose livers presented the alteration/total
number infected mice.

Alterations
DENV-2

Lineage I (%) Lineage II (%) Total (%)

Tubular necrosis 10/10 (100) 10/10 (100) 20/20 (100)
Mononuclear cell infiltrate 9/10 (90) 10/10 (100) 19/20 (95)

Cytoplasmic loss 10/10 (100) 8/10 (80) 18/20 (90)
Capillary congestion 8/10 (80) 9/10 (90) 17/20 (85)
Glomerular atrophy 8/10 (80) 8/10 (80) 16/20 (80)

Chromatin loss 8/10 (80) 7/10 (70) 15/20 (75)
Enlargement of glomeruly 9/10 (90) 6/10 (60) 15/20 (75)

Cytoplasmic inclusions 3/10 (30) 3/10 (30) 6/20 (30)
Haemorrhage 1/10 (10) 3/10 (30) 4/20 (20)

As expected, no DENV antigen staining was observed in the kidney tissue of the
uninfected mice control group (Figure 5A). However, samples from Lineage II infected
BALB/c, viral staining was observed in epithelial cells in the medullary area (Figure 5B)
and endothelial cells in the cortical area (Figure 5C).
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Figure 5. DENV antigen detection in kidney of BALB/c mice infected with DENV-2 Lineage II. Euthanasia: 72 hpi.
(A) Negative control showing no peroxidase reactive cells, (B) peroxidase reactive epithelial cells from the loop of Henle
(arrow), (C) peroxidase reactive endothelial cells (arrow). Experimental infection: Lineage II.

At 72 hpi, a statistically significant decrease in the number of corpuscles in mice
infected with both Lineage I (p = 0.016) and Lineage II (p ≤ 0.001) was observed when those
were compared to uninfected BALB/c. In the latter, it was possible to observe 3.89 (±1.8)
Mc per analyzed area. For mice infected with DENV-2 Lineages I and II, the averages were
3.61 (±1.6) and 3.15 (±1.6) Mc per analyzed area, respectively. The difference in the number
of renal corpuscles between the two DENV-2 Lineages was also statistically significant
(p ≤ 0.001) (Figure 6A). The mean area occupied by glomeruli was measured and, despite
the decrease in the number of Mc and glomerular atrophy observed in the infected mice,
the mean area occupied by glomeruli in mice infected with DENV-2 exceeded the control
group (p ≤ 0.001 for both strains) (Figure 6B).
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Figure 6. Malpighian corpuscles count (A) and mean area occupied by glomeruli (B) of BALB/c
mice infected with DENV-2 Lineages. Euthanasia; 72 hpi. Glomerular area standard deviation:
NC (±8.69 × 105), Lin I (±9.41 × 105), Lin II (±1.04 × 106). NC: negative control, Lin: Lineage.
*: p < 0.05, ***: p < 0.00.

2.4. Evaluation of Ultrastructural Alterations

The ultrastructural analysis of kidney tissue of uninfected and infected BALB/c
mice euthanized at 72 hpi, corroborates histopathological findings. As expected, tissues
from uninfected control mice showed no damage to the renal parenchyma. Epithelial
cells presented round nuclei with regular looking chromatin pattern and no cytoplasmic
rarefaction or pyknotic nuclei were observed (Figure 7A).

The renal tissue of DENV-2 infected mice showed cytoplasmic rarefaction (Figure 7B–D),
pyknosis (Figure 7B,C) and death of convoluted tubule’s epithelial cells (Figure 7B), which
are consistent with tubular necrosis. Additionally, a number of epithelial cells presented
altered distribution and amount of chromatin in the nucleus, which could be caused by
a process of karyolysis (Figure 7D).

Mononuclear inflammatory cells infiltrates were present both in renal interstitium
(Figure 7E) and within glomeruli (Figure 8A,B). Some glomeruli appeared to be congested
due to increase in cellularity and edema, and as observed in our histological sections,
Bowman’s space could not be distinguished (Figures 7F and 8A). Moreover, focal areas in
the renal cortex were congested (Figure 8D) and small vesicles (Figure 8E) and inclusions
of unknown nature were observed within epithelial cells (Figure 8F) and in the edematous
area of a glomerulus (Figure 8A).
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Figure 7. Electron micrography of kidney samples of BALB/C mice. (Noninfected: A; infected
with DENV-2 Lineage I or II: (B–E)). (A): proximal convoluted tubule (PCT), brush border (B),
nucleus (N), mitochondria (m). (B): pyknotic nuclei (PN), massive cytoplasmic loss (*). (C): pyknotic
nuclei (PN/arrow), cytoplasmic rarefaction (*). (D): pyknotic nuclei (PN), chromatin loss (arrow).
cytoplasmic rarefaction (*), (E): glomerular mononuclear infiltrate. Mononuclear cell (MC), podocyte
(P), capillary (*), (G) glomerulus, (F): capillary congestion. (C), podocyte (P), mesangial cell (M),
mononuclear cell (MC), reduced Bowman space [arrow]. Experimental infection: Lineage I (C,E),
Lineage II (B,C,F).
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Figure 8. Electron micrography of kidney samples of BALB/C mice infected with DENV-2 Lineage I
or II. (A,B): congested glomeruli. Capillary congestion (C), edema [E], vesicles within glomerulus
[star], capillary (*), mononuclear cell (MC). (C): mononuclear cell infiltrate (MC). (D): capillary
congestion. (E): lipid-like cytoplasmic inclusions (arrows). (F): nucleus (N) dislocated by vesicle (V).
Experimental infection: Lineage I (B,C), Lineage II (A,D–F).

3. Discussion

In Brazil, the emergence of the Lineage II DENV-2 in 2007–2008 resulted in major
outbreaks with a new epidemiological profile and number of severe cases, hospitalizations
and deaths, especially in children 15 years old and under [6,8–10,64]. Moreover, it has been
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shown that genetic variations are important determinants of viral fitness, virulence and
tropism [47,59,65].

Although some authors suggest that the kidney is not a target organ of DENV due to
the lack of evidence of viral replication [13,17], renal involvement during dengue is fairly
well documented. Proteinuria, hematuria and glomerulonephritis have been reported
during or shortly after acute DENV infection. Moreover, AKI and ARF are somewhat
common features among patients with DHF/DSS [22,34,35,43,66–69]. Because data on renal
manifestations induced by DENV infection are not as abundant as data concerning target
organs, in this study, we sought to characterize and compare the alterations induced by two
distinct DENV-2 Lineages of the Asian/American genotype in the kidney of BALB/c mice.

Our results showed that there was a tendency of kidney weight increase in some
infected mice when compared to uninfected control group. To ensure that the increase in
kidney weight was not solely a result of body weight gain, the kidney weight/body weight
ratio (%) was calculated, and means of the infected group were also higher than control
group. Despite that, to our knowledge, there are no reports of kidney weight increase due
to DENV infection, liver, spleen and pancreas weight increases during DENV infection,
and hepatomegaly, splenomegaly and pancreatic enlargement have been associated with
dengue [70–73].

Altered vascular permeability, accompanied by plasma and albumin leakage, is a com-
mon feature of dengue pathophysiology [5], organ enlargement or increase in weight could
be a consequence of fluid accumulation in the interstice. We did not observe interstitial
edema in the renal tissue analyzed here, only fluid leakage inside glomeruli; however,
another study on the same mice model infected by DENV-3, also carried out by our group,
showed transudate in the kidney’s cortical area and reported statistically significant in-
crease in kidney weight [74]. Furthermore, histopathological findings on autopsies of
human fatal cases also showed edema, although mostly in the medullary region [17,75].

For each strain, the weight means reached higher values at distinct times of infection.
Lineage I peaked at 72 hpi, while Lineage II peaked at 7 dpi. Difference between the two
Lineages was statistically significant at 7 and 14 dpi. A possible explanation for such
difference is that Lineage II takes longer to manifest its signs.

Since urea is reabsorbed by the kidney, its altered levels in the blood may indicate
renal dysfunction. Increased levels of BUN are often reported is renal involvement dur-
ing DENV infections [22,34,37,76,77], and can be a consequence of glomerular injury or
hypotension [37]. Mice blood samples were collected at 24, 48 and 72 hpi, and BUN levels
were measured. While the median of the Lineage I infected mice was higher than the
control group median only at 24 hpi, Lineage II infected mice presented higher BUN levels
when compared to those of the uninfected group, at 24 and 48 hpi. Increased levels of BUN
in the sera of BALB/c mice infected by DENV-3, supports our findings [74]. Furthermore,
difference between Lineage II and control group was statistically significant at 48 hpi and
between Lineages I and II infected mice, at 24 and 48 hpi, and this difference may be due to
the different viral strains or host genetic factors.

The morphological changes described in this study were from kidney of mice infected
with each one of the DENV-2 Lineages and euthanized 72 hpi. The alterations observed in
renal tissues were focal and did not differ qualitatively. On the other hand, quantitatively,
the difference between Lineages I and II, regarding enlargement of glomeruli (90% and
60% of infected mice, respectively) was noteworthy. In accordance with these results,
morphometric analysis revealed that, on average, glomerular area in mice infected with
the Lineage I slightly exceeded the glomerular area in mice infected with by Lineage II.
Nonetheless, the difference was not significant.

Glomerular changes affecting the kidney are often reported in dengue human
cases [31,34,43] and, DENV inducing glomerulopathies is well documented [34,67,77,78].
Deposition of immuno complexes has been suggested as a mechanism of glomerular injury
in AKI induced by dengue [28]. Moreover, it has been suggested that glomerulonephritis
results from an autoimmune mediated glomerular damage triggered by the virus [79].
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In this study, renal tissue of DENV-2 infected BALB/c mice presented both glomerular
atrophy and enlargement of glomeruli. Indeed, the morphometric analysis showed that,
while, on average, the glomerular area of infected mice exceeded that of the uninfected
control group, Mc/glomeruli on uninfected mice kidneys outnumbered the ones in infected
groups. Our findings on Mc counting could suggest that the atrophy is an early stage of
necrosis, since, in a similar study, Caldas that observed glomeruli in different stages of
atrophy, as well as, areas free of glomeruli in the renal cortex of BALB/c mice infected with
DENV-3. Difference of Mc number was statistically significant among all groups.

We observed areas with enlarged glomeruli, due to increased cellularity, to the point of
Bowman’s space obliteration. By TEM, it was possible to observe that the enlargement was
a result of mesangial proliferation and mononuclear cells migration. Analysis of tissues
from dengue patients and BALB/c mice experimentally infected has associated mesangial
proliferation with deposition of immuno complexes in glomeruli [33,58,80,81]. The increase
in the cellularity resulted in congested capillaries and edema. Nunes [27] and Pagliari [43]
also observed congestion in capillaries in glomeruli; however, no mesangial proliferation
was reported.

One of the hallmarks of dengue pathogenesis is the involvement of the endothe-
lium [82]. Vascular permeability plays an important role in SD pathogenesis [83,84]. Our
ultrastructural studies showed some fluid leakage in the glomeruli, but we did not observe
any endothelial damage. The capillary permeability could be due to the release of inflam-
matory mediators from the mononuclear cell present, both inside capillaries and among
mesangial cells, in the glomeruli. This hypothesis is supported by authors who believe that
altered vascular permeability in dengue is caused by immunological host response, rather
than by infection of endothelial cells or cell death [84–86]. Moreover, our histopathological
findings showed hemorrhage foci and small mononuclear cells infiltrates in the cortical area
of kidney of the DENV-2 infected mice and corroborates studies carried out with human
cases of DENV-3 and -4 infection, and BALB/c mice infected with DENV-3 [17,27,74,75,87].

Studies on human autopsy tissues have described tubular necrosis on dengue
cases [17,27,43]. Mohsin [76] reported a case of ARF with tubular necrosis in a dengue
patient who did not present signs of hemorrhagic fever, only classic dengue symptoms.
Moreover, it has been suggested that necrosis results from ischemic processes due to se-
vere hypovolemic shock, hypoprofusion and hypoxia which leads to decreased kidney
perfusion, interstitial edema and mononuclear infiltration, and acute glomerulonephri-
tis [17,76,88,89]. In a BALB/c model, Caldas [74] observed mitotic figures, indirect signs of
hyperplasia, which may be related to tubular injury.

In this study, all kidneys of DENV-2 infected mice presented tubular necrosis, mostly
in proximal convoluted tubules. The tissues showed desquamation of epithelial cells and
loss of the border brush. Conversely, Caldas [74] observed the thickening of the brush
boarder. Autopsy data described loss of basement membrane, pyknotic nuclei and dilation
of endoplasmic reticulum in necrotic cells; tubular hemorrhage and atrophy with discrete
mononuclear inflammatory infiltrate. Besides that, IL18 and IL6, both proinflamatory
citokines, were detected in tubular cells [17,27,43,75]. Here, some nuclei were pyknotic,
an alteration seen in the same murine model infected by DENV-3 [74]. Others, presented
massive chromatin loss. There were areas of cytoplasmic rarefaction and some tubular
epithelial cells were lightly stained, even though the plasmatic membrane looked intact.
Upon ultrastructural analysis, it was possible to see that those cells had lost most of its
contents and cytoplasm was almost completely absent.

Additionally, histological analysis revealed some dislocated nuclei due to fairly large
unstained round cytoplasmic inclusions resembling lipid droplets. These inclusions were
also seen by Caldas [74]. In fact, samples presented small lipid-like inclusions, however, the
structures responsible for nuclei dislocation were, actually, vesicles that, to our knowledge,
has not been described as an alteration in renal tissue during dengue.

DENV-like particles have been observed in ultrathin sections of BALB/c mice infected
by DENV-3 and tissues of renal biopsy [28,74], but they were not observed here. At 72 hpi,
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two out of 10 kidneys of the infected mice were positive for the viral antigen, both of
them, from mice infected by Lineage II, and morphological changes compatible with
those reported both in human cases and animal models of infection [17,58,69,74,75,90]
were also observed in this study. The detection of anti-DENV antigen, in tubular cells
and infiltrate macrophages and monocytes, has been reported in studies on human cases
and experimental models [13,15,17,27,90,91], however, no virus RNA negative strand was
detected and, NS3 was only detected by Nunes [27] in mesangial cells and macrophages.
Even though some studies report viral RNA detection in kidneys of human biopsies
and animal models tissues [15,27,74,90], some authors hypothesize that DENV antigens
detected in the kidney are from reabsorbed immuno complexes, and that it is more likely
that damage to renal parenchyma is caused by immuno-mediators released as a host
response to DENV infection [17,43,44], or secondary to other dengue complications, such
as rhabdomyolysis, myositis, hypoperfusion and hypoxia [37,42,66,92–94].

Several studies have reported DENV infection leading to kidney injury, especially
in SD. Mortality rates among DHF patients who develop AKI can reach up to 60% [89].
Therefore, the mechanisms behind renal involvement in dengue must be better under-
stood. Our results show that BALB/c mice infected with two distinct Lineages of DENV-2
Asian/American genotype presents renal alterations that are commonly observed in hu-
man cases and may be a suitable experimental model for studies of pathophysiology and
immunopathogenesis of dengue in kidney.

4. Material and Methods
4.1. Ethical Statement

All experiments with mice were conducted in compliance with Ethical Principles in
Animal Experimentation stated in the Brazilian College of Animal Experimentation and
approved by the Institute’s Animal Use Ethical Committee (L-023/2018) and the Human
Research Ethic Committee (274/05) from the Oswaldo Cruz Institute (IOC), Oswaldo Cruz
Foundation (FIOCRUZ).

4.2. DENV-2 Viral Strains

DENV-2 strains BR/RJ66985/2000 (GenBank #HQ012518) and BR/RJ0337/2008 (Gen-
Bank #HQ01253), representative of Lineage I and Lineage II from the Asian/American
genotype [6], were isolated from patient sera at the Flavivirus Laboratory, IOC, FIOCRUZ,
during the epidemics of 2000 and 2008, respectively, and kindly provided. Serotype was
confirmed by indirect immunofluorescence, using DENV-type-specific monoclonal anti-
body (3H5), and RT- PCR [95,96]. Viral stocks were prepared by inoculating 100 µL of
each strain into 175 cm2 cell culture bottles containing mosquito Aedes albopictus cell line
(C6/36) at a concentration of 5 × 105 cells/mL. Titers of both strains (BR/RJ66985/2000:
106.66 TCID50/0.1 mL and BR/RJ0337/2008: 109 TCID50/0.1 mL) were calculated by the
Reed and Muench method [97]. The viruses did not undergo any passages through mice
brain for neuroadaptation.

4.3. BALB/c Experimental Infection

For experimental infection, two-month-old, male BALB/c mice, provided by Insti-
tute of Science and Technology in Biomodels (ICTB)-Fiocruz, were used. During ex-
perimentation period, the animals were kept under controlled temperature, photope-
riod, nutrition and hydration conditions, as previously described [26]. Briefly, for in-
fection with both Lineages I and II of DENV-2, BALB/c mice were inoculated by the
intravenous route (IV) through the caudal vein. Inocula volume was 100 µL and viral
concentration, 10,000 TCID50/0.1 mL. The mice were anesthetized [ketamine = 150 mg/kg,
xylazine = 10 mg/kg and tramadol = 10 mg/kg] and euthanized 24, 48 and 72 h post-
infection (hpi), at 7 or 14 days post-infection (dpi), according to their experimental group.
In order to collect blood samples, cardiac puncture was performed before euthanasia.
Kidney samples, destined to morphological and immunohistochemistry analysis, were
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fixed in Millonig buffered formalin. All kidney samples were weighted immediately after
harvesting at 72 hpi, seven and 14 dpi. Non-infected mice were used as negative controls.
Table 2 shows the number of mice used in the study.

Table 2. Number of mice used for histopathological, immunohistochemical and biochemical analysis and measuring of
kidneys’ weight.

n = 123 Mice
Histopathology/IHQ TEM Biochemical Analysis Kidney Weight

72 hpi 72 hpi 24 hpi 48 hpi 72 hpi 72 hpi 7 dpi 14 dpi

DENV-2/Lineage I 10/5 5 5 5 5 22 15 15
DENV-2/Lineage II 10/5 5 5 5 5 22 15 15

Negative control 5/5 5 5 19
Total [samples] 25 15 35 123

IHQ: immunohistochemistry, TEM: transmission electron microscopy, hpi: hours post infection, dpi: days post infection.

4.4. Biochemical Analysis

For each DENV-2 Lineage, a total of 15 mice were infected. The mice were divided into
three groups of five animals, and each group euthanized at different times after infection
(24, 48 and 72 hpi). After the determined periods of infection, the mice were anesthetized
and blood was collected by cardiac puncture. Blood samples were then centrifuged for
10 min, at 5000 rotations per minute, to separate the serum from the cellular components.
Non-infected mice (n = 5) blood was collected at the same day as the 72 hpi group. Blood
levels of urea were measured by dry chemistry testing using the Vitros 250 equipment
(Ortho clinical Diagnostics, Jonhson & Jonhson, New Brunswick, NJ, USA) in collaboration
with ICTB.

4.5. Bright Field Microscopy

For each DENV-2 Lineage, 10 mice were infected. Five non-infected mice were used
as negative control. Seventy-two hpi, the mice were euthanized, kidney samples were
collected and fixed in Millonig buffered formalin (formalin P.A.: 100 mL, distilled water:
900 mL, NaH2PO4: 18.03 g, NaOH: 4.2 g). The samples were then dehydrated in decreasing
concentrations of ethanol, clarified in xylene and embedded in paraffin. Tissue sections
5 µm thick were obtained using a microtome (Leica 2025) and stained with hematoxylin
and eosin (H and E) and analyzed using a bright field microscope (AxioHome, Carl
Zeiss, Oberkochen, Germany). All procedures were performed in collaboration with the
Pathology Laboratory, IOC, FIOCRUZ.

4.6. Immunohistochemistry

For DENV antigen detection in kidney tissue an immunohistochemistry assay was
performed. Briefly, five slides containing histological sections of kidney infected with
each DENV-2 lineage were heated at 60 ◦C for one hour, de-paraffinized in xylene and
rehydrated with alcohol. Antigen retrieval was performed by heating the tissue in the
presence of citrate buffer. Next, tissues were blocked for endogenous peroxidase with
3% hydrogen peroxidase in methanol for 10 minutes and rinsed in tris-HCl (pH 7.4). To
reduce non-specific binding, sections were incubated in Protein Blocker solution (Spring
Bioscience, Pleasanton, CA, USA) for 10 min at room temperature. Tissues were incubated
with rabbit anti-dengue 4G2 antibody (1:200), used as the primary antibody, and afterwards,
with a rabbit anti-mouse IgG-HRP conjugate (REVEAL polyvalent HRP, Spring Bioscience,
Pleasanton, CA, USA). Finally, the slides were counterstained with Harris hematoxylin, and
analyzed using a bright field microscope (AxioHome, Carl Zeiss, Oberkochen, Germany).
Samples from non-infected mice were used as negative control.

4.7. Histomorphometry

Morphometrical analysis goals were quantifying the number Malpighian corpuscles
(Mc) and measuring the area occupied by glomeruli in kidney samples of each group of
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mice. Fifteen histological sections of kidney of BALB/c mice euthanized at 72 hpi stained
with H and E (5 from non-infected mice as negative control, 5 from mice infected with
Lineage I of DENV-2 and 5 from mice infected with Lineage II of DENV-2) were analyzed.
For each section, 30 images of random areas were captured at a 200× magnification using
a digital camera coupled to a bright field microscope (AxioHome, Carl Zeiss, Oberkochen,
Germany). The analyses were performed with the aid of the image processing program
Image J. Aiming at the recognition and calculation of the area occupied by the structure,
glomerular area was delimited and colored differently from the colors present in the studied
field. The values obtained were then compiled by group and the mean was calculated.

4.8. Transmission Electron Microscopy (TEM)

Kidney tissues were processed as described by Barreto-Vieira [98]. Briefly, samples
were fixed by immersion in 2% glutaraldehyde diluted in sodium cacodylate buffer (0.2 M,
pH 7.2), cut into smaller fragments (~1 mm3), post-fixed in 1% osmium tetroxide and
dehydrated in increasing concentrations of acetone. Subsequently, samples were embedded
in Epoxy resin (Electron Microscopy Sciences, Hatfield, PA, USA). For light microscopy,
semithin sections (0.5 µm) were stained with methylene blue and azure II and analyzed
using a Zeiss PrimoStar light microscope (Carl Zeiss, Oberkochen, Germany). Ultrathin
sections were stained with uranyl acetate and lead citrate and analyzed using a Hitachi HT
7800 transmission electron microscopy (Hitachi, Tokyo, Japan).

4.9. Statistical Analysis

A database with data related to organ weight, histomorphometry and biochemical
analysis was created in Microsoft Excel. The graphs were created using the GraphPad
Prism software version 8.0.1. For statistical analysis, a t-test was performed when groups
presented normal distribution and a Mann–Whitney test was performed when groups
presented non-normal distribution, using the SPSS Statistics software version 25. Results
of p ≤ 0.05 were considered statistically significant.
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