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Abstract: Self-assembling peptides are a promising class of biomaterials with desirable
biocompatibility and versatility. In particular, the oligopeptide (RADA)4, consisting of arginine (R),
alanine (A), and aspartic acid (D), self-assembles into nanofibers that develop into a three-dimensional
hydrogel of up to 99.5% (w/v) water; yet, the organization of water within the hydrogel matrix is
poorly understood. Importantly, peptide concentration and polarity are hypothesized to control
the internal water structure. Using variable temperature deuterium solid-state nuclear magnetic
resonance (2H NMR) spectroscopy, we measured the amount of bound water in (RADA)4-based
hydrogels, quantified as the non-frozen water content. To investigate how peptide polarity affects
water structure, five lysine (K) moieties were appended to (RADA)4 to generate (RADA)4K5.
Hydrogels at 1 and 5% total peptide concentration were prepared from a 75:25 (w/w) blend of
(RADA)4:(RADA)4K5 and similarly analyzed by 2H NMR. Interestingly, at 5% peptide concentration,
there was lower mobile water content in the lysinated versus the pristine (RADA)4 hydrogel.
Regardless of the presence of lysine, the 5% peptide concentration had higher non-frozen water
content at temperatures as low as 217 ± 1.0 K, suggesting that bound water increases with peptide
concentration. The bound water, though non-frozen, may be strongly bound to the charged lysine
moiety to appear as immobilized water. Further understanding of the factors controlling water
structure within hydrogels is important for tuning the transport properties of bioactive solutes in the
hydrogel matrix when designing for biomedical applications.
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1. Introduction

Self-assembling peptide hydrogels offer a wide range of potential biomedical applications, ranging
from drug delivery platforms [1,2], fillers for treating osteoarthritis [3], engineered matrices for
neuronal cultures [4–7], to hemostatic agents [8]. The generally non-immunogenic, non-inflammatory,
and non-thrombogenic properties [8,9] make self-assembled peptides compatible for these applications.
In particular, hydrogels prepared from (RADA)4 possess desirable physicochemical and biocompatible
properties [10–12]. (RADA)4 consists of four tetrapeptide repeats containing arginine (R), alanine (A),
and aspartic acid (D), which self-assemble into nanofibers [4] in physiologically relevant aqueous
solution. The biocompatible nanofibers are simple to synthesize and form a hydrogel of net neutral
charge that can respond to external stimuli at physiological conditions [13–16]. (RADA)4 has
the potential for minimally invasive therapies (i.e., injectable), protein delivery, and sustaining
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three-dimensional cellular activities [10,15]. However, the limited understanding of the peptide
self-assembly process at the molecular level impedes the practical application of hydrogel biomaterials.

(RADA)4 hydrogels are intensely hydrated, up to 99.5% (w/v) water [7,13,15], and the
organization of water controls the transport properties within hydrogel matrices [17]. At the molecular
level, three distinct phases of water are thought to exist within hydrated polymers: bulk water, vicinal
(loosely or freezing bound) water, and strongly (non-freezing) bound water [17–25]. Bulk water
has little to no interaction with the polymer and crystallizes at 0 ◦C. Vicinal water interacts with
the hydrophilic moieties of the polymer and freezes below 0 ◦C. In contrast, due to substantial
intermolecular interactions with the polymer, strongly bound water may remain mobile at temperatures
as low as −100 ◦C [26]. Of particular significance are the bound water shells that solvate the peptide
nanofibers of the hydrogel. These layers of hydration may lead to an increase in the viscosity
experienced by diffusing molecules within the hydrogel and thus affect macroscopic release kinetics,
as illustrated by the Stokes–Einstein equation. Thus, by controlling the hydrogel’s internal water
structure, it may be possible to alter the diffusion rate for releasing absorbed solutes from the hydrogel.

Herein, we explored peptide concentration and charge as factors that influence the organization
of water in (RADA)4-based hydrogels. Increased peptide concentration led to a higher amount of
non-frozen water. Interestingly, the incorporation of charged lysine groups to (RADA)4 reduced the
mobile water content, which may have been due to the enhanced peptide–water binding that hindered
the motion of water molecules. These data provide novel insight on the molecular basis of the aqueous
environment in peptide hydrogels.

2. Materials and Methods

2.1. Peptide Synthesis

The peptides acetyl-[Arg-Ala-Asp-Ala]4-CONH2, denoted as (RADA)4, and acetyl-[Arg-Ala-
Asp-Ala]4-[Lys]5-CONH2, denoted as (RADA)4K5, were commercially synthesized and purified
(RS Synthesis, Louisville, Kentucky, USA). The molecular weights of 1711.8 Da for (RADA)4 and
2353.3 Da for (RADA)4K5, determined by the ABI 4800 matrix-assisted laser desorption/ionization
time of flight mass spectroscopy (Applied Biosystems/MDS SciEx, Concord, Ontario, Canada), were
as expected compared to the estimated molecular weights of 1712.8 and 2353.7 Da, respectively.
Sample purity, ~90% purity for both peptides, was analyzed by high performance liquid
chromatography (Agilent Technologies, Santa Clara, CA, USA) analysis using a Luna C18 reverse phase
4.6 × 250 mm column. The spectra were quantified on the Agilent Technologies in-house software.

2.2. Hydrogel Preparation

Hydrogels were prepared according to established procedures [25]. Lyophilized (RADA)4 peptide
(RS Synthesis, Louisville, Kentucky, USA) was dissolved in 1× phosphate buffered saline (PBS,
pH 7.4, Sigma-Aldrich, St. Louis, Missouri, USA) with D2O as the solvent for 2H NMR experiments.
The peptide solution was sonicated (2800 Branson sonicator, Crystal Electronics, Newmarket, Canada)
at 25 ◦C for 30 min and diluted with PBS to obtain final peptide concentrations of 1 and 5% (w/v)
(RADA)4, denoted 1K0 and 5K0, respectively. The diluted peptide was allowed to self-assemble
into hydrogel at 37 ◦C for at least 1 h. To prepare blended (RADA)4–(RADA)4K5 hydrogels,
(RADA)4K5 (RS Synthesis, Louisville, Kentucky, USA) was similarly dissolved in PBS, sonicated,
and combined with (RADA)4 solution for self-assembly. Hydrogels containing a 75:25 (w/w) ratio
of (RADA)4:(RADA)4K5 were prepared at 1 and 5% total peptide concentrations, denoted 1K25 and
5K25, respectively.

2.3. Atomic Force Microscopy

Atomic force microscopy (AFM) was conducted to confirm nanofiber formation in peptide
solutions [27]. 1K0 and 1K25 solutions at 0.01% (w/v) were prepared in 10 mM phosphate buffer,
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pH 7.4. Five microlitres of each solution was placed on a freshly cleaved muscovite mica substrate
(V-1 quality; Emsdiasum, Hatfield, Pennsylvania, USA) and dried in a dessicator for 3 h minimum.
A NanoWizard II atomic force microscope (JPK Instruments, Berlin, Germany) equipped with a
cantilever was used in intermittent mode to probe samples. The 240 µm long silicon cantilever probe
with aluminum reflex coating had a resonance frequency of 50–90 kHz, spring constant of 0.7–3.8 N/m,
and tip radius of ≤7 nm (Olympus AC240TS, Tokyo, Japan). AFM images were collected from 5
different areas for each sample from 3 independent experiments and analyzed using the Gwyddion 2.2
software (Czech Metrology Institute, Brno, Czech Republic) to quantify nanofiber length and width.

2.4. Solid–State 2H NMR

Solid–state 2H NMR experiments were performed at 11.75 T (v0 = 76.8 MHz) on a Bruker
Avance 500 spectrometer using a Bruker 4 mm double resonance probe. Samples were packed
in zirconia rotors (4 mm outer diameter) and acquired under non-spinning conditions. 2H NMR
spectra were obtained with a solid-echo pulse sequence with 5.0 µs 90◦ pulses, a 30.0 µs interpulse
delay (τ1), a 60 ms acquisition time, and a 2.0 s recycle delay. Data were left-shifted to ensure the
free induction decays began at the maximum. Variable-temperature NMR data were obtained on
the Avance 500 NMR spectrometer using a BVT3000 variable temperature unit. The heat exchanger
source was an ethanol/dry ice bath, with dry air as the VT gas. Gas flow rates of 1070 and 1470 L/h
were used to reach the target temperatures. Temperature calibrations were performed according to
established methods using methylammonium lead chloride 207Pb chemical shifts [28]. The NMR
spectra were simulated using the WSolids NMR Simulation Package (Version 1.21.3; Universität
Tübingen, Tübingen, Germany) to quantify the mobile water in hydrogel samples [29].

3. Results and Discussion

Analyzing the water structure in the peptide matrix is fundamental to understanding the internal
transport properties of hydrogels for biomedical applications. Within the matrix, liquid water is
partitioned into bulk and bound phases. The bound phase, in particular, belongs to the solvation shell,
where water molecules are in close proximity, or directly hydrogen bonded, to the peptide nanofibers.
It is unclear how the relative amount of bulk versus bound water is affected by polar moieties in the
peptide. As such, we appended five lysine units to the C-terminus of (RADA)4 to generate (RADA)4K5.
Lysine is positively [30] charged in pH 7.4 solution with a hydration potential [31] of −9.52 kcal/mol
at pH 7 and thus expected to increase the hydrophilicity of pristine (RADA)4. The compact epsilon
ammonium group of lysine, in particular, has a high charge concentration and is expected to bind water
more strongly than other hydrophilic groups, such as the guanidinium group of arginine, where the
charge is dispersed over the entire guanidinium framework [32]. Furthermore, peptide self-assembly
into nanofibers is a pre-requisite for hydrogel formation. Pristine (RADA)4 can self-assemble into
nanofibers but pure (RADA)4K5 cannot [12,33]. Strong interactions between water and the charged
lysine groups and/or electrostatic repulsion may prevent nanofiber formation [33]. Self-assembly is
possible, however, by blending (RADA)4 with up to 25% (RADA)4K5 [11].

To confirm nanofiber self-assembly, hydrogels prepared from pristine (RADA)4 and the blend of
75:25 (RADA)4:(RADA)4K5 were analyzed by atomic force microscopy (AFM). It was unnecessary to
analyze both the 1 and 5% peptide concentrations since all AFM samples were significantly diluted, and
the final concentration would be equal regardless of the initial peptide concentration in the hydrogel.
Figure 1 shows AFM images of nanofiber morphology at 0.01% (w/v) total peptide concentration in
10 mM phosphate buffer, pH 7.4. Indeed, both pristine (RADA)4 (Figure 1A) and the lysinated blend
(Figure 1B) self-assembled into nanofibers. As expected, (RADA)4K5 alone did not form nanofibers
but collapsed into random aggregates (Figure 1C). The length of pristine (RADA)4 nanofibers ranged
from hundreds of nanometers to several micrometres (sampled across 5 areas and 3 independent
experiments). The 10.3 ± 1.5 nm width and 1.3 ± 0.3 nm height of nanofibers were consistent with
previously reported dimensions [34]. In contrast, the nanofibers of the 75:25 (RADA)4:(RADA)4K5
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blend were 347 ± 201 nm in length, though not statistically shorter than those of pristine (RADA)4,
and comparable in width (17.7 ± 3.3 nm) and height (1.4 ± 0.2 nm). Therefore, while both the pristine
and lysinated blend of (RADA)4 could self-assemble into nanofibers, the lysine moieties in (RADA)4K5

may limit nanofiber length.
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Figure 1. Atomic force microscopy (AFM) images of nanofiber morphology in (A) pristine (RADA)4,
(B) a blend of 75%(RADA)4:25%(RADA)4K5 (w/w), and (C) (RADA)4K5. Peptide solutions were
prepared at 0.01% (w/v) in 10 mM phosphate buffer, pH 7.4. Scale bars 500 nm.

Differential scanning calorimetry (DSC) was previously used to examine the organization of
water in (RADA)4 hydrogel, specifically the relative amount of freezing versus non-freezing water [25].
DSC measures the heat transfer associated with freezing to quantify the amount of frozen water in
the bulk phase. Subtracting the frozen from the total water gives the difference as the non-frozen
water content, consisting of vicinal and strongly bound water [35]. In contrast, whereas DSC indirectly
quantifies bound water, with deuterium nuclear magnetic resonance (2H NMR) spectroscopy one may
directly assess bound water content based on the 2H relaxation characteristics of D2O and through
an analysis of the 2H NMR line shapes [35–38]. Through variable temperature NMR, the water
environment can be identified by the temperature at which the water molecules become mobile and
thus alter the resulting NMR lineshape: 170–190 K (strongly bound water), 230–260 K (vicinal water),
and ~273 K (bulk water) [26,35,39–41]. Since DSC becomes insensitive to changes in thermal energy
below 200–230 K [35], NMR is more appropriate than DSC to distinguish vicinal water from strongly
bound water at low temperatures and to provide a direct overall assessment of water structure.

To study the effects of peptide concentration and charge on internal water structure, hydrogels
were prepared at 1 and 5% (w/v) total peptide concentration, and five lysine moieties were appended
to (RADA)4 to generate (RADA)4K5. At 1%, hydrogels were prepared from pristine (RADA)4 (1K0)
and the blend of 75:25 (RADA)4:(RADA)4K5 (1K25). At 5%, hydrogels were similarly prepared from
pristine (RADA)4 (5K0) and the lysinated blend (5K25). The hydrogels were analyzed by variable
temperature 2H NMR from 271 to 217 ± 1.0 K (Figure 2). The single narrow peak (~0 ppm) at
271 ± 1.0 K observed for all samples indicates the fast, isotropic tumbling of water molecules in
the liquid phase such that the mobility of water molecules was not constrained relative to the NMR
timescale. As the motion of water molecules was constrained upon cooling, the base of the central
peak broadened into roughly symmetrical shoulders. At 226 ± 1.0 K, a broad shoulder appeared
for 1K0 (Figure 2A) and 1K25 (Figure 2B). These shoulders increased in relative intensities as the
temperature was further reduced to 217 ± 1.0 K, demonstrating that the motion of water molecules
became restricted. However, the broad powder pattern (Pake doublet [42]) characteristic of hexagonal
D2O ice (i.e., frozen non-mobile crystalline water) was absent at 217 ± 1.0 K, well below the freezing
point of pure D2O (277 K) [43]. This demonstrated that the motion of water molecules became
increasingly hindered below 226 ± 1.0 K, but not necessarily locked in a crystalline state. The 2H NMR
lineshape is consistent with water exhibiting twofold hopping motion. A similar peak broadening
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occurred for the spectra of 5K0 (Figure 2C) and 5K25 (Figure 2D) hydrogels as the temperature was
lowered. However, the shoulders were subtle at 226 ± 1.0 K for the 5 compared to the 1% hydrogels,
suggesting that the increased mobility of water molecules was maintained to a lower temperature in 5
compared to 1% hydrogels.
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Figure 2. Variable temperature 2H NMR spectra for (RADA)4-based hydrogels formulated as (A) 1K0,
(B) 1K25, (C) 5K0, and (D) 5K25. All spectra were acquired at 11.75 T (v0 = 76.8 MHz).

The relative quantity of mobile water molecules in each hydrogel was obtained by fitting the
NMR spectra using WSolids, where two distinct sites (mobile vs. restricted water) were simulated with
50:50 Gaussian:Lorentzian line broadening. Figure 3 illustrates the percentage of mobile water, relative
to the initial water content at room temperature, in each hydrogel sample from 271 to 217 ± 1.0 K.
At 1% peptide concentration, the curves for 1K0 and 1K25 almost overlap (Figure 3A). At 271 ± 1.0 K,
virtually all water (~99%) was mobile, consistent with the single central peak observed for all 2H NMR
spectra (Figure 2). The amount of mobile water decreased with temperature. There is a sharp decrease
between 237 and 226 ± 1.0 K, where the amount of mobile water dropped by 54 and 63 ± 5% for 1K0
and 1K25, respectively. Notably, there was similar non-frozen water content (16 ± 1%) in 1K0 analyzed
by DSC [25] compared to the mobile water content (14 ± 5%) measured by NMR at 226 ± 1.0 K,
which may be interpreted as the bound water content of the hydrogel. DSC operates at a temperature
where the vicinal and strongly bound water are not necessarily frozen, and thus, this method can
detect the frozen bulk water but cannot differentiate the two non-frozen phases. The non-frozen
water content measured by DSC is expected to be greater than or equal to the mobile water content
measured by NMR. NMR, conducted at temperatures over which vicinal water freezes [35,39], can
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further distinguish the vicinal from the strongly bound water. The lysinated and pristine (RADA)4

had the greatest difference in mobile water content within 230–260 K, the freezing range of loosely
bound vicinal water [35]. At 237 ± 1.0 K, the higher mobile water content of lysinated (RADA)4 agrees
with previous DSC analysis in which a 0.5% sample of the lysinated blend had higher non-frozen
content water than pristine (RADA)4 (14.86% in the lysinated blend versus 8.51% in (RADA)4) [11].
Upon further cooling to 217 ± 1.0 K, the NMR data showed that the amount of mobile water further
decreased to 0.1 ± 5% for both 1K0 and 1K25. Thus, the incorporation of lysine appeared to improve
water–peptide binding to the extent of increasing the vicinal water content.
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content as a function of temperature in the hydrogels (A) × 1K0 and # 1K25 and (B) × 5K0 and # 5K25.
The mobile water content is expressed as a percentage of the initial water content at room temperature.

At 5% peptide concentration, pristine (RADA)4 contained a greater amount of mobile water than
the lysinated blend at decreasing temperatures (Figure 3B). The temperature dependence of the mobile
water content showed a similar sigmoid behaviour as in 1% peptide hydrogels. Nearly all the water
content was mobile at 271 ± 1.0 K. A slight decrease in mobile water occurred at 248 ± 1.0 K for 5K25,
but almost all water remained mobile in 5K0 at this temperature. Upon cooling to 217 ± 1.0 K, the
amount of mobile water dropped monotonically to 12 and 5 ± 5% for 5K0 and 5K25, respectively.
Over the observed temperature range, there was generally more mobile water in the 5 than the 1%
hydrogel, which agrees with the DSC data such that increased peptide concentration (from 0.5 to 3.0%
(RADA)4) leads to less frozen water (from 99.02 to 21%) and more non-frozen water (from 8.5% to
77%) [25]. Potentially, the nanofiber content increases along with its associated surface area available
to interact with water [25].

Unexpectedly, the mobile water content of the lysinated blend was generally below that of pristine
(RADA)4. In contrast, previous analysis by DSC indicated that, in a 0.5% hydrogel, the lysinated
blend decreased frozen water content (90.19% in (RADA)4 versus 82.31% in the lysinated blend) and
increased non-frozen water content (8.51% in (RADA)4 versus 14.86% in the lysinated blend) [11].
Specific to the 5% hydrogel, an explanation as to why appending a charged group, such as lysine,
would yield an apparent lower amount of mobile water is that the increased hydrophilicity, together
with a higher peptide concentration, results in a stronger, as well as larger solvation cage than pristine
(RADA)4 or the 1% lysinated blend. The tightly bound water molecules in the 5% lysinated blend may
not undergo sufficient molecular motion to be deemed mobile by NMR. In support, as the temperature
was lowered, the decrease in mobile water was not met with increased NMR signal for crystalline
water, demonstrating that the immobilized water was not necessarily frozen.
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Taken together, the 2H NMR data present a more complex description of water dynamics
in (RADA)4 hydrogels than the discrete freezing or non-freezing categorization of water as per
DSC-based experiments, summarized in Figure 4. The NMR spectra show a gradual broadening into a
powder pattern as the temperature is decreased, suggesting that water molecules are organized into
a continuum of states within the hydrogel matrix. Such a distribution of environments ranges from
the bulk to the strongly bound phases with intermediate levels of mobility and binding strength to
the nanofiber.
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into a continuum of states within the hydrogel matrix. Such a distribution of environments ranges 
from the bulk to the strongly bound phases with intermediate levels of mobility and binding 
strength to the nanofiber.  

 

Figure 4. A working model of local water structure in lysinated (RADA)4 hydrogel. (RADA)4 
self-assembles with (RADA)4K5 into β-sheets to form hydrated nanofibers. Water molecules exhibit 

Figure 4. A working model of local water structure in lysinated (RADA)4 hydrogel. (RADA)4

self-assembles with (RADA)4K5 into β-sheets to form hydrated nanofibers. Water molecules exhibit
varying degrees of interaction with the peptide nanofibers, ranging from minimal interaction (bulk
water) to substantial intermolecular attraction (strongly bound water). Appending the charged lysine
motif to (RADA)4 promotes water–peptide binding.
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4. Conclusions

In this study, variable temperature 2H NMR was used to investigate the water structure within
(RADA)4 hydrogels as a function of peptide concentration (1 and 5%) and the presence of charged
lysine moieties. Increasing the peptide concentration may enlarge the surface area available for
nanofiber–water interactions. The presence of charged groups could further enhance the binding of
water. The earlier data from DSC corroborate with those of NMR, and NMR further differentiates the
phases of water that closely interact with the peptide. The results presented herein give insight on the
internal water environment within a self-assembled structure.
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